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 ABSTRACT: The analysis of mean square error of prediction is helpful to compare measured 

values with values simulated by mathematical models. Such analysis is based on the orthogonal 

decomposition of this quantity into three components which will indicate the probable constraints 

of the model concerning bias, unequal variance, and incomplete covariation when contrasted to 

actual values. However, such analysis has been carried out as a descriptive procedure without an 

adequate hypotheses test framework. Thus, we aimed to develop single hypothesis test to 

evaluate the statistical significance of mean square error of prediction components based on 

likelihood ratio test and χ² distribution. This proposal was evaluated by using simulated 

populations and was applied to a dataset obtained by simulating characteristics of cattle diets 

using two different models. We concluded that this test might help the modeler to focus on the 

real significant constraints of his model and to work on doing the necessary modifications on its 

mathematical structure in order to improve the accuracy and precision of the simulated values. 
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1 Introduction 

A mathematical model is an equation or a set of equations which represents the 

behavior of a system (THORNLEY and FRANCE, 2007). Modelling should be seen as a 

central and integral part of scientific method. However, model evaluation is not a wholly 

process. Models can be perceived as hypotheses expressed in mathematics and should 

therefore be subject to the usual process of hypothesis evaluation (FRANCE and 

KEBREAB, 2008). 

The model adequacy evaluation is an essential step in the modeling process because 

it indicates the levels of precision and accuracy of the model predictions. This is an 

important phase either to build up confidence in the current model or to allow selection of 

alternative models (TEDESCHI, 2006). An ideal testing procedure is one in which the 

model is used to anticipate behavior of the simulated system under circumstances not 

previously studied (BALDWIN, 1995) and using a different dataset (GAUCH Jr. et al, 
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2003). Thus, if the model anticipation is poor, further model refinement is required 

(BALDWIN, 1995). 

As summarized by Tedeschi (2006), several techniques are available to assess model 

adequacy to ensure impartiality during the decision process of accepting or rejecting the 

suitability of a given mathematical model. Among those techniques, the analysis of the 

mean square error of prediction (MSEP) and its components have been applied by several 

modelers in order to depict different aspects of the model failure to reproduce the real 

world (KOBAYASHI and SALAM, 2000; GAUCH Jr. et al., 2003; TEDESCHI, 2006). 

The analysis of MSEP and its components was firstly applied by Theil (1966) and 

posteriorly refined by other authors (BIBBY and TOUTENBURG, 1977; KOBAYASHI; 

SALAM, 2000; GAUCH Jr. et al., 2003; KOBAYASHI, 2004). Such analysis allows 

orthogonally decomposing the MSEP into three components, which in turn will indicate 

the probable constraints of the model concerning bias, unequal variance, and incomplete 

covariation when contrasted to actual values. 

However, in spite of providing good information with regards model accuracy and 

precision, the components of MSEP have been interpreted just as descriptive statistics. 

Such approach sometimes may produce restricted conclusions because the information 

about significance of each component is not available. Therefore, the information 

produced from MSEP components could be more helpful when using an adequate 

hypothesis test besides the mathematical calculations themselves. Under this context, the 

objective of this work was to develop and present a single hypothesis test to assess the 

statistical significance of components of the mean square error of prediction. 

2 Derivation of the method 

The prediction error of a model when contrasted to an actual (or measured) value is 

calculated as: 

iii yxe  , (1) 

where ei is the prediction error for the i-th data, and xi and yi are the simulated values and 

measured values, respectively. 

It must be emphasized that calculation of prediction error is performed similarly for 

both linear and non-linear models, as it is a simple calculation of the distance between 

predicted and observed values. Therefore, all assumptions to be considered hereafter are 

applied to the prediction error itself and are independent of the nature of the model 

applied to predict the real world (linear or non-linear). 

According to Kobayashi and Salam (2000), the n prediction errors obtained in the 

evaluation or validation of a model can be summarized by the MSEP, whose estimator 

obtained by the maximum likelihood method is: 
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The MSEP is proportional to the dissimilarity between predicted values and 

measured values. Nonetheless, it is not able to qualitatively point out which are the main 

constraints of the simulated values obtained by the model. To overcome this situation, the 

MSEP should be decomposed to improve the understanding about the discrepancies 

between predicted and measured values. Initially, the MSEP (Equation 2) can be 

partitioned into two components (KOBAYASHI and SALAM, 2000) as follow: 
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where x  and y  are the means of xi and yi (i = 1, 2, ..., n), respectively. 

The first term of the right side of Equation (3) represents the bias of the simulation 

from the measurements and can be denoted as square of bias (SB), namely: 

2)( yxSB  . (4) 

The second term of right side of Equation (3) is the difference between the 

simulation and the measurement with regards to the deviations from the means and is 

denoted as mean square variation (MSV), namely: 
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Higher MSV values indicate that the model failed to predict the variability of the 

measurement around the mean. Furthermore, it must be emphasized that SB and MSV are 

orthogonal and can be addressed separately (KOBAYASHI and SALAM, 2000). 

The MSV may be further partitioned into two different components (KOBAYASH 

and SALAM, 2000). The final resultant of such partitioning is: 

)1(2)( 2 rSDSDSDSDMSV msms  , (6) 

where SDs and SDm are the standard deviations of simulated and measured values, 

respectively, and r is the correlation coefficient between the simulated and measured 

values. It should be noted that all calculations of variances and covariance must be 

performed using the total number of values (n) as denominator because prediction errors, 

and not experimental errors, are evaluated. In this case, the sum of all prediction errors are 

not necessarily equal to zero, which only must be observed when simple deviations 

around a mean of a sample are evaluated. 

The first term of the right side of Equation (6), which is named SDSD, indicates the 

difference in the magnitude of fluctuation between the simulation and measurement, 
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which means that there was an unequal variation of predicted and measured values 

(BIBBY and TOUTENBURG, 1977; KOBAYASHI and SALAM, 2000). Accordingly, 

this term specifies that the model failed to reproduce the dispersion of the values around 

the mean at the same extent of that observed for real values. Namely: 

2)( ms SDSDSDSD  . (7) 

The second term of the right side of Equation (6), is essentially the lack of positive 

correlation weighed by the standard deviations, denoted as LCS. Higher LCS values mean 

that the model failed to simulate the pattern of the fluctuation across the n measurements 

(KOBAYASHI and SALAM, 2000), or that there is an incomplete covariation between 

predicted and observed values (BIBBY and TOUTENBURG, 1979). Namely: 

)1(2 rSDSDLCS ms  . (8) 

From the Equations (3), (4), (6), (7), and (8) it may be perceived that MSEP is 

orthogonally partitioned into three different components as follow: 

LCSSDSDSBMSPE  . (9) 

Under the assumption that prediction errors (Equation 1) can be studied according to 

the properties of the normal distribution, the MSEP (Equation 2) could be interpreted as 

the variance of prediction errors: 

2ˆ
eMSEP  . (10) 

From this, it is assumed that MSEP can be studied following the properties of χ² 

distribution (SEARLE et al., 1992). Namely: 
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In spite of components SDSD and LCS are not entirely independent as they have the 

same constituents (Equations 7 and 8), the orthogonal partition of MSEP allows 

addressing separately for each constituent. Under the assumption that MSEP is a variance 

and that the different constituents can be study separately, it can be assumed that each 

constituent of MSEP can be considered as a variance component and would present the 

same distributional properties of the total variance. From this, it can be written: 
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LCSSDSDSBe   . (12) 

From Equation (12) it is assumed that variance 2

e  corresponds to a parametric 

space Ω composed by three components which are presupposed independent to each 

other. 

The general hypotheses to be addressed to this problem encompass the evaluation of 

significance associated with each component of the parametric space Ω. Generically, the 

null and alternative hypotheses are written as follow: 

0: 2

0 jH 
 

0: 2 jaH  , 
(13) 

where 2

j  is the j-th component of the parametric space Ω to be tested. 

By considering the hypotheses aforementioned (Equation 13), it is mandatory to 

define two different parametric spaces: 
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where Ω corresponds to whole parametric space in which all components are present, and 

ΩR is the restricted parametric space in which the component to be tested is not taken into 

account. 

Therefore, the general hypotheses described in Equation (13) are based on the 

evaluation of the similarity of the restricted and whole parametric spaces. If there is 

similarity of these parametric spaces, H0 is considered to be true (Equation 13a) and the 

evaluated component is supposed to be non-significant. 

The statistics of the likelihood ratio test for this problem would be (RAO, 1973; 

REGAZZI and SILVA, 2004; ARCHONTOULIS and MIGUEZ, 2015): 
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where 2ˆ
e

R  is the estimate of MSEP when the restriction established by the general 

hypotheses is taken into account (Equations 13 and 15). 
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For large samples, the probability distribution of [-2  loge (Λ)] is approximately χ² 

with v degrees of freedom, being v the number of components in the parametric space Ω 

minus the number of components in the parametric space ΩR. Therefore, according to the 

hypotheses showed in Equation (13), v = 1 when each component is tested individually. In 

this way, it can be written: 
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3 Evaluation of the statistical efficiency of the method 

In order to evaluate the statistical efficiency of the method, two different scenarios 

for each component of MSPE were simulated. The first scenario was simulated to check 

the ability of the method to point out a significance for each component when the null 

hypothesis (Equation 13a) is false. On the other hand, the second scenario aimed to check 

if the method is able to point out correct decision when the null hypothesis (Equation 13a) 

is true. For each scenario, populations composed by one million records each (n = 

1,000,000) were simulated according to a bivariate normal distribution. The different 

scenarios were established by varying the mean (µ), variance (σ²) and correlation (ρ) of 

the normal bivariate distribution according to the values expressed in Table 1. 

Table 1 - Characteristics of the bivariate populations simulated to evaluate the statistical 

efficiency of the method 

 Measured values Predicted values  

Component µ σ² µ σ² ρ 

 Scenario 1 – H0 is false 

SB 1.0 1.0 1.5 1.0 1.0 

SDSD 1.0 1.0 1.0 2.5 1.0 

LCS 1.0 1.0 1.0 1.0 0.9 

 Scenario 2 – H0 is true 

SB 1.0 1.0 1.0 2.5 0.9 

SDSD 1.0 1.0 1.5 1.0 0.9 

LCS 1.0 1.0 1.5 2.5 1.0 
SB, square of bias; SDSD, the difference in the magnitude of fluctuation between the simulation and 

measurement; LCS, the lack of positive correlation weighed by the standard deviations; H0, null hypothesis; µ, 
population mean; σ², variance of the population; ρ, correlation of the population. 

 

All simulations and statistical evaluations were performed using the statistical 

software R, version 3.2.3. The function “mvrnorm” in the MASS package (version 7. 3-

45) was used to simulate the bivariate normal populations. 

To evaluate the frequencies of correct or incorrect decisions within each scenario, 

one hundred random samples of each population were taken, creating one hundred 

datasets with one hundred records each (n=100). These datasets were individually 

submitted to the hypotheses test (Equation 17) by considering α = 0.05. The results were 

computed by each component, and the frequency of acceptance and rejection of the null 
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hypothesis was computed for both scenarios (Table 2). It is clarified that this simulation 

allowed obtaining populations that agreed to what was planned and that random samples 

presented, on average, characteristics that were very close to those previously planned to 

performed the evaluation of the statistical efficiency of the method. 

The frequencies of acceptance of null hypothesis when this is true varied from 97 to 

100%, averaging 99% (Table 2). This value represents an indicator of confidence 

coefficient of the test and its complement (1%) was lower than the nominal α value 

proposed for the simulation. On the other hand, the frequencies of rejection of null 

hypothesis when this is false varied from 95 to 100%, averaging 97%. This value is an 

indicator of the power of the test and its complement (3%) represents an approaching to 

the type II error (KAPS and LAMBERSON, 2004), which could be assumed of low 

magnitude. 

In this sense, from simulations results, it can be concluded the method proposed here 

seems present adequate levels of confidence and adequate power to point out which of the 

MSEP components are statistically significant. 

Table 2 - Frequencies (%) of the decisions based on hypotheses test carried out using the 

method on the information obtained from simulated populations in different 

scenarios 

 Scenario 

Decision H0 is true H0 is false 

 SB 

Accept 97   5 

Reject   3 95 

 SDSD 

Accept 100   4 

Reject     0 96 

 LCS 

Accept 100     0 

Reject     0 100 
SB, square of bias; SDSD, the difference in the magnitude of fluctuation between the simulation and 

measurement; LCS, the lack of positive correlation weighed by the standard deviations. 

4 Example of application of the method 

To demonstrate the method here proposed, it was utilized a dataset obtained from the 

simulation of the content of total digestible nutrients in cattle diets from the chemical 

composition of the feeds and using two different mathematical models (n = 107; 

DETMANN et al., 2008; Table 3). 

First, the homoscedasticity of the MSEP obtained with both models (Table 3) can be 

evaluated by using the F statistics, as follow: 
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The F statistics obtained in Equation (18) presents 107 degrees of freedom (d.f. = n) 

for both numerator and denominator, which corresponds to an approximate P value of 

0.0001. Thus, one can infer that Model II presented lower (or more homogeneous) MSEP 

compared to Model I. 

The evaluation of the SB component for both models (Table 3, Equation 17) gives: 
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Table 3 - Decomposition of the mean square error of prediction obtained for the content of 

total digestible nutrients (g/kg of dry matter) in cattle diets simulated by two 

different models (n = 107; Detmann et al., 2008) 

  

Observed values 

Predicted values 

Item Model I  Model II 

Mean 645.1 607.8  653.8 

Standard deviation 68.8 73.7  49.7 

Linear correlation - 0.4976  0.6026 

MSPE - 6505.8  3156.2 

SB - 1390.0  76.4 

SDSD - 24.1  365.2 

LCS - 5091.7  2714.6 
MSEP, mean square error of prediction; SB, square of bias; SDSD, the difference in the magnitude of fluctuation 
between the simulation and measurement; LCS, the lack of positive correlation weighed by the standard 

deviations. 

 

The evaluation of the SDSD component for both models (Table 3, Equation 17) 

gives: 
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 The evaluation of the LCS component for both models (Table 3, Equation 17) 

gives: 
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By assuming α = 0.05, it can be inferred that Model I presents constraints associated 

with bias (SB) and incomplete covariation (LCS) (P<0.05), despite of produces simulated 

data with a range of variation similar to that one observed for actual values. On the other 

hand, Model II simulates accurately the real values, but it presents constraints associated 

with simulating equal variance (SDSD) and also produces simulated data with incomplete 

covariation (LCS) with real data (P<0.05). 

From the results presented in Equations (19), (20), and (21), it was possible to point 

out that evaluated models present different characteristics with regards the simulation 

constraints. Such information would be helpful to the modelers guide the efforts to 

improve the mathematical structure of each model. 

5 Discussion 

The simulation vs. measurement comparison based on MSEP is straightforward, 

where the whole MSEP indicates the overall deviation of the model output from the 

measurement, and the MSEP components will represent the different aspects of the overall 

deviation. Thus, for direct comparisons between model output and measurement, the 

MSEP-based analysis seems better than the commonly practiced correlation-regression 

analysis (KOBAYASHI and SALAM, 2000) because such analysis tends to focus more 

on the fitting of the regression than do on the actual limitations of the model itself. 

However, a single decomposition of the MSEP without guidance based on inductive 

statistics can be difficult for the true identification of the model’s constraints because the 

modeler will not have tools to make decisions about the actual relevance of each 

component to the overall value of MSEP. 

Regazzi and Silva (2004) have used the likelihood ratio test based on χ² distribution 

to evaluate the equality of parameters in non-linear models. The test developed by these 

authors and the hypotheses test proposed here have been based on the same statistics 

(Equation 16). They worked with a great number of simulated samples and found that 

occurrence of type I error decreases and becomes closer to the chosen α value as the 

sample size increases. This seems to give a theoretical support that the likelihood ratio test 

here proposed can be useful also to evaluate the significance of the MSEP components. 

On the other hand, other statistical approaches to evaluate components of MSEP have 

been proposed (e.g., KOBAYASHI and SALAM, 2000). Nonetheless, those approaches 

demand an estimate of error variance which would only be obtained when experimental 

replications are available. It is rather difficult to obtain as most models are either 

evaluated or validate by using samples of measured values without any experimental 

structure (i.e., without replicates). Therefore, the approach here presented is simpler with 
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regards pre-requisites for applying, because an estimate of error variance is not necessary 

(Equation 17). 

The model evaluation or validation is a step that assures if the model yields 

simulation results in quantitative agreement with results obtained in studies of the real 

system or, in other words, the model accurately simulates reality and does so for the right 

reasons (BALDWIN, 1995). The identification and acceptance of wrongness of a model is 

an important step towards the development of more reliable and accurate models. The 

assessment of the adequacy of mathematical models is only possible through the use of a 

combination of several statistical analyses and proper investigation regarding the purposes 

for which the mathematical model was initially conceptualized and developed for. The 

usefulness of a model should be assessed for its sustainability for a particular purpose 

(TEDESCHI, 2006). From these statements, it is understood that association of statistical 

tests with the algebraic decomposition of MSEP might help the modeler to focus on the 

real significant constraint of his model and to work on doing the necessary modifications 

on the mathematical structure of the model for improving the accuracy and precision of 

the simulated values. 

In spite of the results obtained here, it must be emphasized that the hypothesis test 

based on ² distribution should be seen as a relative inference tool rather than an absolute 

diagnostic of the model. This statement means that the results obtained by its application 

will point out the main actual constraint of the model and, therefore, which are the main 

refinements to be done on the mathematical structure of the model. More refined 

evaluations of the model predictions must be performed by using simultaneously several 

mathematical approaches for that. 

Conclusions 

The test of hypothesis based on likelihood ratio can be properly used to evaluate the 

statistical significance of the components of the mean square error of prediction. This test 

might help the modeler to focus on the real significant constraints of his model and to 

work on doing the necessary modifications on its mathematical structure in order to 

improve the accuracy and precision of the simulated values. 
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  DETMANN, E.; BONFA, H. C.; CECON, P. R.; SILVA, F. F. Proposição de teste de hipóteses 

para os componentes do quadrado médio do erro de predição. Rev. Bras. Biom., Lavras, v.35, 

n.4, p.658-669, 2017. 

 RESUMO: A avaliação do quadrado médio do erro de predição constitui importante ferramenta 

para a comparação de valores reais com valores simulados por modelos matemáticos. Esta 

avaliação está baseada na decomposição original do quadrado médio do erro de predição em 

três componentes, os quais indicarão os prováveis entraves do modelo em relação ao viés, 
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variâncias heterogêneas e incompleta covariação em relação aos valores reais. Contudo, esta 

análise tem sido conduzida como um procedimento descritivo, sem a orientação dada por um 

teste de hipóteses adequado. Desta forma, objetivou-se desenvolver um teste de hipóteses 

simples para a avaliação dos componentes do quadrado médio do erro de predição baseando-se 

no teste da razão de verossimilhança e na distribuição de χ². Esta aproximação foi avaliada por 

intermédio de populações simuladas e aplicada sobre um conjunto de dados obtido pela 

simulação de características da dieta de bovinos utilizando-se dois diferentes modelos 

matemáticos. Concluiu-se que o teste proposto pode auxiliar profissionais na área de 

modelagem para a identificação dos entraves ou limitações reais dos modelos desenvolvidos, 

orientando-os no desenvolvimento de modificações necessárias na estrutura matemática dos 

modelos de forma a ampliar a exatidão e a precisão dos valore simulados. 

 PALAVRAS-CHAVE: Inferência; modelos matemáticos; simulação; validação. 
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