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ABSTRACT: Methods for the detection and inference of irregularly shaped geographic
clusters with count data are important tools in disease surveillance and epidemiology.
Recently, several methods were developed which combine Kulldorff’s Spatial Scan
Statistic with some penalty function to control the excessive freedom of shape of spatial
clusters. Different penalty functions were conceived based on the cluster geometric shape
or on the adjacency structure and non-connectivity of the cluster associated graph.
Those penalty function were also implemented using the framework of multi-objective
optimization methods. In particular, the non-connectivity penalty was shown to be very
effective in cluster detection. Basically, the non-connectivity penalty function relies on
the adjacency structure of the cluster’s associated graph but it does not take into account
the population distribution within the cluster. Here we introduce a modification of the
non-connectivity penalty function, introducing weights in the components of the penalty
function according to the cluster population distribution. Our methods is able to identify
multiple clusters in the study area. We show through numerical simulations that our
weighted non-connectivity penalty function outperforms the original non-connectivity
function in terms of power of detection, sensitivity and positive predictive value, also
being computationally fast. Both single-objective and multi-objective versions of the
algorithm are implemented and compared.

1Universidade Federal de Ouro Preto - UFOP, Departmento de Estatística, Ouro Preto, MG, Brazil.
E-mail: duarte.andersonr@gmail.com; spencerbars@gmail.com; fernandoluizest@gmail.com;
prof.flaviomoura@gmail.com

2Universidade Federal de Viçosa - UFV, Departmento de Estatística, Viçosa, MG, Brazil. E-mail:
prof.marcelocarlosribeiro@gmail.com

3Universidade de Brasília - UnB, Departmento de Estatística, Brasília, DF, Brazil. E-mail:
cancado@gmail.com

160 Rev. Bras. Biom., Lavras, v.35, n.1, p.160-173, 2017



KEYWORDS: Spatial Scan statistic; irregular clusters; multi-objective algorithms;
compactness Function; non-connectivity function; weighted non-connectivity function.

1 Introduction

Consider some study area represented by a map divided in regions where some
kind of occurences (disease, crimes, etc.) are distributed among the regions. We
define a spatial cluster as a connected set of regions where the risk of some occurence
is anomalously high or low compared with the map remainder regions. The
delineation of geographic clusters is a valuable tool in epidemiology (see LAWSON
et al., 1999; BALAKRISHNAN; KOUTRAS, 2002; BUCKERIDGE et al., 2005;
LAWSON, 2009 and LAWSON, 2010). One method for the detection and inference
of spatial clusters is the Circular Scan (see KULLDORFF; NAGARWALLA, 1995),
a particular case of Kulldorff’s Spatial Scan Statistic (see KULLDORFF, 1997).
The circular scan is efficient when the cluster has a regular shape. However, disease
clusters with arbitrary shapes occur along traffic ways, plumes of air pollution or
geographical features such as rivers, shores or valleys. Several methods for detecting
irregularly shaped clusters have been developed recently. A recent review may be
found in Duczmal et al. (2009).

A irregularly shaped spatial cluster detection algorithms frequently may end
up with a cluster solution that is merely a collection of the high incidence regions,
linked together forming a “tree-shaped” zone spread out through the map. In general
it is hard to give a geographical meaning for this kind of cluster, because this
solution does not add any new information with regard to its special location in the
map. This in turn motivates the use a penalty function as a mechanism to prevent
excessive freedom on the shape of a possible cluster solution. Such penalty functions,
also called regularity functions, are combined with the spatial scan statistic
producing a penalized spatial scan statistic. Among those penalty functions, we
mention the geometric penalty function presented in (see KULLDORFF et al., 2006;
DUCZMAL et al., 2006; DUCZMAL et al., 2007; DUCZMAL et al., 2008; DUARTE
et al., 2010) and the non-connectivity penalty function presented in Yiannakoulias
et al. (2007).

In the present paper we introduce a modification of the non-connectivity
penalty function. The original non-connectivity penalty function as proposed in
Yiannakoulias et al. (2007) takes in account only the cluster associated graph
connectivity structure. Our proposal, denominated weighted non-connectivity
penalty function, incorporates weights in the components of the original non-
connectivity function according to the cluster population distribution. Our methods
is able to identify multiple clusters in the study area. Details will be presented in
Section 2.

Duczmal et al., 2008 and Duarte et al., 2010 uses a multi-objective genetic
algorithm to the problem of detecting irregular clusters. Instead of just one
objective, namely, to search among all the possible clusters the one which maximizes
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the penalized scan statistic, this new method seeks to maximize two objectives,
namely the spatial scan statistic and some penalty function. The multi-objective
algorithm presents a major advantage: all clusters are considered to be a potential
one without a classification according to the values of the penalty. So the rating on
the quality of possible solutions is performed only after all candidates are evaluated.

We compare three multi-objective methods for clusters detection using the
spatial scan statistic as the first objective and the geometric compactness, the
non-connectivity and our new proposal the weighted non-connectivity as the second
objective. Those methods are compared with the corresponding single-objective
penalized likelihood methods. We use numerical simulations to study the power
to detect irregularly shaped clusters, sensitivity and positive predict value of those
methods. The rest of this paper is organized as follows. In the next section, we
present a brief review of the literature on spatial statistics and genetic algorithms.
Section 2 we introduced our proposed of the weighted non-connectivity function.
Then, some results from datasets analysis are presented and discussed. Final
remarks and topics for future research in the area close this paper.

1.1 The spatial Scan statistics

Consider the study map A, divided into M regions, with total population N
and total number of cases C. A non-oriented graph GA is associated with the study
map A. In the associated graph GA there are M nodes each one corresponding
to one region of the map and edges connecting nodes associated with adjacent
regions, so this is the graph associated with the adjacency matrix. A zone is any
collection of connected regions and corresponds to a sub-graph of the associated
graph. Whereas a cluster is a z zone whose the rate of occurrence of the study
phenomenon is discrepant, the null hypothesis states that there are no clusters
in the map. Under the null hypothesis the number of cases (occurrences of the
phenomenon of interest) in each region is Poisson distributed proportionally to its
population. For each zone z, the number of observed cases is cz, the population is
nz and the expected number of cases under the null hypothesis is µz = C(nz/N).
The relative risk of a zone z is I(z) = cz/µz while the relative risk outside the zone
z (complement of z) is given by O(z) = (C − cz)/(C − µz). Denoting L0 as the
likelihood function under the null hypothesis and L(z) as the likelihood function
under the alternative hypothesis that there is a cluster on the map in the study it
can be shown (see for details) that the logarithm of the likelihood ratio is given by:

LLR(z) =

{
cz log(I(z)) + (C − cz) log(O(z)) if I(z) > 1
0 otherwise (1)

A set Z of zones is chosen according to some restrictive criteria in order to avoid
a exhaustive search over all possible zones but instead only on a set of promising
ones, identifying the zone that maximizes the likelihood ratio function called the
most likely cluster. A widely used choice for the set Z is when it is composed
of zones defined by circular windows of different radii and centers. In such case
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maxz∈Z LLR(z) is the circular scan statistic proposed by Kulldorff and Nagarwalla
(1995). The statistical significance of the most likely cluster is obtained through
a Monte Carlo simulation (see DWASS, 1957). Under the null hypothesis and
conditioned on the total number of observed cases, simulated cases are distributed
among the regions of the map under study. Given the simulated cases distribution
the scan statistic is calculated for the most likely cluster. This procedure is repeated
thousands of times, and an empirical distribution of values for the likelihood ratio
is obtained. An estimated p-value for the most likely cluster of observed cases is
obtained when its likelihood ratio value is compared with the empirical distribution.

As previously mentioned, algorithms for detecting spatial clusters making an
unrestricted search can eventually choose a cluster that spreads across the whole
map just connecting regions with high relative risk. One way to avoid such kind of
“meaningless” solution uses an algorithm that considers the LLR(z) together with
some sort of penalty for the possible cluster shape. In order to detect clusters using
the spatial scan statistic combined with some penalty function, we can maximize the
product of the LLR(z) with the penalty function or try to simultaneously maximize
the penalty function and the LLR(z).

1.2 The non-connectivity penalty function

Yiannakoulias et al. (2007) proposed a greedy algorithm to scan the set Z of
all possible zones z. A penalty function called non-connectivity was proposed. It
was based on the ratio of the number of nodes v(z) to the number of edges e(z) of
the subgraph associated with the zone z. The non-connectivity penalty function of
a zone z is defined by:

nc(z) =
e(z)

[3 (v(z)− 2)]
(2)

the expression in the denominator represents the maximum number of edges of a
planar graph given its number of vertices. The most penalized zones are the ones
with tree-like associated graphs, meaning that they have a small number of nodes
compared with the number of edges.

1.3 Genetic algorithms

Many stochastic optimization methods were proposed for the detection of
irregularly spatial clusters (see DUCZMAL; ASSUNÇÃO, 2004; CONLEY et al.,
2005; PEI et al., 2011; WAN et al., 2012; COSTA; KULLDORFF, 2014). In this
work we use the genetic algorithm proposed in Duczmal et al., (2007) and later
adapted for the multi-objective framework in Duczmal et al., (2008).

Genetic algorithms (GAs) are powerful tools mainly used to approximate the
solution of complex optimization problems. The GA starts with a set of solutions
randomly chosen in the search space. This set is called “population”. The GA then
performs a series of operations over the population, generating a new population
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that is expected to be more “adapted” than the first one. A typical GA uses at least
the following operators:

• crossover: new individuals are generated combining the information of two or
more individuals of the current population;

• mutation: new individuals are generated applying random perturbations over
individuals of the current population;

• selection: choice of individuals that will compose the population in the
subsequent generation.

There are many ways to implement each of these operators and many other
operators have been proposed. These operations are then performed over and over
again, generating a sequence of populations. In the end of the process, the last
population is expected to contain the most adapted individuals, i.e., the solutions
that optimize the objective function.

In the context of spatial clusters, given a map of regions with count data, the
algorithm objective is to identify the zone that maximizes Kulldorff’s spatial scan
statistic (eqn. 1). A detailed description of the algorithm and its operators can be
found in Duczmal et al., (2007).

In the multi-objective approach to the cluster detection problem, the best
cluster solutions are found by maximizing simultaneously two competing objectives,
namely Kulldorff’s logarithm of the likelihood ratio LLR(z) and some penalty or
regularity function. In this approach the regularity function is no longer used as
a penalty correction to the LLR(z) function but, instead, as another objective
function. GAs are quite efficient tools for dealing with multi-objective optimization
problems because they are capable of evolving the whole population in parallel
towards a set of optimal solutions in the objective space (see FONSECA; FLEMING,
1995; TAKAHASHI et al., 2003).

The construction of the initial population, the crossover and the mutation
operators are identical to those used in the single-objective genetic algorithm. The
selection operator uses the concept of dominance: a solution x is dominated if
there is a solution y such that x is worse than y in at least one objective, while
not being better than y in any other objective (see CHANKONG; HAIMES, 1983).
The non-dominated set consists of all solutions that are not dominated by any other
solution. The non-dominated solutions are also called efficient solutions.

Such non-dominated set is then computed for the observed data and for each
of the replications under the null hypothesis. Let x be a solution in the non-
dominated set obtained for the observed data. If, for a specific simulation under
the null hypothesis, the obtained non-dominated set contains at least one solution
that dominates x, then we say that this non-dominated set attains x. To assess
the significance of the solution x we can then compute the proportion of non-
dominated sets obtained under the null hypothesis containing at least one solution
that dominates x, that is, the proportion of non-dominated sets that attain x. More
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details on the computation of the attainment function can be seen on Fonseca et
al. (2005) and Duczmal et al., (2008).

2 Weighted non-connectivity function

The non-connectivity penalty function (eqn. 2) proved to be quite eficient in
the detection and inference of spatial clusters (see YIANNAKOULIAS et al., 2007).
However it does not consider the population heterogeneity among the component
areas. In epidemiology and disease surveillance, the population heterogeneity is
clearly an important feature to be included in cluster analysis. In this context, we
could ask how relevant an edge is for the subgraph connectivity. We will modify the
non-connectivity penalty function in order to distinguish the relative importance of
the edges, by considering the populations.

It was observed, through numerical experiments that irregularly shaped
clusters detection algorithms improve their power of detection by using penalty
functions (see DUCZMAL et al., 2006). The penalty correction acts as a filter to
restrain the presence of those extremely high LLR valued large tree-shaped clusters,
allowing the presence of the somewhat lower LLR valued clusters solutions with real
geographic meaning that we are looking for.

Besides considering the associated graph connectivity structure we propose
to assign weights to the edges and the nodes according to their associated areas’
populations. For an edge ei,j connecting the nodes vi and vj associated with regions
Ri and Rj with populations pop(Ri) and pop(Rj), we used the average population
of the two connected nodes as the weight: P (ei,j) = (pop(Ri) + pop(Rj)) /2, when
the nodes i and j are not connected P (ei,j) = 0. For a node vi associated with
the area Ri whose population is pop(Ri), the weight is just the node population:
P (vi) = pop(Ri).

2.1 The weighted non-connectivity function

Given a zone z composed of k connected regions, we formally define our
novel proposal for a penalty function called weighted non-connectivity function and
denoted by w(z) as:

w(z) =

k−1∑
i=1

k∑
j=i+1

P (ei,j)

3


k∑

i=1

P (vi)− 2


k∑

i=1

P (vi)

k




(3)
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Figure 1 present a hypothetical zone with two different population
distributions.

Figure 1 - Hypothetical zone with two different population distributions. The
numbers inside parenthesis are the regions populations.

If we consider the different population distributions, we notice that the
non-connectivity function and the weighted non-connectivity function takes distinct
values.

nc(z) =
5

3 (4− 2)
= 0.833

In contrast with the non-connectivity function nc(z) that does not distinguish
between the two different population distributions, the weighted non-connectivity
function w(z) takes in account the areas’ populations indicated inside parentheses
in Figure 1 and assumes, respectively, the following values w(z) = 0.769 (left) and
w(z) = 0.897 (right).

In the first population distribution of Figure 1 the most populated regions (R1

and R4) are not connected and the value (0.769) of the weighted non-connectivity
function decreases compared to value assumed by the non-connectivity function
(0.833). In the second example of Figure 1 the most populated regions (R2 and
R3) are connected and the value (0.897) of the weighted non-connectivity function
increases compared to the value assumed by the non-connectivity function (0.833).
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3 Results and discussion

3.1 Power, sensitivity and PPV tests

We use a benchmark dataset with the map of the Northeastern US (see
DUCZMAL et al., 2006), consisting of 245 counties in 10 states and the District of
Columbia, with a total population at risk for breast cancer of 29, 535, 210 women.
The alternative models in the benchmark are the nine simulated irregularly shaped
clusters A to F, NYC, BOS and D.C., displayed in the three maps of Figure 2.
These clusters were built with the purpose of testing the limits of the algorithms
for very irregular cluster shapes.

Figure 2 - Artificial clusters generated in the Northeastern US.

Data under the null hypothesis model is replicated 10, 000 so that for the
mono-objective approaches 10, 000 values of the test statistic are available under
the null hypothesis, while for the multi-objective approaches 10, 000 non dominated
sets are available. For each scenario A–F 5, 000 runs of the scans are performed,
thus producing 5, 000 sets of efficient solutions. To generate cases under alternative
hypotheses we compute the relative risk for regions inside and outside the cluster
such that an abnormal concentration of cases would be formed inside the cluster with
probability 0.999 considering an ordinary binomial test. Details on the computation
of relative risks under the alternative hypothesis can be found in Kulldorff et al.
(2003).

The following single-objective methods were compared: the geometric
compactness scan (SGC), the non-connectivity scan (SNC), and the weighted
non-connectivity scan (SWN). We also compare the corresponding multi-objective
scans: the multi-objective geometric compactness scan (MGC), the multi-objective
non-connectivity scan (MNC), and the multi-objective weighted non-connectivity
scan (MWN). All were evaluated according to their power of detection, sensitivity
and positive predictive value (PPV).

For the three single-objective scans, the power, sensitivity and PPV were
computed for the most likely cluster in each replicate (see Table 1). For the
multi-objective scans, the power, sensitivity an PPV were computed for the cluster
within the non-dominated set which has the lowest estimated p-value, according to
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Table 1 - Power, positive predictive value and sensitivity comparisons for the single-
objective algorithms

Power PPV Sensitivity
cluster SGC SNC SWN SGC SNC SWN SGC SNC SWN

A 0.822 0.881 0.900 0.578 0.665 0.629 0.551 0.792 0.818
B 0.843 0.926 0.915 0.691 0.786 0.792 0.598 0.784 0.768
C 0.814 0.826 0.864 0.344 0.659 0.685 0.360 0.796 0.819
D 0.840 0.922 0.937 0.616 0.771 0.788 0.506 0.713 0.752
E 0.778 0.885 0.893 0.633 0.762 0.768 0.414 0.544 0.562
F 0.433 0.585 0.583 0.314 0.650 0.624 0.170 0.523 0.535

NY 0.747 0.819 0.826 0.621 0.929 0.934 0.364 0.650 0.664
BOS 0.834 0.864 0.909 0.389 0.827 0.841 0.295 0.806 0.843
D.C. 0.903 0.877 0.887 0.518 0.865 0.885 0.426 0.791 0.818

C-BOS 0.686 0.742 0.791 0.399 0.782 0.805 0.331 0.466 0.500

Table 2 - Power, positive predictive value and sensitivity comparisons for the multi-
objective algorithms

Power PPV Sensitivity
cluster MGC MNC MWN MGC MNC MWN MGC MNC MWN

A 0.950 0.942 0.957 0.803 0.711 0.663 0.732 0.748 0.806
B 0.954 0.969 0.959 0.781 0.821 0.824 0.702 0.767 0.728
C 0.933 0.915 0.935 0.716 0.734 0.745 0.735 0.749 0.800
D 0.962 0.965 0.971 0.751 0.803 0.809 0.629 0.656 0.730
E 0.947 0.946 0.958 0.760 0.785 0.787 0.514 0.507 0.548
F 0.746 0.743 0.841 0.710 0.729 0.717 0.519 0.524 0.562

NY 0.888 0.909 0.900 0.918 0.942 0.942 0.572 0.638 0.664
BOS 0.918 0.928 0.950 0.891 0.854 0.857 0.692 0.743 0.834
D.C. 0.955 0.936 0.939 0.931 0.882 0.893 0.748 0.756 0.793

C-BOS 0.897 0.890 0.919 0.799 0.733 0.763 0.498 0.701 0.716
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the previous subsection (see Table 2).
Tables 1 and 2 present the average power, sensitivity and PPV for 5, 000

replications of each of the nine alternative hypotheses for all the six scans. The best
performances for both single-objective scans and multi-objective scans are presented
in bold type.

When comparing the tables 1 and 2, we observe consistently better
performance, regarding to power and PPV, when compared with the single-objective
scans. The results for sensitivity for the single objective SWN scan and the
multi-objective MWN scan (which are respectively the best in their groups) were
about the same.

It is important to note that the original proposal by Yiannakoulias et al. (2007)
is a single-objective formulation and uses an algorithm less robust than the genetic
algorithm NSGA-II, thus the fair comparison between the new and original proposal
would be using respectively the algorithms MWN and SNC. In this comparison it
is clear the better performance by the new proposal.

Among the single-objective scans, the SWN scan presented better results for
most clusters, as can be seen in Table 1. Moreover, Table 2 shows that the power,
sensitivity and PPV values of the MWN scan were consistently higher those of the
MGC and MNC scans. Particularly, the performance of the MWN scan for the
highly irregular cluster F was significantly better, compared to the other scans.
That result reinforces the notion that the MWN performed uniformly well for all
the analized alternative models.

We provided an example of this situation in the ninth alternative hypothesis
model, consisting of the double (disconnected) cluster C and BOS (see Table 2).
The relative risk was chosen similarly to the previous eight alternative models; it
means that we are considering the region at risk as consisting of the union of both
C and BOS clusters; we stress that we are not considering separately each zone C
and BOS in the relative risk computation, which would give a strong risk for both
zones, thus inducing an unrealistic stronger signal to noise for both components C
and BOS. Even then, the power of detection (0.919) was almost as high as in the
other single zone alternative models in the table. The sensitivity (0.716) and PPV
(0.763) were also consistent, indicating that the methodology works well enough
for multiple clusters. Using an Intel(R) Core i7 processor with 3.33 GHz desktop,
1000 benchmark executions took 290 seconds for the MNC, and 293 seconds for the
MWN, compared to the much slower MGC scan, which took 1285 seconds. That
result shows that the added computation time required for the calculation of the
weighted edges in the MWN scan was negligible.

Conclusions

The purpose of the original non-connectivity penalty function was to penalize
the cluster candidates which were not strongly connected; this was achieved by
counting the vertices and edges of the adjacency subgraph associated to the cluster
candidate, and penalizing those clusters which have relatively few edges compared
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with the number of vertices. Thus, less connected clusters with associated subgraphs
like trees were the most penalized, and strongly connected planar graphs were
the less penalized. This strategy presented two significant advantages: (i) it was
relatively computationally inexpensive, and (ii) it was very efficient. Properties (i)
and (ii) were discussed in detail in Cançado et al. (2010), where it was shown
through numerical simulations that the non-connectivity scan statistic attains
the highest performance with low cost for moderately irregularly shaped clusters,
compared to other penalty functions of the literature.

However, the non-connectivity penalty function did not consider the
population heterogeneity within the component areas of the cluster candidates.
We proposed in this paper the weighted non-connectivity penalty function, a
modification of the non-connectivity scan statistic for the detection and inference
of spatial clusters in aggregated data maps, considering this added feature. Our
strategy was to consider weighted edges in the adjacency subgraph, defined in
such a way that the presence of links between relatively populated areas reinforced
the cluster candidate. In order to mantain the consistency of the new definition,
relatively to the previous non-connectivity penalty function, both penalties must
give the same values for maps with homogeneously populated areas. The introduced
changes were very simple: (i) the areas’ populations substituted the counts of
vertices; and (ii) each edge was weighted taking the average of the two neighboring
areas’ populations. That straightforward modifications endowed the weighted
non-connectivity penalty function with two good properties, as verified by our
numerical simulations: (i) the very low additional cost to compute the weight of
the edges; and (ii) the improved performance in the detection of highly irregularly
shaped clusters, without reducing the performance to detect moderately irregularly
shaped clusters.

In the study we made with artificial clusters, we obtain significantly
improvement in the power of detection for the irregular clusters (C, D, E and F, in
Figure 2). Our simulations show that our proposed methods is still able to identify
multiple clusters without loss in power performance. All scans were tested according
to their power of detection, sensitivity and positive predictive value.

We also show that the multi-objective version of the scan employing the
weighted non-connectivity penalty function have significantly better performance
compared with the corresponding single-objective scan, confirming similar results
already obtained for other penalty functions, as extensively studied in Cançado et
al. (2010).

As future research proposals have the possibility to evaluate the new penalty
using as weights the population density associated with each of the regions on
one geographical map. Studies producing new functions using other regular or
optimization strategies can be developed.

170 Rev. Bras. Biom., Lavras, v.35, n.1, p.160-173, 2017



Acknowledgments

The authors have been partially funded by the Brazilian agencies, CNPq
(Conselho Nacional de Desenvolvimento Científico e Tecnológico of the Ministry
for Science and Technology) via project 459535/2014-5, CAPES (Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior) and FAPEMIG (Fundação de
Amparo à Pesquisa do Estado de Minas Gerais).

DUARTE, A. R.; SILVA, S. B.; OLIVEIRA, F. L. P.; RIBEIRO, M. C.; CANÇADO,
A. L. F.; MOURA, F. R. Uma penalização por não-conectividade ponderada para
a detecção de clusters irregulares. Rev. Bras. Biom., Lavras, v.35, n.1, p.160-173,
2017.

RESUMO: Métodos para a detecção e inferência de clusters irregulares com dados de
contagem são ferramentas importantes na vigilância da doenças e em epidemiologia.
Recentemente, vários métodos foram desenvolvidos utilizando a estatística espacial Scan
de Kulldorff em conjunto com alguma função de penalidade para controlar a excessiva
liberdade de forma dos clusters. Penalizações distintas foram concebidos com base na
forma geométrica cluster ou sobre a estrutura de vizinhança e conectividade do grafo
associado. As diversas funções de penalização foram implementados utilizando métodos
de otimização multi-objetivos. Em particular, a penalização por não-conectividade não
mostrou ser suficientemente eficaz no procedimento de detecção. Basicamente, a função
de não-conectividade baseia-se na estrutura de adjacência do grafo associado ao cluster,
mas não leva em conta a distribuição populacional dentro do cluster. Aqui, busca-se
introduzir uma modificação da função de não-conectividade, introduzindo pesos nos
componentes da função de acordo com a distribuição da população do cluster. O método
proposto é capaz de identificar vários clusters na área de estudo. Mostra-se através de
simulações numéricas que a função de não-conectividade ponderada supera a função não-
conectividade original em termos de poder de detecção, sensibilidade e valor preditivo
positivo, sendo também computacionalmente ágil como a anterior. Ambas as versões
mono-objectivo e multi-objetivo do algoritmo são implementados e comparadas.

PALAVRAS-CHAVE: Estatística espacial Scan; conglomerados irregulares; algoritmos
multi-objetivo; função de compacidade; função de não-conectividade; função de não-
conectividade ponderada.
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