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ABSTRACT: A fully geometric approach, employing only vectorial subspaces and

orthogonal projections, is applied to the theory of linear models. Basic results, usually

proved in textbooks using non trivial matricial algebra, are demonstrated using only

geometry. As a rather unusual application, the method is applied to the construction of

Mallows’s Cp statistic.
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1 Introduction

The multiple regression model can be expressed in matricial form by Yn×1 =
Xn×(p+1)β(p+1)×1+εn×1, with Y the data vector, X the design matrix, β the vector
of parameters and ε the vector of errors. This formulation admits an interpretation
for a geometric approach, if the matrix X is considered as a linear transformation
from the parameter space to the data space. In this case, the subspace defined by
vectors which are image by the transformation X of elements in the parameter space
will be called the image of X, denoted by Im (X) = {Xv,v ∈ Rp}. Note that if the
columns of X are represented by X = (X1,X2 . . . ,Xn), then Im(X) is spanned by
the vectors Xi ∈ Rn.

The subspace Im (X) is where belong all vectors that can represent the
expected value of the random vector Y. Geometrically, the linear model is describle
in Figure 1 and the estimating process can be described simply as a rule that assigns
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to each observed vector y another vector in the space Im (X). If the estimator is
linear, this rule is defined by a linear transformation. Since it is reasonable that,
if the observed vector belongs to Im (X) then itself should be the estimative of Y
expectation, then the linear estimation rules are defined by linear projections.

Figure 1 - Geometric model for multiple regression.

Definition 1.1. A linear transformation A from Rn to Rn is a linear projector if
A2 = A. The linear projector A is said to be a orthogonal projector if, for all
vector w, w −Aw is perpendicular to the subspace Im(X).

A useful concept, when dealing with projections, is the direct sum. A vector
space V is orthogonal direct sum of V1 and V2, denoted by V1 ⊕ V2, if all vector
v ∈ V is uniquely written as v = v1 +v2, with v1 ∈ V1, v2 ∈ V2 and inner product
is zero, v′w = 0. Note that if PV1 is the orthogonal projection onto the subspace
V1, then PV1 (v) = PV1 (v1 + v2) = v1.

The orthogonal complement of a subspace W ⊂ V, denoted by W⊥, is defined
as W⊥ = {v ∈ V, v′w = 0∀w ∈W}. Therefore we have a decomposition in terms
of direct orthogonal sum, W⊕W⊥ = V. It is well known that a linear projector is
orthogonal, if and only if, it is a symmetric linear transformation.

If PIm(X) is the orthogonal projection onto Im (X), then in terms of the X

transformation PIm(X) = X(X′X)
−1

X′ , where X′ is the transpose of X defined

by (Xv)
′
w = v′ (X′w) , ∀v,w.

The matrix 1
nJ, orthogonal projection onto the subspace spanned by the unit
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vector 1 = (1, ..., 1)
′
, is given by

1

n
J =


1
n

1
n · · · 1

n
1
n

1
n · · · 1

n
...

...
. . .

...
1
n

1
n · · · 1

n


n×n

.

Note that if y = (y1, . . . , yn), 1
nJy = ȳ = (ȳ, . . . , ȳ), wherein ȳ = 1

n

n∑
i=1

yi.

The least squares estimator of the regression model can be geometrically
described in a simple way. Once observed the data vector y, it is one orthogonally
projected onto Im(X) obtaining the vector ŷ = X(X′X)

−1
X′y. ŷ is denominated

adjusted data vector. Since X is an injective linear transformation, there is only
one vector β̂ belonging to the Rp such that Xβ̂ = X(X′X)

−1
X′y. Again, by X

injectivity, one achieves the expression of the least squares estimator (Gauss-Markov

estimator) β̂ = (X′X)
−1

X′y. The Gauss-Markov estimator geometry can be
described in terms of a fundamental triangle. Except for the Cp Mallow statistic, the
subject and notation of this work are described as treated in Rencher and Schaalje
(2008).

There are no new results in the present article, except a complete geometrical
description of Cp statistic. However, the novelty relies in the geometric approach,
which employees extensively the concepts of vectorial subspace, orthogonal
projections and linear transformations. The use of geometric concepts in statistic
dates back a long time, going back to Fisher on 1915 and involving great statisticians
over the years (HERR, 1980). The most recent works, such as Margolis (1979),
Bryant (1984), Saville (1986), Saville (1991), Bring (1996), even in applied statistics,
as Bailey (2008), that uses geometric modeling concepts as factors, blocks and
treatments, rely almost entirely on the concept of vectors. The same can be said
about standart linear models books as Rao (1973), Draper and Smith (1998), Seber
and Lee (2003) and Searle (1971). This type of approach, although geometric, can
not be done without matrix algebra concepts. The big difference in relation to
this work is that matrices are addressed as linear transformations, which effectively
reduces to a minimum the use of algebraic properties of matrices. For the theory
of matrix as linear transformation see Boldrini (1986). The article is restricted to
the more theoretical aspects and application of the geometric method in practical
situations will be subject in future work.

To exemplify the theoretical results obtained by geometric constructions, we
will follow an didactic example (RENCHER; SCHAALJE, 2008, p.140).

2 The Fundamental Triangle

The geometry of multiple linear regression models is defined by a right-angled
triangle according to Figure 2.
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Figure 2 - The fundamental triangle.

(y − ŷ) + (ŷ − ȳ) = y − ȳ

(y − ŷ)
′
(ŷ − ȳ) = 0

‖y − ŷ‖2 + ‖ŷ − ȳ‖2 = ‖y − ȳ‖2

SST = ‖y − ȳ‖2 =

n∑
i=1

(yi − ȳ)
2

= (hypotenuse)
2

SSR = ‖ŷ − ȳ‖2 =

n∑
i=1

(ŷi − ȳ)
2

= (adjacent side)
2

SSE = ‖y − ŷ‖2 =

n∑
i=1

(yi − ŷi)2 = (opposite side)
2

SST = SSR + SSE.

Example (RENCHER; SCHAALJE, 2008): Consider the data in Table 7.1,
page 140 (TABLE 1).
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Table 1 - Data for the example

Observation
Number y x1 x2

1 2 0 2
2 3 2 6
3 2 2 7
4 7 2 5
5 6 4 9
6 8 4 8
7 10 4 7
8 7 6 10
9 8 6 11
10 12 6 9
11 11 8 15
12 14 8 13

y =


2
3
...

14

 , X =


1 0 2
1 2 6
...

...
...

1 8 13

, X′X =

 12 52 102
52 395 536
102 536 1004

,

ŷ = X(X′X)
−1

X′y =



2.8044
3.6861
2.4006
4.9716
5.8533
7.1388
8.4242
10.5914
9.3059
11.8769
10.1876
12.7586



, ȳ =
1

12
Jy =



7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5



.

�

The sums of squares can be explained in terms of projections in their respective
subspaces.
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SSR = ‖ŷ − ȳ‖2

= (ŷ − ȳ)
′
(ŷ − ȳ)

=

(
X(X′X)

−1
X′y − 1

n
Jy

)′(
X(X′X)

−1
X′y − 1

n
Jy

)
= y′

(
X(X′X)

−1
X′ − 1

n
J

)′(
X(X′X)

−1
X′ − 1

n
J

)
y

= y′
(

X(X′X)
−1

X′ − 1

n
J

)2

y

= y′
(

X(X′X)
−1

X′ −X(X′X)
−1

X′
1

n
J− 1

n
JX(X′X)

−1
X′+

1

n
J

)
y. (1)

Here, let us assume that
−→
1 ∈ Im(X). This is the hypothesis of the linear

model with intercept, which is the most used. In this case, since X(X′X)
−1

X′ is

the projection on Im(X) and 1
nJ the projection on the subspace spanned by

−→
1 , so

X(X′X)
−1

X′ 1nJy = 1
nJy for all y, i.e. , X(X′X)

−1
X′ 1nJ = 1

nJ.

On the other hand, 1
nJX(X′X)

−1
X′y = 1

nJŷ = ŷ. With this insight we are
able to prove the following proposition.

Proposition 2.1. If
−→
1 = (1, 1, · · · , 1)

′ ∈ Im(X) then the mean of adjusted vector
is equal to the mean of observed vector, i.e., ŷ = ȳ.

Proof: (first proof) Consider the following decomposition into orthogonal direct

sum. If V→
1

is the subspace spanned by the vector
→
1 , V→

1
= {(a, a, · · · , a) , a ∈ R},

then (Figure 3)

Rn=V→
1
⊕
{

V→
1

⊥ ∩ Im (X)
}
⊕ (Im (X))

⊥
.

With this direct sum we have v = v1 + v2 + v3 with v1 ∈ V→
1

,

v2 ∈
(

V→
1

⊥ ∩ Im (X)
)

and v3 ∈ Im(X)
⊥

, PV1 (v) = v1 and PIm(X) = v1 + v2.

Therefore,
PV1

(
PIm(X)(v)

)
= PV1

(v).

If y is the observed vector, PIm(X)(y) = ŷ e PV1
(y) = ȳ. Therefore,

ȳ = PV1
(y) = PV1

(
PIm(X)(y)

)
= PV1

(ŷ) = ŷ.

�

Example (continuation):

ȳ =
1

12
Jy =


1
12

1
12 · · · 1

12
1
12

1
12 · · · 1

12
...

...
. . .

...
1
12

1
12 · · · 1

12




2
3
...

14

 =


7.5
7.5
...

7.5

 ,
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Figure 3 - Rn as a orthogonal direct sum.

ŷ =
1

12
JX(X′X)

−1
X′y

=


1
12

1
12 · · · 1

12
1
12

1
12 · · · 1

12
...

...
. . .

...
1
12

1
12 · · · 1

12




0.3943 0.1892 · · · −0.1182
0.1892 0.1908 · · · −0.0567

...
...

. . .
...

−0.1182 −0.0567 · · · 0.2854




2
3
...

14



=


7.5
7.5
...

7.5

 .

�

Another more geometrical demonstration can be based on the two triangles in
Figure 4.
Proof: (second proof) Suppose that the orthogonal projection of ŷ in the direction

of
−→
1 is not ȳ. Then, we have two right-angled triangles. c2 = b2 + a2 and

e2=d2 + a2. As c < e and d < b since the projections are orthogonal, we have
c2 < e2, d2 < b2. Then b2 + a2 < e2=a2 + d2 ⇒ b2 < d2, which is a contradiction.

�
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Figure 4 - Geometrical proof of Proposition 2.1.

An example that shows that hypothesis
−→
1 ∈ Im (X) is essential is for

X =

 1 1
1 −2
−2 1

 , y =

 1
2
3

, we have that
−→
1 /∈ Im (X). ŷ =

 −1
0
1

, and

thus ŷ = 0 6= 2 = ȳ.

By Proposition 2.1, 1
nJX(X′X)

−1
X′y = 1

nJŷ = ŷ = ȳ = 1
nJy. Using this fact

the expression of SSR can be simplified.

SSR = y′
(

X(X′X)
−1

X′ − 1

n
J

)
y.

For those readers who prefer the algebraic approach, a good challenge is to
prove algebraically that 1

nJX(X′X)
−1

X′ = X(X′X)
−1

X′ 1nJ = 1
nJ.

For the sum of squares SSE we have
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SSE = ‖y − ŷ‖2

= (y − ŷ)
′
(y − ŷ)

=
(
y −X(X′X)

−1
X′y

)′ (
y −X(X′X)

−1
X′y

)
=

((
I−X(X′X)

−1
X′
)

y
)′ (

I−X(X′X)
−1

X′
)

y

= y′
(
I−X(X′X)

−1
X′
)′ (

I−X(X′X)
−1

X′
)

y

= y′
(
I−X(X′X)

−1
X′
)2

y

= y′
(

I−
(

X(X′X)
−1

X′
)2)

y

= y′
(
I−X(X′X)

−1
X′
)

y.

Again, the fundamental identity can be demonstrated:

SSE + SSR = y′
(
I−X(X′X)

−1
X′
)

y + y′
(

X(X′X)
−1

X′ − 1

n
J

)
y

= y′
(

I− 1

n
J

)
y

= y′ (y − ȳ)

= (y′ − ȳ)
′
(y − ȳ)

= SST.

Example (continuation): SSR =‖ŷ − ȳ‖2=139.541, SST =‖y − ȳ‖2=165,

SSE =‖y − ŷ‖2 = 25.459 and SST = SSR + SSE =139.541 + 25.459=165.
�

3 The centered model

In certain situations, it is convenient to change the X matrix by X∗ =(
I− 1

nJ
)
X. In this way, the new matrix columns are obtained by the orthogonal

projection of the columns of X in the subspace Im(X) perpendicular to the vector
−→
1 . The columns of X are subtracted from the mean of the correspondent column.
So, X∗ has columns with zero sum, and it is said that the model is in centered form,
i.e., centered on the mean. Geometrically, each column vector of Xi is subtracted

from its orthogonal projection onto
−→
1 . If X defines a model with intercept, X1 is

a column containing only 1′s and therefore X∗1 will be a column formed by zeros.
Substituting this column by one with 1′s we then construct a new model with

intercept, X̃∗ =
[
1,X∗1, . . . ,X

∗
p

]
. Since Im (X) = Im

(
X̃∗
)

, the regression models,

that is, the subspace where the expectation of the response vector Y is supposed to
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be, are the same. Thus, Y = X̃∗β+ε is just a reparametrization of Y = Xβ+ε. If

β̂
∗

=
(
β̂
∗
0, β̂

∗
1, . . . , β̂

∗
p

)
is the least squares estimator of the regression Y = X̃∗β+ε,

with respect to the original regression Y = Xβ + ε follows that:

Proposition 3.1. β̂
∗
0 = ȳ, β̂

∗
i = β̂i, i = 1, · · · ,p

Proof:

ŷ = Xβ̂

=

p∑
i=0

β̂iXi

= β̂0

−→
1 +

p∑
i=1

β̂iXi

= β̂0

−→
1 +

p∑
i=1

β̂i

(
Xi −

1

n
JXi +

1

n
JXi

)

= β̂0

−→
1 +

p∑
i=1

β̂i

1

n
JXi +

p∑
i=1

β̂i

(
Xi −

1

n
JXi

)

= β̂0

−→
1 +

p∑
i=1

β̂i

1

n
JXi +

p∑
i=1

β̂iX
∗
i

= β̂0

−→
1 +

p∑
i=1

β̂ix̄i
−→
1 +

p∑
i=1

β̂iX
∗
i

=

(
β̂0 +

p∑
i=1

β̂ix̄i

)
−→
1 +

p∑
i=1

β̂iX
∗
i .

Therefore,

1

n
Jŷ =

1

n
J

[(
β̂0 +

p∑
i=1

β̂ix̄i

)
−→
1 +

p∑
i=1

β̂iX
∗
i

]

ŷ =

(
β̂0 +

p∑
i=1

β̂ix̄i

)
−→
1

However, by proposition 2.1, ŷ = ȳ⇒ β̂0 +
p∑

i=1

β̂ix̄i = ȳ. So,

ŷ = ȳ
−→
1 +

p∑
i=1

β̂iX
∗
i = X̃∗


ȳ

β̂1
...

β̂p


�
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Example (continuation):

X∗ =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−


1
12

1
12 · · · 1

12
1
12

1
12 · · · 1

12
...

...
. . .

...
1
12

1
12 · · · 1

12





1 0 2
1 2 6
...

...
...

1 8 13



=


0 −4.3333 −6.5
0 −2.3333 −2.5
...

...
...

0 3.6666 4.5

 ,

X̃∗ =


1 −4.3333 −6.5
1 −2.3333 −2.5
...

...
...

1 3.6666 4.5

 ,

β̂
∗

=
(
X̃∗

′
X̃∗
)−1

X̃∗
′
y =

 7.500
3.011
−1.285

 .

�

The prediction equation ŷ = β̂′x also allows an interesting geometric
interpretation. While the columns of the matrix X are vectors in the data space Rn

and span the subspace Im (X), the rows of X =

 L1

...
Ln

 can be viewed as vectors

in the parametric space Rp.
Since Xβ̂ = ŷ, then

Xβ̂ =


L1

L2

...
Ln



β̂1

β̂2
...

β̂p

 =


ŷ1

ŷ2

...
ŷp

 ,
and thus

L1β̂ = ŷ1, . . . , Lnβ̂ = ŷn.

Li = (xi1, xi2, . . . , xip) is a vector of covariates values, i.e.,

ŷi = Li β̂ =

p∑
j=1

β̂jxij = β̂′xi.
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Figure 5 - Geometric interpretation of prediction equation.

If x = (x1, x2, . . . , xp) is a vector defined by arbitrary values of the covariates,
the predicted value ŷ is then acquired by the prediction equation (Figure 5) with
ŷ = β̂′x.

Proposition 3.2. If ȳ is the mean of the n observed values and x̄ = (x̄1, · · · , x̄p)

the vector defined by the mean of covariates used values, then ȳ = β̂′ x̄.

Proof:

ŷi = Liβ̂

1

n

n∑
i=1

ŷi =
1

n

n∑
i=1

Liβ̂

ŷ =

(
1

n

n∑
i=1

Li

)
β̂

=

(
1

n

n∑
i=1

(xi1, xi2, . . . , xip)

)
β̂

= (x̄1, x̄2, . . . , x̄p) β̂.

Since ŷ = ȳ, then ȳ = β̂′ x̄.
�

4 Geometric interpretation of determination coefficient

The coefficient of determination in a multiple regression is expressed in terms
of the fundamental triangle as the quotient :

R2 =
SSR

SST
=

(
adjacent side

hypotenuse

)2

= cos2 (α) .
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Such R2 is defined as the squared cosine of the angle α in the fundamental triangle,
its interpretation becomes much more evident. If α is approximately 0◦

(
R2 ≈ 1

)
this indicates that SSE ≈ 0, i.e., the triangle opposite side is small relative to the
measure of the hypotenuse and therefore it can be said that the regression (the
adjusted vector ŷ) is close enough to the data represented by the vector y, and
hence explains well the data. In the other hand, α close to 90◦

(
R2 ≈ 0

)
has the

opposite explanation.
Also follows in the fundamental triangle, by the vector inner product concept,

the characterization of R2 as

R2 = cos2 (α) =

(
(y − ȳ)

′
(ŷ − ȳ)

‖y − ȳ‖ ‖ŷ − ȳ‖

)2

.

By Proposition 2.1, ŷ = ȳ and therefore,

R2 =

(
(y − ȳ)

′ (
ŷ − ŷ

)
‖y − ȳ‖

∥∥ŷ − ŷ
∥∥
)2

which is the sampling correlation between the random variables Y and
X(X′X)

−1
X′Y.

In the simple regression case, another interesting interpretation is also possible.
ŷ − ŷ is a vector belonging to Im (X) and is perpendicular to the unidimensional

subspace spanned by
−→
1 . The column vector x of X = (j,x) subtracted from its

means x− x̄ is also perpendicular to this same subspace. As dim (Im (X)) = 2, then
the vectors ŷ − ŷ and x − x̄ are parallels each other and therefore has the same
angle with y − ȳ . Therefore,

R = cos (α) =
(y − ȳ)

′ (
ŷ − ŷ

)
‖y − ȳ‖

∥∥ŷ − ŷ
∥∥ =

(y − ȳ)
′
(x− x̄)

‖y − ȳ‖ ‖x− x̄‖

and R can be viewed as the sample correlation coefficient between Y and the x
covariate.

Another property that admits an immediate demonstration, much simpler than
the usual algebraic proof is

Proposition 4.1. For a regression linear model Yn×1 = Xn×pβp×1 + εn×1, if a
covariate is added then the model with this new covariate,

Yn×1 = X̃n×(p+1)β(p+1)×1 + εn×1,

X̃n×(p+1) =

 X

∗
∗
...
∗

, has the R2 value increased.
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Proof: The subspace Im (X) is contained in Im
(
X̃
)

. In the original model, ŷ is

the orthogonal projection of y onto Im (X). Also, in the augmented model, ŷ is

the orthogonal projection of y in the subspace Im
(
X̃
)

. Thus, the norm ‖y − ŷ‖
decreases and the norm ‖y − ȳ‖ remains the same. Then ŷ − ȳ, the adjacent side,
increases and, consequently, α becomes lower. In this way, R2 increases.

�
Example (continuation): Adding a new covariate given in Table 2.

Table 2 - Data for the example

Observation
Number y x1 x2 x3

1 2 0 2 4
2 3 2 6 8
3 2 2 7 8.5
4 7 2 5 7
5 6 4 9 11
6 8 4 8 6
7 10 4 7 11
8 7 6 10 7
9 8 6 11 12
10 12 6 9 12
11 11 8 15 16
12 14 8 13 10

For the original data with x1 and x2 we have R2 = 0.8457 for the augmented
model. The sample correlaction between x1 and x3 is 0.7186 and the sample
correlaction between x2 and x3 is 0.7742. Then,the new coefficient of determination
is

R2 =

(
(y − ȳ)

′
(ŷ − ȳ)

‖y − ȳ‖ ‖ŷ − ȳ‖

)2

= 0.8653.

�

A common mistake in using the concept of the coefficient of determination
R2 is , despite being a measure of how the model fits the data, it can’t be used
as a criterion of the quality to the predictive model, which is how much the model
explains the unobserved data. In other words we can’t use R2 as a criterion for model
selection. A suitable technique for this is the use of the Cp Mallows’s statistic, that
also admits a geometric description in terms of the fundamental triangle.
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5 The Mallows’s Cp statistic

This section follows the ideas of Sheden (2014). Consider a linear model
denoted by M, with Yn = Xn×pβp×1 + εn×1, E [Y] = Xβ and cov (Y) = σ2I.
The model assumes that the parameter mean of Y belongs to the linear subspace
Im (X). If the model is not correct then E [Y] = θ 6= Xβ. In the incorrect
model M, the closest vector to θ will be denoted by θX and is determined by the
orthogonal decomposition θ = θX + θX⊥ with respect to the subspace Im (X). θX
is the parametric vector which will be estimated by the model M. In the correct
model Y = θ + ε, the error vector can also be decomposed as ε = εX + εX⊥ . The
covariance matrix of the random vector ŷ is given by

E
[
(ŷ − θ) (ŷ − θ)

′]
= E

[
(θX + εX − (θX + θX⊥)) (θX + εX − (θX + θX⊥))

′]
= E

[
(εX − θX⊥) (εX − θX⊥)

′]
= E [εXε

′
X + θX⊥θ′X⊥ ]

= E [εXε
′
X] + θX⊥θ′X⊥

= σ2Ip×p + θX⊥θ′X⊥ ,

and mean square error

EQM (ŷ) = E
[
(ŷ − θ)′ (ŷ − θ)

]
= tr

(
E
[
(ŷ − θ)′ (ŷ − θ)

])
= tr

(
E
[
(ŷ − θ) (ŷ − θ)′

])
= tr

[
σ2I + θX⊥θ′X⊥

]
= pσ2 + ‖θX⊥‖2.

When choosing among various models, we generally chose one whose estimator
has smaller mean square error. As EQM (ŷ) depends on the population parameters,
we seek then a unbiased estimator to this value. First of all, is necessary to calculate

the expectation of σ̂2 = ‖y−ŷ‖2
n−p .
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E
[
σ̂2
]

= E

[
‖y − ŷ‖2

n− p

]

= E

[
y′ (I− PX) y

n− p

]
=

1

n− p
E
[
(θ + ε)

′
(I − PX) (θ + ε)

]
=

1

n− p
E
[
(θ + ε)

′
(θX⊥ + εX⊥)

]
=

1

n− p
E
[
(θX⊥ + εX⊥)

′
(θX⊥ + εX⊥)

]
=

1

n− p
E
[
(θX⊥)

′
θX⊥ + 2(θX⊥)

′
εX⊥ + (εX⊥)

′
εX⊥

]
=

1

n− p
E
[
(θX⊥)

′
θX⊥ + (εX⊥)

′
εX⊥

]
=

1

n− p
‖θX⊥‖2+

1

n− p
E
[
‖εX⊥‖2

]
=

1

n− p
‖θX⊥‖2+

1

n− p
(n− p)σ2

=
1

n− p
‖θX⊥‖2 + σ2.

We need now an unbiased estimator for σ2. This can be obtained if we have
a much higher dimension model that contains the model M as a submodel. Such
higher dimension model, ideally contains more variables and much more observatios.
With this model we can obtain a good estimative of σ2. This estimative will be
denoted by σ̂∗2. We need too an unbiased estimator of ‖θX⊥‖2. As E

[
σ̂2
]

=
1

n−p‖θX⊥‖2 + σ2 so ‖θX⊥‖2 = (n− p) E
[
σ̂2
]
− (n− p)σ2 an unbiased estimator is

̂‖θX⊥‖2 = (n− p) σ̂2 − (n− p)σ2 = ‖y − ŷ‖2 − (n− p)σ2.

Therefore an unbiased estimator for EQM (ŷ) is

EQ̂M (ŷ) = ‖y − ŷ‖2 − (n− p) σ̂∗2 + pσ̂∗2 = ‖y − ŷ‖2 + 2pσ̂∗2 − nσ̂∗2

because

E
[
EQ̂M (ŷ)

]
= E

[
‖y − ŷ‖2 − (n− p) σ̂∗2 + pσ̂∗2

]
= (n− p) E

[
σ̂2
]
− (n− p)σ2 + pσ2

= ‖θX⊥‖2 + (n− p)σ2 − (n− p)σ2 + pσ2

= ‖θX⊥‖2 + pσ2

= EQM (ŷ) .
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This justify the definition of the Mallows’s Cp statistic as

Cp =
EQ̂M (ŷ)

σ̂∗2

=
‖y − ŷ‖2 + 2pσ̂∗2 − nσ̂∗2

σ̂∗2

=
‖y − ŷ‖2

σ̂∗2
+ 2p− n

=
‖y − ŷ‖2

σ̂∗2
− (n− 2p) .

The correct model is Y = θ + ε, that is, we are use all the data and without
any supposition about the covariates. In this way we have the unbiased estimator of
σ2 by σ̂∗2 = 1

n−1
∑n

i=1 (yi − ȳ)
2
. Observe that σ̂∗2 is taken regardless of the models

in study.

As we must prefer models with lowest mean square error the idea is to calculate
the value of Cp statistic and the correct model. In a p-dimensional correct model

situation, ‖y − ŷ‖2 ≈ (n− p)σ2, and σ̂∗2 ≈ σ2. So,

Cp =
‖y − ŷ‖2

σ̂∗2
− (n− 2p) ≈ (n− p)σ2

σ2
− (n− 2p) = p.

So, when choosing between models we must choose one with Cp ≈ p.
Originally, Cp statistic was defined for covariate selection models (MALLOWS,

1973), that is, if x1, . . . , xk are k covariates, we want to select p covariates that best
describe the response variable. Is possible in this context to have nested models.
In this case, it is advantageous to introduce an alternative form of Cp statistic, as
follows.

Let r = k−p be the number of removed covariates. Considering the orthogonal
projections ŷk of y data vector on the k-dimensional subspace defined by all
covariates and ŷp on the p-dimensional subspace defined by chosen covariates we
have again the fundamental triangle, as in Figure 6.

Considering as correct model the model with the k covariates then we have

Ck =
‖y − ŷk‖2

σ̂∗2
− (n− 2k) ≈ k

and

‖y − ŷk‖2

σ̂∗2
≈ n− k.

The Cp statistic for the model with p selected covariates can be expressed by
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Figure 6 - Adjusted vector for nested models.

Cp =
‖y − ŷp‖2

σ̂∗2
− (n− 2p)

=
‖y − ŷk‖2 + ‖ŷk − ŷp‖2

σ̂∗2
− (n− 2p)

=
‖ŷk − ŷp‖2

σ̂∗2
+
‖y − ŷk‖2

σ̂∗2
− (n− 2p)

≈ ‖ŷk − ŷp‖2

σ̂∗2
+ (n− k)− (n− 2p)

=
‖ŷk − ŷp‖2

σ̂∗2
+ (2p− k) .

6 Geometrical interpretation of Cp statistic

The geometry of construction of Cp statistic can be summarized in the Figure
7.

Figure 7 - Geometry of Cp.
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The fundamental triangle is given by Figure 8.

Figure 8 - Fundamental triangle.

‖ŷ − θ‖2 = ̂‖θX⊥‖2 + ‖ŷ − θX‖2,

As ŷ is an unbiased estimator of θX ‖ŷ − θX‖2 can be estimate by pσ∗2. In the
subspace orthogonal to the plane define by the model we have

y − ŷ = θX⊥ + ε⊥.

Therefore,

‖y − ŷ‖2 = (θX⊥ + ε⊥)
′
(θX⊥ + ε⊥) = ‖θX⊥‖2 + 2 (θX⊥)

′
ε⊥ + ‖ε⊥‖2.

So, as E
[
(θX⊥)

′
ε⊥

]
= 0 and E

[
‖ε⊥‖2

]
= (n− p)σ2 then

E
[
‖y − ŷ‖2

]
= ‖θX⊥‖2 + (n− p)σ2.

In this case we can estimate ‖y − ŷ‖2 by ‖θX⊥‖2 + (n− p)σ2. So,

‖θX⊥‖2 ≈ ‖y − ŷ‖2 − (n− p) σ̂∗2.

Finally, the hipotenuse of the fundamental triangle that is a mesure of the
mean square error of the model is

‖ŷ − θ‖2 ≈ ‖y − ŷ‖2 − (n− p) σ̂∗2 + pσ̂∗2 = ‖y − ŷ‖2 + (2p− n) σ̂∗2.

Example (continued): Consider the models M1 with only the covariate x1, M2

with the covariate x2, M3 with the covariate x3, M4 with the covariates x1 and x2,
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M5 with the covariates x1 and x3, M6 with the covariates x2 and x3 and the model
M7 with the covariates x1, x2, and x3. The Cp values for these models are given in
the Table 3.

Table 3 - Results for selection of different models with Cp statistic

Model Cp p− Cp

M1 -4.9849 6.9849
M2 -2.5713 4.5713
M3 -0.9301 2.9301
M4 -4.3027 7.3027
M5 -2.9897 5.9897
M6 -0.6314 3.6314
M7 -2.5187 6.5187

The choosen model by Cp statistic is the model M3.

Conclusions

The geometric method is a natural approach to the various aspects of linear
model theory. It has the advantage of emphasizing the statistical concepts involved
and also has generality, since the various problems can be solved by essentially the
same procedures.

PEREIRA, L. S.; CHAVES, L. M.; SOUZA, D. J. Geometria de resultados básicos
em regressão linear e da estat́ıstica Cp de Mallows.. Rev. Bras. Biom., São Paulo,
v.33, n.3, p.357-377, 2015.

ABSTRACT: Uma abordagem completamente geométrica, empregando somente

subespaços vetoriais e projeções ortogonais, é aplicada para a teoria dos modelos lineares.

Resultados básicos, que são usualmente provados em textos didáticos utilizam álgebra

matricial não trivial, são demonstrados usando somente geometria. Como uma aplicação

não usual, o método é aplicado à construção da estat́ıstica Cp de Mallows.

KEYWORDS: Método geométrico; Cp de Mallows; Modelos Lineares; Projeções

ortogonais.
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BOLDRINI, J. L. et al. Álgebra Linear. 2.ed. São Paulo: Harbra, 1986. 411p.

376 Rev. Bras. Biom., São Paulo, v.33, n.3, p.357-377, 2015



BRING, J. A Geometric Approach to Compare Variables in a Regression Model.
The American Statistician, Alexandria VA USA, v.50, p.57-62, 1996.

BRYANT, P. Geometry, Statistics, Probability: Variations on a Common Theme.
The American Statistician, Alexandria VA USA, v.38, n.1, p.38-48, 1984.

DRAPER, N. R.; SMITH, H. Applied Regression Analysis. New Jersey: John Wiley
& Sons, 1998. 736p.

HERR, D. G. On the History of the Use of Geometry in the General Linear Model.
The American Statistician, Alexandria VA USA, v.34, n.1, p.43-47, 1980.

MALLOWS, C. L. Some Comments on C P. Technometrics, Alexandria VA USA,
v.15, n.4, p.661-675, 1973.

MARGOLIS, M. S. Perpendicular Projections and Elementary Statistics. The
American Statistician, Alexandria VA USA, v.33, n.3, p.131-135, 1979.

RAO, C. R. Linear Statistical Inference and its Applications. New Jersey: John
Wiley & Sons, 1973.

RENCHER, A. C; SCHAALJE, G. B. Linear Models in statistics. New Jersey: John
Wiley & Sons, 2008. 672p.

SAVILLE, D. J; WOOD, G. L. A Method for Teaching Statistics Using N-
Dimensional Geometry. The American Statistician, Alexandria VA USA, v.40,
p.205-214, 1986.

SAVILLE, D. J; WOOD, G. L. Statistical Methods: The Geometric Aproach. New
York: Springer-Verlag, 1991. 560p.

SEARLE, S. R. Linear Models. New Jersey: John Wiley & Sons, 1971.

SEBER, G. A. F.; LEE, A. J. Linear Regression Analysis. New Jersey: John Wiley
& Sons, 2003.

SHEDEN, K. Model selection. University of Michigan, Department of
Statistics, 2014. 25p. http://dept.stat.lsa.umich.edu/~kshedden/Courses/

Stat600/Notes/model_selection.pdf acessed in 06-24-2015.

Recebido em 27.11.2014.

Aprovado após revisão em 30.07.2015.

Rev. Bras. Biom., São Paulo, v.33, n.3, p.357-377, 2015 377


