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 ABSTRACT: The aim of the study was evaluate and compare the efficiency of Bayesian and 

frequentist approach to describe the rumen degradation of NDF. Simulated data was composed 

by four scenarios: regular restriction in the number of incubation times, random loss of incubation 

times, loss of specific parts of degradation curves, variation in the precision of the incubations 

procedures. Two real datasets was used, these real data encompassed the evaluation of NDF 

degradation of a tropical grass (Brachiaria decumbes). The model was fitted according their 

characteristics approach and compared by plots and assessors. The Bayesian and frequentist 

approach presented reliable estimates of degradation parameters for the majority of the data tested. 

Therefore, in specific cases with short random records number, the Bayesian approach showed 

greater bias of the estimates of incubation residue and estimates of degradation rate without a 

biological coherence of the parameters, compared to frequentist inference. In another words, the 

Bayesian approach fitted with prior diffuse, presented less flexible. Nevertheless, it is emphasized 

the importance of the background information before the modeling, mainly for the Bayesian 

approach, in order to define proper prior distributions. Future thorough studies about the influence 

of non-informative prior for the parameters are necessary. 
 KEYWORDS: Degradation curves; in situ method; inference; ruminal degradation. 

 
1 Introduction 

The utilization of the frequentist inference, or the classical inference, was almost 

unanimous among the scientists in the early years of twentieth century. However, with the 

computational improving, the Bayesian inference reappeared as a viable alternative to 

statistical modeling and analysis. Bayesian inference was avoided by researchers for a long 

time because of the highly complex mathematical resolution, which was not considered 

viable to be made by using simple algebraic algorithms (LESAFFRE and LAWSON, 2012). 

However, at early 1960’s, the Bayesian inference reappeared in a theoretical paper 

(JEFFREYS, 1961), but just became widely available to be used from 1990’s (GELFAND 

et al., 1990), when complex integration resolutions could be solved by simulation. 
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One of the most important objectives of the statistics is to fit or build models. When 

classical frequentist inference is applied on data, population parameters are considered fixed 

effects; so the information about the parameters is only obtained by sampling. However, 

when using Bayesian inference, the population parameters are considered random effects 

and can be described probabilistically. Therefore, for the process of Bayesian estimation, a 

smaller dataset would be required than do the frequentist inference. In other words, the 

model fit by Bayesian method presents lower dependence from data size compared to the 

frequentist approach (BEAUMONT and RANNALA, 2004). Recently, it has got more 

difficult to perform experiments with a great number of animals because the high labor, 

high cost and, mainly, the stricter ethical regulations. In a particular way, experiments 

where a surgical intervention is necessary have been more affected by the ethical committee 

exigencies. From this, it can be stated that evaluation of the rumen kinetic parameters (i.e., 

degradation and transit) is one of the most affected evaluations, because the majority of the 

experiments are performed by using in situ methodology. Therefore, more flexible 

statistical approaches, in terms of number of experimental animals, have been demanded. 

When studies on ruminal kinetics are performed in the tropics, the degradation of the 

neutral detergent fiber (NDF) must be considered one of the most relevant information as 

NDF is the main source of energy for cattle production (DETMANN et al., 2008) and 

around 90 to 95% of its utilization occur in the rumen (HUHTANEN et al., 2010). The 

ruminal degradation pattern of NDF is described by nonlinear models and follows the 

action-mass law. The rumen kinetics of NDF is typically a time-dependent process as the 

probability of a fiber particle either escapes to the lower-gut or be degraded by 

microorganisms varies along the residence time in the rumen. The inclusion of time-

dependency of the rumen kinetics in the nonlinear description is most commonly 

incorporated by using gamma time-dependent models (ELLIS et al., 1994). 

However, the adjusting of nonlinear models can be complexed, mainly for rumen 

kinetics data, because the errors may not follow a normal distribution. Sometimes, the 

normal distribution is supposed to be asymptotically achieved. However, the actual data 

number is normally low. On the other hand, the pattern of degradation or transit is described 

along time, which creates a typical heteroscedasticity or a “funnel” effect (DETMANN et 

al., 2001) and a dependency between errors. As an alternative to the frequentist approach, 

the Bayesian methodology does not require the assumption of normality as a necessary 

condition and the inferences on the parameters are made on their posterior distribution. In 

this case, a model is supposed for each dataset and the parameters of each model are 

compared based on their posterior distributions (ROSSI et al., 2010). 

However, it seems necessary to evaluate the model adjustment capacity and to 

compare the parameter estimates obtained by Bayesian and frequentist approach, in order 

to clarify the advantages, disadvantages, and limitations of each approach for ruminal 

degradation modeling. Therefore, the aim of this study was to evaluate and to compare the 

efficiency of the Bayesian and frequentist approaches to describe the ruminal degradation 

of neutral detergent fiber by using a gamma time-dependent model. 
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2 Materials and methods 

2.1 Model applied to interpret ruminal degradation of NDF 

The basic model applied to interpret the ruminal degradation profile of NDF was based 

on a Gamma-2 order of time-dependency according to derivations of Van Milgen et al. 

(1991): 

      ItctcUtR  exp1 , (1) 

where R(t) is the residue of NDF at incubation time t (%); U is the potentially degradable 

fraction of NDF (%); c is the common rate of lag and degradation (h-1); and I is the 

asymptote reached when t , which means the undegradable fraction of NDF (%). 

It must be noted that parameters U and I represent the two fractions of the NDF, and 

their sum must reproduce the total NDF (100%), as this fiber analytical approach does not 

encompass a soluble fraction (MERTENS, 2005). 

2.2 Simulated data 

The simulated data used for the model adjusting and evaluation by the two statistical 

approaches consisted of a main database split into four scenarios and four subsets for each 

scenario. Each complete scenario consisted of 145 observations simulated according to the 

model descried in Equation (1). The values of the parameters of the Equation (1) were 

assumed to be the average values obtained in a previous work carried out by Figueiras 

(2013), who evaluated the degradation of NDF from a tropical grass in cattle under grazing. 

The average values were 62.92, 37.08, and 0.059 for U, I, and c, respectively. Each subset 

was simulated according to a theoretical hour-by-hour incubation design, then varying from 

0 to 144 hours of incubation. From the whole subsets (n = 145), different scenarios were 

produced as described below. 

Scenario A – Regular restriction in the number of incubation times: the subsets 

were produced to simulate a decrease in the number of incubation times; however, 

presenting an equal time interval between incubation points. Therefore, the four subsets 

represented sampling designs with degradation times equally spaced in 3, 6, 12 and 24 hours 

(subsets A1, A2, A3, and A4, respectively). In this way, these subsets were composed by 48, 

24, 12 and, 6 incubation points, respectively. To simulate this scenario, the standard 

deviation of the residual random error among incubation points was assumed to be equal to 

1.0. 

Scenario B – Random loss of incubation times: the subsets were produced to 

simulate different degrees of random losses of incubation times. Therefore, the four subsets 

represented sampling designs with degradation times randomly distributed from 0 to 144 

hours of incubation. In this sense, these subsets were composed by 48, 24, 12 and 6 

incubation points (subsets B1, B2, B3, and B4, respectively). To simulate this scenario, the 

standard deviation of the residual random error among incubation points was assumed to 

be equal to 1.0. 
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Scenario C – Loss of specific parts of the degradation curves: the subsets were 

produced to simulate the loss of incubation points located at the same part of the degradation 

curve. This scenario was composed by four subsets (C1, C2, C3, and C4), where each subset 

consisted of 75% of the total subset record number. Each subset was divided into four parts 

(four quarters); three of these parts composed each subset. Therefore, each subset have 108 

records, where the first subset consist in the main database without the first part (without 

initial quarter), the second subset consist, of the main database without the second part 

(without second quarter) and so on. To simulate this scenario, the standard deviation of the 

residual random error among incubation points was assumed to be equal to 1.0. 

Scenario D – Variation in the precision of the incubation procedures: the subsets 

were produced to simulate obtaining information with different levels of precision. This 

scenario was composed by four subsets (D1, D2, D3, and D4) with 145 records each. 

However, they were simulated considering the standard deviation of the residual random 

error among incubation points of 2.0, 2.5, 3.0, and 3.5, respectively. 

For all scenarios, each subset was simulated ten times in order to allow a more robust 

evaluation of the ability of different approaches to adjust in front of different scenarios. 

The objective of the four scenarios were: (A) to evaluate circumstances where minimal 

sampling procedures are demanded; (B) to evaluated circumstances where an intense loss 

of information occurred; (C) to evaluate the robustness of the statistical approach regarding 

the loss of a specific sequential number of samples; and (D) to evaluate the robustness of 

the statistical approach when a low-precision dataset are available to estimate the 

parameters (Figure 1). 
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Figure 1 - Examples of the simulated scenarios: A, regular restriction in the number of incubations 

times; B, random loss of incubation times; C, loss of specific parts of the degradation 
curves; and D, variation in the precision of the incubation procedures. 

2.3 Actual data 

After the evaluation of simulated data, two real datasets were used to evaluate the 

Bayesian and frequentist approaches. Both datasets encompassed the evaluation of NDF 

degradation of a tropical grass (Brachiaria decumbens) in two experiments carried out 

according to complete 5 × 5 Latin square design with five treatments, which consisted of 

different supplementation schemes for growing cattle under grazing (FIGUEIRAS, 2013). 

The NDF degradation was measured within each experimental period (five for each 

experiment) according to the incubation times: 0, 3, 6, 9, 12, 24, 36, 48, 60, 72, 96, 120, 

and 144 hours. Therefore, ten different adjustments were performed (one for each 

treatment). In spite of few losses of bags (incubation points), each adjustment was 

performed, on average, with n = 65. Details of the treatments and incubation procedures 

can be found in Figueiras (2013). 



630 Rev. Bras. Biom., Lavras, v.36, n.3, p.625-648, 2018 - doi: 10.28951/rbb.v36i3.260 

 

 

 

 
 

2.4 Model fitting 

Model fitting following the frequentist approach was performed according the 

ordinary least squares method with the solutions obtained by the Gauss-Newton algorithm 

using lme4 package from the R software (BATES et al., 2015). Significance of the 

parameters was checked using the asymptotic confidence intervals. 

For the fit according to Bayesian approach, the variance components were defined by 

)10,10(~
1 33

2

 Gam


 . Gamma and uniform distributions are standard choices of 

diffuse informative prior distributions to the variance components of model (GELMAN et 

al., 2004). Considering that rumen kinetics data errors may not follow a normal distribution, 

the choice of priors distributions for the variance components was based on the construction 

of minimally informative priors. For model parameters was specifies prior distributions: 

cIU ,, ~  33 1010  , Gam  where Gam  denotes the gamma distribution (for which 

),( baGam has mean = ba / and variance =
2/ba . 

The posterior distribution was simulated by Monte Carlo Markov Chain (MCMC) 

process by using the statistical software OpenBugs (THOMAS et al., 2016), which was 

interfaced with R via BRugs package (LIGGES, 2013) (LUNN et al., 2009). Briefly, the 

posterior distribution is simulated by the MCMC method by constructing Markov Chains, 

for which partial distributions approximate the posterior density, and using Monte Carlo 

integration to compute integrals and expectations. The Monte Carlo error approximation is 

reduced by increasing the number of samples up to a point at which no further gain in 

accuracy is achieved in the approximation of the posterior summaries. Two chains with 

overdispersal initial values were determined for each parameter and chain mixing, auto-

correlation, posterior distribution, and the Heildelberger-Welch diagnostic 

(HEIDELBERGER; WELCH, 1992) implemented via the BOA (Bayesian Output 

Analysis) package (SMITH, 2007). A minimum of 500,000 iterations was determined by 

simulation, of which 200,000 iterations composed a burn-in period, and after the burn-in 

period 300,000 iterations were saved to obtain posterior distribution estimates. The chains 

were thinned by a factor of 100, totalizing 3,000 simulated values in a final sample.  

In the Bayesian approach, the posterior probabilities of the parameters were calculated 

as the proportion of chain iterations of the MCMC sampling method spent in each subset. 

2.5 Evaluation of adjustment and comparison of parameter estimates 

The quality of the adjustments was evaluated through the asymptotic standard 

deviation of the residual error (ASDR) using the likelihood estimator as follow: 

 

n

YY

ASDR

n

i

ii




 1

2
ˆ

, 
(2) 

where iŶ is the predict value, iY is the simulated or real (observed), and n is the number of 

records. 
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Specifically for the simulated dataset, the accuracy of the estimates for each parameter 

was evaluated by computing the bias (B). Such an assumption was based on the fact that 

estimates of the parameters obtaining by each method should converge to the parametric 

values used to simulate the scenarios and subsets. The average estimates of B (%) were 

calculated as: 

100

)ˆ(
1

1 










n

i

i
n

B , 
(3) 

where i̂  is the estimate of the parameter in the evaluation i for an specific scenario and 

subset (i = 1, 2, …, 10), and   is the parametric value. 

The pattern of the average difference between the estimates of the parameters obtained 

by Bayesian and frequentist approaches was evaluated by using a paired t-test (α = 0.05). 

When necessary, descriptive plots were also drawn to a better understanding of the 

pattern of results. 

The statistical computations was performed using the R statistical software (R CORE 

TEAM, 2017), except the MCMC method that was performed in the R statistical software 

(R CORE TEAM, 2017) assisted by statistical software WinBUGS (LUNN et al., 2000). 

3 Results 

3.1 Simulated data 

In the Bayesian simulation, the samples came from 300,000 iterations, already 

discounting the burn-in period, which resulted in 3,000 total record iterations. This total 

record number in each subset was verified for convergence of chains by the Heildelberger-

Welch diagnostic. From this diagnostic, it was not registered any non-convergence in the 

subsets. Thus, 3,000 record iterations were sufficient to achieve convergence. Similarly, the 

frequentist approach did not show any case of unsuccessful convergence. During the model 

fitting, it was not determined any border for the parameters estimate, in order to evaluate if 

the approaches would be able to estimate the parameters in accordance with the biological 

coherence borders. 

At first glance, both inferences showed a similar performance. On average, the 

parameters estimates, precision (Table 1) and bias, and the residual error (Table 2) were 

very similar to each other when both methods were numerically contrasted. It is important 

to note that for most subsets the sums of the potentially degradable and undegradable 

fractions (U+I, Table 1) were very close to 100%, which agreed with the biological and 

chemical assumptions of NDF degradation and added reliability to the model adjustments 

(Table 1). However, subset B4, which was developed to test the highest level of random loss 

of incubation points, showed discrepant values for U+I for both approaches (103.57 for 

Bayesian and 103.09 for frequentist). In a particular way, the adjustment of the subset B4 

through Bayesian approach lead to estimates of parameter c that did not match any expected 

biological pattern (Table 1) and with a highly prominent bias (Table 2). 
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Table 1 – Average estimates of the parameters potentially degradable fraction (U, %), common rate of lag and degradation (c, h-1), 

undegradable fraction (I, %) obtained on simulated data using the Bayesian or frequentist approaches 

Scenario1 
Bayesian2, 3  Frequentist2, 3 

U c I U+I  U c I U+I 

A1 63.00 (0.79) 0.058 (0.002) 36.99 (1.10) 99.99  62.97 (0.48) 0.058 (0.001) 37.06 (0.234) 100.04 

A2 63.11 (2.41) 0.065 (0.105) 36.15 (2.66) 99.27  62.78 (0.67) 0.059 (0.001) 37.19 (0.333) 99.97 

A3 62.96 (1.69) 0.071 (0.587) 37.21 (0.75) 100.17  63.05 (0.83) 0.059 (0.001) 37.22 (0.437) 100.27 

A4 62.69 (2.31) 0.061 (0.244) 37.09 (1.78) 99.77  62.70 (0.94) 0.059 (0.001) 37.24 (0.526) 99.94 

B1 63.30 (0.56) 0.059 (0.001) 37.08 (0.25) 100.38  63.30 (0.55) 0.059 (0.001) 37.08 (0.242) 100.39 

B2 63.53 (2.79) 0.169 (3.205) 35.16 (3.42) 98.69  63.40 (0.69) 0.059 (0.001) 37.05 (0.344) 100.46 

B3 62.44 (3.04) 0.063 (0.453) 36.98 (1.13) 99.42  62.58 (1.33) 0.057 (0.002) 36.99 (0.546) 99.57 

B4 67.05 (21.34) 1.131 (11.427) 36.52 (4.62) 103.57  65.74 (4.19) 0.060 (0.003) 37.35 (0.710) 103.09 

C1 62.93 (3.79) 0.058 (0.023) 36.93 (1.11) 99.85  62.94 (3.44) 0.058 (0.001) 37.02 (0.176) 99.96 

C2 63.12 (0.82) 0.058 (0.002) 36.90 (1.11) 100.02  63.03 (0.30) 0.059 (0.001) 37.06 (0.135) 100.09 

C3 63.05 (0.49) 0.058 (0.001) 37.01 (0.28) 100.06  63.05 (0.30) 0.058 (0.001) 37.01 (0.163) 100.07 

C4 62.98 (0.48) 0.059 (0.005) 37.10 (0.43) 100.08  62.97 (0.30) 0.059 (0.001) 37.11 (0.206) 100.09 

D1 63.24 (0.62) 0.059 (0.002) 36.95 (0.42) 100.18  63.24 (0.59) 0.059 (0.001) 36.96 (0.281) 100.19 

D2 63.18 (1.02) 0.058 (0.002) 36.76 (1.07) 99.94  63.11 (0.72) 0.059 (0.001) 36.93 (0.343) 100.04 

D3 63.26 (0.88) 0.059 (0.001) 36.98 (0.42) 100.25  63.27 (0.87) 0.059 (0.001) 36.99 (0.417) 100.26 

D4 63.04 (1.29) 0.059 (0.002) 37.08 (1.39) 100.12  62.97 (0.98) 0.060 (0.001) 37.28 (0.461) 100.25 
1 See text for details about scenarios. 
2 The values correspond to the average of ten adjustments for each subset within each scenario. 
3 The values between parentheses correspond to the standard deviation among adjusted models (n = 10). 
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In spite of being very similar, the estimates of the undegradable fraction I differed between Bayesian and frequentist approaches 

(P<0.05). On average, I fraction was higher for the frequentist approach (Table 3). Is must be emphasized that this pattern was kept even 

when not considering subset B4 in the paired t-test (data not shown). There was no difference between approaches with regard parameters 

U and c (P≥0.16). 

 

Table 2 – Asymptotic standard deviation of residual error (ASDR) for the adjusted model and average bias (B, %) for the estimates of 

the parameters potentially degradable fraction (U, %), common rate of lag and degradation (c, h-1), undergradable fraction (I, 

%) obtained on simulated data using the Bayesian or frequentist approaches 

Scenari

o1 

Bayesian2, 3  Frequentist2, 3 

ASDR 
B  

ASDR 
B 

U c I  U c I 

A1 0.982 0.130 (0.47) -0.380 (0.784) -0.237 (0.439)  0.982 0.085 (0.480) -0.246 (0.867) -0.043 (0.547) 

A2 2.617 0.303 (1.54) 5.716 (15.932) -3.331 (10.553)  0.850 -0.218 (0.626) 0.081 (0.885) 0.286 (0.443) 

A3 2.402 0.067 (1.77) 7.093 (21.490) 0.339 (0.703)  1.007 0.202 (1.707) 0.237 (1.623) 0.367 (0.707) 

A4 1.363 -0.370 (2.35) 2.712 (5.450) -0.004 (1.689)  1.158 -0.341 (2.169) 0.269 (1.180) 0.420 (0.938) 

B1 1.150 0.602 (0.73) 0.478 (1.270) -0.0002 (0.573)  1.150 0.610 (0.734) 0.485 (1.272) 0.006 (0.570) 

B2 6.547 0.963 (2.14) 18.539 (32.591) -10.255 (31.930)  1.321 0.767 (0.670) 0.567 (1.648) -0.076 (0.800) 

B3 6.130 -0.763 (2.24) 5.469 (13.104) -0.285 (1.375)  4.456 -0.536 (2.228) -2.055 (2.860) -0.265 (1.341) 

B4 4.520 6.562 (10.62) 29.10 (35.139) -1.722 (4.842)  0.974 4.485 (7.483) 2.912 (4.628) 0.665 (2.525) 

C1 1.177 0.014 (6.61) -0.664 (3.996) -0.422 (0.730)  1.163 0.028 (6.608) -0.544 (3.872) -0.161 (0.603) 

C2 1.243 0.324 (0.53) -0.146 (1.247) -0.503 (1.307)  1.205 0.181 (0.307) 0.173 (0.829) -0.059 (0.347) 

C3 1.179 0.200 (0.25) -0.050 (0.513) -0.190 (0.328)  1.180 0.209 (0.255) -0.039 (0.510) -0.175 (0.323) 

C4 1.173 0.092 (0.34) 0.226 (0.675) 0.063 (0.450)  1.173 0.088 (0.332) 0.199 (0.546) 0.090 (0.393) 

D1 1.852 0.507 (0.89) 0.206 (1.684) -0.370 (0.923)  1.851 0.506 (0.886) 0.219 (1.708) -0.339 (0.929) 

D2 2.583 0.410 (1.07) -0.245 (2.756) -0.892 (1.842)  2.569 0.305 (1.030) 0.083 (2.367) -0.408 (0.869) 

D3 2.806 0.545 (1.38) 0.066 (1.595) -0.273 (1.114)  2.805 0.556 (1.378) 0.066 (1.594) -0.253 (1.108) 

D4 3.624 0.194 (0.84) 1.209 (2.892) -0.010 (1.312)  3.642 0.083 (0.873) 1.572 (2.700) 0.513 (1.150) 
1 See text for details about scenarios. 
2 The values correspond to the averages of ten adjustments for each subset within each scenario. 
3 The values between parentheses correspond to standard deviation of bias among ten adjustments. 
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Table 3 - Paired t-test to compare the estimates of the parameters potentially degradable 

fraction (U, %), common rate of lag and degradation (c, h-1), undegradable 

fraction (I, %) obtained using Bayesian or frequentist approaches for simulated 

and actual dataset 

Parameters  Bayesian Frequentist t-test 

  Mean n )ds(  P value 

  Simulated values 

U  63.33±2.89 63.20±1.09  0.396 0.226 

c  0.069±0.346 0.059±0.001 16 0.027 0.166 

I  36.80±1.38 37.10±0.34  0.533 0.040 

  Real values 

U  68.51±4.30 66.917±3.57  3.859 0.223 

c  0.051±0.045 0.051±0.009 10 0.003 0.919 

I  27.50±4.18 29.46±3.28  4.452 0.197 

3.2 Actual dataset 

In general, the pattern of the results regarding U+I obtained for the actual dataset 

followed what has been observed for the simulated dataset (Table 4). There was little 

variation among treatments within each experiment for the frequentist approach, and for 

Experiment 2 when Bayesian approach was applied. However, the Bayesian approach 

tended to over and underestimate the fractions U and I for treatments 2 and 5 within 

Experiment 1, respectively (Table 4), when compared with the other treatments and with 

the estimates obtained with frequentist approach. It must be pointed out that those 

treatments were the ones with the lowest precision among all evaluated treatments. 

In spite of that behavior, there were no differences between approaches with regard 

the parameter estimates (P≥0.19, Table 3). Nonetheless, similarly to the simulated dataset, 

the average estimates of parameter I were numerically higher for the frequentist approach 

(Table 3). The relevance of this pattern will be discussed with more details in the next 

section. 
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Table 4 - Estimates of the parameters potentially degradable fraction (U, %), common rate of lag and degradation (c, h-1), undegradable 

fraction (I, %) obtained on actual data (two experiments and five treatments per experiment) using Bayesian or frequentist 

approaches 

Real 

data 
Bayesian  Frequentist 

 U c I U+I ASDR1  U c I U+I ASDR 

Exp. 

1 
           

T1 69.09±3.94 0.042±0.005 28.02±3.95 97.12 9.691  68.60±3.55 0.043±0.004 28.75±3.34 97.35 9.686 

T2 76.96±5.07 0.043±0.379 19.45±5.23 96.41 10.309  75.66±3.97 0.037±0.003 21.09±3.94 96.75 8.576 

T3 71.77±4.62 0.035±0.004 27.99±4.88 99.76 9.248  70.85±3.88 0.036±0.003 29.16±3.88 100.01 9.239 

T4 77.76±4.15 0.038±0.004 25.53±4.20 103.29 9.408  77.10±3.74 0.038±0.003 26.42±3.67 103.52 9.403 

T5 83.22±11.73 0.027±0.029 11.58±12.52 94.80 15.555  70.72±7.87 0.033±0.006 26.12±8.06 96.83 15.120 

Exp. 

2 
           

T1 58.19±2.84 0.060±0.006 35.37±2.53 93.57 8.394  58.14±2.69 0.060±0.005 35.54±2.17 93.69 8.392 

T2 61.50±2.60 0.063±0.005 32.34±2.04 93.85 7.297  61.51±2.32 0.063±0.005 32.46±1.83 93.97 7.295 

T3 64.72±2.84 0.072±0.007 30.65±2.12 95.38 8.346  64.73±2.61 0.072±0.058 30.76±1.95 95.49 8.345 

T4 60.52±2.87 0.070±0.007 33.52±2.32 94.05 8.890  60.51±2.79 0.070±0.006 33.65±2.10 94.16 8.889 

T5 61.38±2.36 0.060±0.005 30.51±2.00 91.90 7.138  61.35±2.29 0.060±0.004 30.63±1.85 91.98 7.137 
1 Asymptotic standard deviation of residual error (ASDR) for the adjusted model. 
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4 Discussion 

The essence of the Bayesian method is there is no logical distinction between model 

parameters and data (BEAUMONT and RANNALA, 2004). Both of them are random 

variables with a joint probability distribution that is specified by each evaluated model. The 

aim of the Bayesian inference is to calculate the posterior distribution of the parameters, the 

conditional distribution of parameters given a data, assisted by a prior distribution. 

Conversely, the frequentist approach is based on maximizing the probability of the data 

given the parameters (that is, maximizing the likelihood as a function of the parameter for 

a fixed dataset). 

In fact, both inferences aim to estimate the parameters with the least possible error. 

The Bayesian inference has a specific advantage comparing to frequentist inference that is 

to consider the prior information (SILVA et al., 2011; 2013). However, it is common in 

practice to utilize a default or objective prior distribution. Then, the Bayes theorem would 

not provide any guarantee as to performance (BAYARRI and BERGER, 2004). Another 

problem is the choice of an improper prior distribution. In this case, the Bayes theorem may 

generate an incorrect performance and, consequently, an improper posterior distribution. 

In terms of mathematic, the results coming from frequentist inference and Bayesian 

inference with non-informative priors would tend to be the same. Browne and Draper 

(2006) compared the Bayesian approach (without prior influence) and frequentist approach 

(likelihood-based) in different types of models and concluded that both methods lead to 

similar and unbiased estimates. Such a conclusion agrees, in general, with the results 

obtained for the scenarios A, C, and D, where both approaches seems to present similar 

robustness in front of an organized minimal sampling (Scenario A); an loss of an entire 

section of the curve, but preserving the other parts (Scenario C); and a dataset with increased 

random error (Scenario D). 

However, the choice of non-informative prior distribution can affect the inferences; 

noticeably in cases where the number of records/groups evaluated are small or when the 

variance of the records/group is close to zero (GELMAN, 2004; 2006). For instance, the 

uniform distribution is commonly considered an improper prior distribution for the variance 

parameter. The uniform distribution (0, A) (i.e. uniform distribution with values in the range 

0 and A) can produce a limited proper posterior distribution as A → ∞, as long as the number 

of records/groups. Thus, for a finite but sufficiently large A, the inferences are not sensitive 

to the choice of A (GELMAN, 2006). In order to evaluate both inferences as balanced as 

possible in this paper, it was used a “weakly informative prior” gamma distribution (U, I, c 

~Gam (10-3, 10-3) ) for the parameters. The choice of gamma distribution was based on the 

fact that only positive values belongs to this distribution and none parameter of the 

evaluated model can assume negative values (Equation 1). 

However, the constraint arisen from limit data availability along with using a non-

informative prior distribution seemed to affect the estimates for subset B4, leading to great 

bias of the estimates of incubation residue (Figure 2) and estimates of degradation rate 

without a biological coherence (Tables 1 and 2). It should be noted that a similar pattern 

was not observed for frequentist approach (Figure 3). When random losses are simulated, 

it is not possible to assure where the remained incubation points would be located regarding 

time. Therefore, it is possible to happen that points may be located very close to each other, 
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which could cause a lack of agreement between the real information and the prior 

distribution used here. Therefore, it may suggest that under a high level of random loss of 

incubations points, a more detailed study of the prior distribution (maybe coming from 

information from other studies or meta-analyses) must be done to assure reliability and 

accuracy of predicted values. It must be highlighted that utilization of Bayesian approach 

to rumen kinetics is not a routine in nutritional studies and knowledge on distribution of the 

related parameters is not available yet. 

 

 

Figure 2 - Descriptive relationship between actual (from subsets) and predicted according to Bayesian 

approach (from model adjustment) of the NDF residues as a function of time for scenario 
B. The solid lines represent the equality line. 
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Figure 3 - Descriptive relationship between actual (from subsets) and predicted according to 

frequentist approach (from model fitted) of the NDF residues as a function of time for 
scenario B. The solid lines represent the equality line. 

In spite of the previous discussion, one constraint was observed for Bayesian 

approach. The evaluation of simulated dataset showed a systematic underestimation of 

undegradable fraction of NDF (Tables 1, 2, and 3). The dimension of fractions U and I are 

inherent to the feed and cannot be influenced by dietary characteristics (DETMANN et al., 

2008). In other words, when a diet favors or disfavors the ruminal degradation of fiber, its 

effects would be perceived only on degradation rate. In spite of a non-significant difference 

between the approaches evaluated here, the evaluation of the real dataset showed 

numerically lower estimates of fraction I when the Bayesian approach was used (Tables 3 

and 4). The fraction I was evaluated in both experiments by Figueiras (2013) using a long-

term incubation procedure (288 hours) as recommended by Valente et al. (2011). This 

procedure is used based on the minimal time necessary to incubation residue becomes 

statistically similar to the residue theoretically obtained at infinite time. Figueiras (2013) 

found estimates for I fraction of 29.68 and 33.76% in Experiments 1 and 2, respectively. 

From this, it is noted that frequentist approach produced estimated closer to that values 

(26.31 and 32.61%) when compared to Bayesian approach (22.51 and 32.48%). Moreover, 

the high variation among treatments for the estimates of U and I fractions in Experiment 1 

(Table 4) indicates problems with regard Bayesian approach. The forage evaluated within 

each experiment was the same. Therefore, variations between treatments must be only 

minimal and random as the dimensions of the fractions are inherent to the feed itself and 

cannot vary according to different supplements. 
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Mertens (2005) highlighted that the final points of an incubation procedure should 

provide information that allow a good adjustment of the model regarding asymptote. In 

other words, at least the final incubation point should be located on a specific time in order 

to give reliable information of the dimension of undegradable fraction and allow a more 

accurate adjustment. The endpoint at 144 hours seemed a good procedure when the 

frequentist approach was used, but not when Bayesian approach was applied. It may be a 

reflex of the lack of a more reliable prior information, as discussed before. 

Conclusions 

The Bayesian approach and frequentist approach presented reliable estimates for the 

majority of the data tested. Therefore, in specific cases with short random records number, 

the Bayesian approach showed greater bias of the incubation residue estimates and 

estimates of degradation rate without a biological coherence, compared to frequentist 

inference. In another words, the Bayesian approach fitted with non-informative prior, 

presented less flexible than frequentist inference. Nevertheless, it is emphasized the 

importance of the background information before the modeling, especially in a Bayesian 

approach, in order to define proper prior distributions. Future thorough studies about the 

influence of non-informative prior correlated to parameters estimated are necessary. 
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 BONFÁ, H. C.; DETMANN, E.; SILVA, F. F.; FIGUEIRAS, J. F. Comparação da abordagem 

Bayesiana e Frequentista para ajuste de modelos não-lineares: uma aplicação ao modelo gama-

tempo-dependente para descrição degradação da fibra em detergente neutro. Rev. Bras. Biom., 

Lavras, v.36, n.3, p.625-648, 2018. 

 RESUMO: Objetivou-se avaliar e comparar a eficiência das inferências Bayesiana e Frequentista 

frente a descrição da degradação ruminal da fibra em detergente neutro utilizando um modelo do 

tipo gama-tempo-dependente. Um banco de dados simulado composto por quatro cenários foi 

utilizado: restrição regular do número de tempos de incubação, perda aleatória de tempos de 

incubação, perda de partes específicas das curvas de degradação, variação na precisão dos 

procedimentos de incubação. Os cenários foram divididos em quatro subconjuntos cada, os 

subconjuntos foram simulados dez vezes, permitindo uma ampla avaliação da capacidade de 

ajuste das diferentes abordagens frente os diferentes cenários. Dois bancos de dados reais foram 

utilizados para avaliar as abordagens, os dados reais foram compostos da degradação da NDF 

de uma gramínea tropical (Brachiaria decumbes). O modelo foi ajustado de acordo com as 

características de cada abordagem e comparados via gráficos e avaliadores. A abordagem 

bayesiana e a abordagem Frequentista apresentaram estimativas confiáveis para a maioria dos 

dados avaliados. Entretanto, a abordagem bayesiana apresentou um grande viés das estimativas 

do resíduo e das estimativas da taxa de degradação de incubação, não apresentando uma 

coerência biológica para os parâmetros, em comparação com a abordagem Frequentista. Ou seja, 

a abordagem Bayesiana ajustada com priores não informativas, apresentou-se menos flexível do 
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que a abordagem Frequentista. No entanto, ressalta-se a importância das informações a priori, 

especialmente para a abordagem bayesiana, a fim de definir priores apropriadas ao modelo. 

Estudos futuros mais aprofundados sobra a influência das priores não informativas sobre a 

estimativa de parâmetros são necessários. 

 PALAVRAS-CHAVE: Gama-tempo-dependente; inferência; degradação ruminal; método in situ. 
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Appendix 

 

Code for R Software. 

###         BAYESIANA AND FREQUENTISTA APPROACH:        ### 

###   APPLYING TO A GAMMA-TIME-DEPENDENT MODEL   ### 

 

# Determinining library 

Dir <- setwd("C:/Users/ ") 

 

# Simulation # 

  # Van Milgen et al., (1991) -> y = beta*(1 + lambda*time)*exp(-lambda*time) + sigma + error  

  # Values: Figueiras (2013) Thesis # 

 

for(i in 1:10)                                                  # Loop 1 

  { 

beta = 62.92 

sigma = 37.08 

lambda = 0.059 

time = seq(0, 144, 1) 

error = rnorm(mean=0, sd=1, n=length(time)) 

y = beta*(1 + lambda*time)*exp(-lambda*time) + sigma + error 

 

Y=as.data.frame(rbind(y,time)) 

Yt = as.data.frame(t(Y)) 

 

# Graphic # 

plot(Yt$y ~ Yt$time) 

 

# Building scenarios # 

# A = Regular restriction in the number of incubation times # 

  # A1 = 3-3 hours -> n=48 

  # A2 = 6-6 hours -> n=24 

  # A3 = 12-12 hours -> n=12 

  # A4 = 24-24 hours -> n=6 

 

A1 = Yt[seq(1,145,3),] 

A2 = Yt[seq(1,145,6),] 

A3 = Yt[seq(1,145,12),] 

A4 = Yt[seq(1,145,24),] 

 

par(mfrow=c(2,2),mar=c(4,4,1.6,0.5), pty="s") 

plot(A1$y ~ A1$time, xlim=range(0,144),ylim=range(35,100), col="blue", pch=20) 

plot(A2$y ~ A2$time, xlim=range(0,144),ylim=range(35,100), col="red", pch=20) 

plot(A3$y ~ A3$time, xlim=range(0,144),ylim=range(35,100), col="green", pch=20) 

plot(A4$y ~ A4$time, xlim=range(0,144),ylim=range(35,100), col="purple", pch=20) 

 

# B = Random loss of incubation times # 
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# B1 = 33% of total n -> n=48 

# B2 = 16% of total n -> n=24 

# B3 = 8% of total n -> n=12 

# B4 = 4% of total n -> n=6 

 

B1 = Yt[sample(1:145, 48,replace=F),] 

B2 = Yt[sample(1:145, 24,replace=F),] 

B3 = Yt[sample(1:145, 12,replace=F),] 

B4 = Yt[sample(1:145, 6,replace=F),] 

 

par(mfrow=c(2,2),mar=c(4,4,1.6,0.5), pty="s") 

plot(B1$y ~ B1$time, xlim=range(0,144),ylim=range(35,100), col="blue", pch=20) 

plot(B2$y ~ B2$time, xlim=range(0,144),ylim=range(35,100), col="red", pch=20) 

plot(B3$y ~ B3$time, xlim=range(0,144),ylim=range(35,100), col="green", pch=20) 

plot(B4$y ~ B4$time, xlim=range(0,144),ylim=range(35,100), col="purple", pch=20) 

 

# C = Loss of specific parts of the degradation curves # 

# C1 = 75% of total n; 2th,3th and 4th part -> n=108 

# C2 = 75% of total n; 1th,3th and 4th part -> n=108 

# C3 = 75% of total n; 1th,2th and 4th part -> n=108 

# C4 = 75% of total n; 1th,2th and 3th part -> n=108 

 

C1 = subset(Yt, time>=37) 

C2 = subset(Yt, 36>=time | time>=73) 

C3 = subset(Yt, 72>=time | time>=109) 

C4 = subset(Yt, 108>=time) 

 

par(mfrow=c(2,2),mar=c(4,4,1.6,0.5), pty="s") 

plot(C1$y ~ C1$time, xlim=range(0,144),ylim=range(35,100), col="blue", pch=20) 

plot(C2$y ~ C2$time, xlim=range(0,144),ylim=range(35,100), col="red", pch=20) 

plot(C3$y ~ C3$time, xlim=range(0,144),ylim=range(35,100), col="green", pch=20) 

plot(C4$y ~ C4$time, xlim=range(0,144),ylim=range(35,100), col="purple", pch=20) 

 

# D = Variation in the precision of the incubation procedures # 

# D1 = error: sd=2    -> n=144 

# D2 = error: sd=2.5  -> n=144 

# D3 = error: sd=3    -> n=144 

# D4 = error: sd=3.5  -> n=144 

   

error1 = rnorm(mean=0, sd=2, n=length(time)) 

error2 = rnorm(mean=0, sd=2.5, n=length(time)) 

error3 = rnorm(mean=0, sd=3, n=length(time)) 

error4 = rnorm(mean=0, sd=3.5, n=length(time)) 

 

D1 = as.data.frame(t(rbind(y=beta*(1 + lambda*time)*exp(-lambda*time) + sigma + error1,time))) 

D2 = as.data.frame(t(rbind(y=beta*(1 + lambda*time)*exp(-lambda*time) + sigma + error2,time))) 

D3 = as.data.frame(t(rbind(y=beta*(1 + lambda*time)*exp(-lambda*time) + sigma + error3,time))) 

D4 = as.data.frame(t(rbind(y=beta*(1 + lambda*time)*exp(-lambda*time) + sigma + error4,time))) 

 

par(mfrow=c(2,2),mar=c(4,4,1.6,0.5), pty="s") 

plot(D1$y ~ D1$time, xlim=range(0,144),ylim=range(35,100), col="blue", pch=20) 
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plot(D2$y ~ D2$time, xlim=range(0,144),ylim=range(35,100), col="red", pch=20) 

plot(D3$y ~ D3$time, xlim=range(0,144),ylim=range(35,100), col="green", pch=20) 

plot(D4$y ~ D4$time, xlim=range(0,144),ylim=range(35,100), col="purple", pch=20) 

 

# Merging Datas # 

library(plyr) 

Yc=join_all(list(Yt,A1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,D1,D2,D3,D4),by="time") 

colnames(Yc)[1:18]=c("Y","time","A1","A2","A3","A4","B1","B2","B3","B4","C1","C2","C3","C4","D1","

D2","D3","D4") 

 

# Plot with all scenarios # 

 

par(mfrow=c(4,4), mar = c(0,0,1.4,1),oma = c(3.6,3,0,0),  pty="s") 

# Scenario A # 

plot(A1$y ~ A1$time, xlim=range(0,144), xaxt='n', ylim=range(30,102), col="gray0", pch=20, ylab="", 

xlab="", main="                             (A1)") 

plot(A2$y ~ A2$time, xlim=range(0,144),yaxt='n', xaxt='n',ylim=range(30,102),  col="gray25", pch=20, 

ylab="", xlab="", main="                            (A2)") 

plot(A3$y ~ A3$time, xlim=range(0,144),yaxt='n', xaxt='n',ylim=range(30,102), col="gray50", pch=20, 

ylab="", xlab="", main="                            (A3)") 

plot(A4$y ~ A4$time, xlim=range(0,135),yaxt='n', xaxt='n',ylim=range(30,102), col="gray65", pch=20, 

ylab="", xlab="", main="                             (A4)") 

# Scenario B # 

plot(B1$y ~ B1$time, xlim=range(0,144),xaxt='n',ylim=range(30,102), col="gray0", pch=20, ylab="", xlab="", 

main="                             (B1)") 

plot(B2$y ~ B2$time, xlim=range(0,144),yaxt='n', xaxt='n',ylim=range(30,102), col="gray25", pch=20, 

ylab="", xlab="", main="                             (B2)") 

plot(B3$y ~ B3$time, xlim=range(0,144),yaxt='n', xaxt='n',ylim=range(30,102), col="gray50", pch=20, 

ylab="", xlab="", main="                            (B3)") 

plot(B4$y ~ B4$time, xlim=range(0,144),yaxt='n', xaxt='n',ylim=range(30,102), col="gray65", pch=20, 

ylab="", xlab="", main="                             (B4)") 

# Scenario C # 

plot(C1$y ~ C1$time, xlim=range(0,144),xaxt='n',ylim=range(30,102), col="gray0", pch=20, ylab="", xlab="", 

main="                             (C1)") 

plot(C2$y ~ C2$time, xlim=range(0,144),yaxt='n', xaxt='n',ylim=range(30,102), col="gray25", pch=20, 

ylab="", xlab="", main="                             (C2)") 

plot(C3$y ~ C3$time, xlim=range(0,144),yaxt='n', xaxt='n',ylim=range(30,102), col="gray50", pch=20, 

ylab="", xlab="", main="                             (C3)")  

plot(C4$y ~ C4$time, xlim=range(0,144),yaxt='n', xaxt='n',ylim=range(30,102), col="gray65", pch=20, 

ylab="", xlab="", main="                             (C4)") 

# Scenario D # 

plot(D1$y ~ D1$time, xlim=range(0,144),ylim=range(30,102), col="gray0", pch=20, ylab="", xlab="", main="                             

(D1)") 

mtext("                                                                                                                                     Time (hours)",side=1, 

line=2.5) 

mtext("                                                                                                                            Residue of NDF (%)",side=2, 

line=2.5) 

plot(D2$y ~ D2$time, xlim=range(0,144),yaxt='n',ylim=range(30,102), col="gray25", pch=20, ylab="", 

xlab="", main="                             (D2)") 

plot(D3$y ~ D3$time, xlim=range(0,144),yaxt='n',ylim=range(30,102), col="gray50", pch=20, ylab="", 

xlab="", main="                             (D3)") 



Rev. Bras. Biom., Lavras, v.36, n.3, p.625-648, 2018 - doi: 10.28951/rbb.v36i3.260 645 
 
 
 
 
 
 
 

 

plot(D4$y ~ D4$time, xlim=range(0,144),yaxt='n',ylim=range(30,102), col="gray65", pch=20, ylab="", 

xlab="", main="                             (D4)") 

 

 

############################# 

# Modeling - Bayesian Model # 

############################# 

 

# Library load # 

library(BRugs) 

 

# Start of the loop 

# Selecting Dataset/Subset 

for(data in c("A1","A2","A3","A4","B1","B2","B3","B4","C1","C2","C3","C4","D1","D2","D3","D4" ))     # 

Loop 2 

  { 

eval(parse(text=paste("dat=",data,sep=""))) 

 

# Van Milgen et al., (1991) Adapted -> y = beta*(1 + lambda*time)*exp(-lambda*time) + sigma + error 

 

# Building the dataset # 

dd <- list(y=dat$y, 

           x=dat$time, 

           N=nrow(dat)) 

                       

bugsData(dd , fileName = file.path(getwd(), "dataDeg.txt")) 

 

# Creating the inits # 

inits <- list( 

  list(tau=runif(1, 0, 5), lambda=runif(1, 0, 5), sigma=runif(1, 0, 5),  

              beta=runif(1, 0, 5)), 

   

  list(tau=runif(1, 0, 5), lambda=runif(1, 0, 5), sigma=runif(1, 0, 5),  

              beta=runif(1, 0, 5))) 

 

bugsInits(inits, numChains=2, fileName=c(file.path(getwd(), "Inits1.txt"),  

                                        file.path(getwd(), "Inits2.txt"))) 

 

# Building the Model # 

Degmodel <- function() 

{ 

  for(i in 1:N)                                                 # Loop 3 

    { 

    y[i] ~ dnorm(mu[i], tau) 

    mu[i] <- beta*(1+lambda*x[i])*exp(-lambda*x[i])+sigma 

  } 

  sigma   ~ dgamma(0.001, 0.001)    # non-informative gamma distribuction 

  lambda  ~ dgamma(0.001, 0.001)    # non-informative gamma distribuction 

  beta    ~ dgamma(0.001, 0.001)    # non-informative gamma distribuction 

  tau     ~ dgamma(0.001, 0.001)    # non-informative gamma distribuction 

  }                                                             # Loop 3 ends 
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writeModel(Degmodel, file.path(getwd(), "DegModel.txt")) 

 

# Bayesian using Open Bugs # 

modelCheck("DegModel.txt")                       # check model file 

modelData("dataDeg.txt")                         # read data file 

modelCompile(numChains=2)                        # compile model with 2 chains 

modelInits(c("Inits1.txt","Inits2.txt"))         # read init data file 

   

modelUpdate(200000)                               # burn in 

samplesSet(c("beta", "lambda", "sigma"))          # parameters monitored 

modelUpdate(300000, thin=100)                     # interations   

 

# Sumarized results 

# samplesStats("*")                                

eval(parse(text=paste("Stats_",data,"<- samplesStats('*')",sep=""))) 

 

# Export the iterations data's 

samplesCoda("beta",paste(Dir,"/beta/",sep=""))    

samplesCoda("lambda",paste(Dir,"/lambda/",sep="")) 

samplesCoda("sigma",paste(Dir,"/sigma/",sep="")) 

 

# Graphics # 

# samplesHistory("beta") 

# samplesHistory("lambda") 

# samplesHistory("sigma") 

# samplesHistory("*", mfrow = c(3,1)) 

 

# Library load # 

library(boa) 

 

# Building data's to Convergence Diagnostics 

beta1 <- read.table("beta/CODAchain1.txt", sep="")    

beta2 <- read.table("beta/CODAchain2.txt", sep="") 

lambda1 <- read.table("lambda/CODAchain1.txt", sep="") 

lambda2 <- read.table("lambda/CODAchain2.txt", sep="") 

sigma1 <- read.table("sigma/CODAchain1.txt", sep="") 

sigma2 <- read.table("sigma/CODAchain2.txt", sep="") 

 

coda <- as.matrix(data.frame(beta1[,2],beta2[,2],lambda1[,2],lambda2[,2],sigma1[,2],sigma2[,2]))    # Create a 

matrix data 

colnames(coda)[1:6] = paste(c("beta1","beta2","lambda1","lambda2","sigma1","sigma2"),data,sep="_")  # 

Rename the col's 

rownames(coda)=beta1[,1]                                                                            # Rename the row's 

 

# Convergence Diagnostics - Heildelberger and Welch (1992) (error=0.1, alpha=0.05) # 

eval(parse(text=paste("Diag_",data,"<- boa.handw(coda,0.1,0.05)",sep=""))) 

 

# Asymptotic standard deviation of the residual error (ASDR) # 

y_b = (samplesStats('*')[[1]][1])*(1 + (samplesStats('*')[[1]][2])*dat$time)*exp(-

(samplesStats('*')[[1]][2])*dat$time) + (samplesStats('*')[[1]][3]) 
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ASDR <- eval(parse(text=paste("ASDR_",data,"<- (sum((dat$y-y_b)^2)/(length(dat$y)))^0.5",sep=""))) 

 

# Bias (B) # 

V_1<-eval(parse(text=paste("V_beta_", data,  

    "<- (((samplesStats('*')[[1]][1])-beta)/(length(dat$y)))",sep="")))     # Bias beta 

V_2<-eval(parse(text=paste("V_lambda_", data,  

    "<- (((samplesStats('*')[[1]][2])-lambda)/(length(dat$y)))",sep="")))   # Bias lambda 

V_3<-eval(parse(text=paste("V_sigma_", data,  

    "<- (((samplesStats('*')[[1]][3])-sigma)/(length(dat$y)))",sep="")))    # Bias sigma 

 

# Assessors (As) # 

As <- data.frame(ASDR,V_1,V_2,V_3) 

colnames(As)[1:4]=c("ASDR","Bias_beta", "Bias_lambda", "Bias_sigma") 

 

eval(parse(text=paste("As_", data, " <- As",sep=""))) 

 

################################ 

# Modeling - Frequentist Model # 

################################ 

 

# Van Milgen et al., (1991) Adapted -> y = beta*(1 + lambda*time)*exp(-lambda*time) + sigma + error 

 

# Library load # 

library(lme4) 

 

# Renaming the parameters # 

beta_=beta 

lambda_=lambda 

sigma_=sigma 

t=dat$time 

 

# Building the model # 

start = c(beta_=beta, lambda_=lambda, sigma_=sigma) 

model = ~ beta_*(1 + lambda_*t)*exp(-lambda_*t) + sigma_ 

model_d = deriv(model, namevec=c("beta_", "lambda_", "sigma_"),  

                function.arg=c("input","beta_", "lambda_", "sigma_")) 

 

M_y = nls(y ~ model_d(time, beta_, lambda_, sigma_), data=dat, start=start) 

 

eval(parse(text=paste("Stats2_", data, "<- coef(summary(M_y))",sep=""))) 

 

# Asymptotic standard deviation of the residual error (ASDR) # 

ASDR2 <- eval(parse(text=paste("ASDR_",data,"<- (sum((dat-

predict(M_y))^2)/(length(dat$y)))^0.5",sep=""))) 

 

# Bias (B) # 

V2_1 <- eval(parse(text=paste("V2_beta_", data,  

                           "<- (((coef(summary(M_y))[[1]])-beta)/(length(dat$y)))",sep="")))      # Bias beta 

V2_2 <- eval(parse(text=paste("V2_lambda_", data,  

                           "<- (((coef(summary(M_y))[[2]])-lambda)/(length(dat$y)))",sep="")))    # Bias lambda 



648 Rev. Bras. Biom., Lavras, v.36, n.3, p.625-648, 2018 - doi: 10.28951/rbb.v36i3.260 

 

 

 

 
 

V2_3 <- eval(parse(text=paste("V2_sigma_", data,  

                           "<- (((coef(summary(M_y))[[3]])-sigma)/(length(dat$y)))",sep="")))     # Bias sigma 

 

# Assessors (As) # 

As2 <- data.frame(ASDR2,V2_1,V2_2,V2_3) 

colnames(As2)[1:4]=c("ASDR2","Bias2_beta", "Bias2_lambda", "Bias2_sigma") 

 

eval(parse(text=paste("As2_", data, " <- As2",sep=""))) 

}                                                                                       # Loop 2 ends 

 

# Compiling # 

Stats_f <- 

rbind(A1=Stats_A1,A2=Stats_A2,A3=Stats_A3,A4=Stats_A4,B1=Stats_B1,B2=Stats_B2,B3=Stats_B3,B4=

Stats_B4, 

        

C1=Stats_C1,C2=Stats_C2,C3=Stats_C3,C4=Stats_C4,D1=Stats_D1,D2=Stats_D2,D3=Stats_D3,D4=Stats_

D4) 

 

Stats2_f <- 

rbind(A1=Stats2_A1,A2=Stats2_A2,A3=Stats2_A3,A4=Stats2_A4,B1=Stats2_B1,B2=Stats2_B2,B3=Stats2_

B3,B4=Stats2_B4, 

                 

C1=Stats2_C1,C2=Stats2_C2,C3=Stats2_C3,C4=Stats2_C4,D1=Stats2_D1,D2=Stats2_D2,D3=Stats2_D3,D

4=Stats2_D4) 

 

As_f <- rbind(A1=As_A1,A2=As_A2,A3=As_A3,A4=As_A4,B1=As_B1,B2=As_B2,B3=As_B3,B4=As_B4, 

       C1=As_C1,C2=As_C2,C3=As_C3,C4=As_C4,D1=As_D1,D2=As_D2,D3=As_D3,D4=As_D4) 

 

As2_f <- 

rbind(A1=As2_A1,A2=As2_A2,A3=As2_A3,A4=As2_A4,B1=As2_B1,B2=As2_B2,B3=As2_B3,B4=As2_

B4, 

              

C1=As2_C1,C2=As2_C2,C3=As2_C3,C4=As2_C4,D1=As2_D1,D2=As2_D2,D3=As2_D3,D4=As2_D4) 

 

# Exporting Results (".csv" format) # 

write.csv(Stats_f[i],"Stats_f.csv") 

write.csv(Stats2_f[i],"Stats2_f.csv") 

write.csv(As_f[i],"As_f.csv") 

write.csv(As2_f[i],"As2_f.csv") 

 

eval(parse(text=paste("Stats_f_", i , " <- Stats_f",sep=""))) 

eval(parse(text=paste("Stats2_f_", i , " <- Stats2_f",sep=""))) 

eval(parse(text=paste("As_f_", i , " <- As_f",sep=""))) 

eval(parse(text=paste("As2_f_", i , " <- As2_f",sep=""))) 

}                                                                                       # Loop 1 ends 

 


