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ABSTRACT: The methods to generate a discrete analogue of a continuous distribution

has been widely considered in recent decades. In general, the discretization procedure

comprises in transform continuous attributes into discrete attributes generating new

probability distributions that could be an alternative to the traditional discrete models,

such as Poisson and Binomial models, commonly used in analysis of count data. It also

avoids the use of continuous in the analysis of strictly discrete data. In this paper, using

the discretization method based on the survival function, it is introduced a discrete

analogue of power Lindley distribution. Some mathematical properties are studied.

The maximum likelihood theory is considered for estimation and asymptotic inference

concerns. A simulation study is also carried out in order to evaluate some properties of

the maximum likelihood estimators of the proposed model. The usefulness and accurate

of the proposed model are evaluated using real datasets provided by the literature.

KEYWORDS: Discretization; power Lindley distribution; Monte Carlo simulation;

maximum likelihood estimators.

1 Introduction

The methods to generate a discrete analogue of a continuous distribution has
been widely considered and studied in recent decades by several authors such as
Good (1953), Nakagawa and Osaki (1975), Roy and Ghosh (2009) and Ghosh et
al. (2013). In general, according to Boulle (2004), the discretization procedure
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comprises in transform continuous attributes into discrete attributes generating
new probability distributions with a defined support in Z. Basically, this process
produces probability functions that could be an alternative to the traditional
distributions used in count data analyze such as Poisson and Negative Binomial
distributions, for example.

In the literature, there are several methods to obtain a discrete distribution
from a continuous distribution: the discretization method based on the survival
function (NAKAGAWA and OSAKI, 1975), the discretization method based on
an infinite series (GOOD, 1953; KULASEKERA and TONKYN, 1992; KEMP,
1997; SATO et al., 1999), the discretization method based on the hazard function
(STEIN, 1984), the compound two-phase method (CHAKRABORTY, 2015), the
discretization method based on reverse hazard function (GHOSH et al., 2013),
among many others.

The method of discretization by survival function was proposed by Nakagawa
and Osaki (1975). This method allow us to discretize a continuous random variable
from its survival function. Several properties of the survival and of the risk functions
were studied by Bracquemond and Gaudoin (2003), Roy (2003), Kemp (2004),
Chakraborty (2015), among many others. According to Kemp (2004), we can define
an discrete analogue to continuous random variable as follows:

Definition 1.1.: Let X a continuous random variable. If X has survival function
SX(x), then the discrete random variable Y = bXc, where bXc indicates the
smallest integer part or equal to X, has PMF (probability mass function) written
as:

P (Y = k) =

1∑
j=0

(−1)jSX(k + j). (1)

Some distributions discretized by this method introduced in the literature are:
inverse Rayleigh distribution (HUSSAIN AND AHMAD, 2014), Lindley distribution
(GÓMEZ-DÉNIZ and CALDERÍN-OJEDA, 2011; BAKOUCH et al., 2014) ,
Type II generalized exponential distribution (NEKOUKHOU et al., 2013), gamma
distribution (CHAKRABORTY and CHAKRAVARTY, 2012), inverse Weibull
distribution (JAZI et al., 2010), Burr XII and Pareto distributions (KRISHNA
and PUNDIR, 2009), Rayleigh distribution (ROY, 2004), among many others.

The main goal of this paper is to use Nakagawa and Osaki’s discretization
method to propose a discrete analogue for power Lindley distribution (GHITANY
et al., 2013). It is expect the proposed model to be suitable alternatives to model
with good performance and accurate count and failure times datasets since not many
of the known distributions (especially discrete distributions) can provide accurate
models for both count and failure times data.

In the literature, the Lindley distribution was introduced by Lindley (1958)
in the Bayesian context, and subsequently studies in details by Ghitany et al.
(2008). For many years, it has been used in compound process allied with Poisson
distribution (SANKARAN, 1970). A continuous random variable X is said to have
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Lindley distribution if its probability density function (pdf) can be written as

f(x | β) =
β2

1 + β
(1 + x)e−βx, (2)

where x > 0 and β > 0 is the scale parameter. The expression (2) can also be
written as a mixture of two distributions which components are the exponential
distribution, f1(x | β) = βe−βx, and the gamma distribution, f2(x | β) = xβ2e−βx.
The probabilities of each component are, respectively, β

1+β and 1
1+β .

A comprehensive discussion about the mathematical properties of the Lindley
distribution such as moments, hazard function, stochastic orderings, parameter
estimation, among others is also presented on the mentioned paper. The
corresponding survival function is given by

S(x | β) =

(
1 +

βx

1 + β

)
e−βx, (3)

In last years, several generalizations of Lindley distributions were proposed in
the literature, such as the power Lindley distribution introduced by Ghitany et.
al. (2013), the weighted Lindley distribbution proposed by Ghitany et. al. (2011),
the quasi-Lindley distribution introduced by Shanker (2013), the inverse Lindley
distribution proposed by Sharma (2015), the transmuted Lindley distribution
proposed by Merovci (2013), the inverse power Lindley proposed by Parede et al.
(2016) and so on.

Let a random variable Y follows one-parameter Lindley distribution then X =
Y

1
α , follows a power Lindley distribution with probability density function:

f(x | α, β) =
αβ2

1 + β
(1 + xα)xα−1e−βx

α

(4)

where x > 0 and α, β > 0 are, respectively, the shape and scale parameters. The
pdf in (4) has decreasing, unimodal, and decreasing-increasing-decreasing behavior.
Also, note that, the Lindley distribution is a particular case of power Lindley
distribution when α = 1. Besides that, it is easy to verify that (4) may be
acquired by the mixture of a Weibull distribution with shape α and scale β and the
generalized gamma distribution with shape 2 and α and scale β. The corresponding
survival function is given by

S(x | α, β) =

(
1 +

βxα

1 + β

)
e−βx

α

, (5)

The contents of this paper are organized as follows: in Section 2 is presented the
discrete power Lindley distribution and its mathematical properties. The estimation
procedures using the method of maximum likelihood is introduced in Section 3. In
Section 4 it is presented the results of a Monte Carlo simulation study to evaluate
the bias and the mean squared errors of the maximum likelihood estimators. In
Section 5, applications of the proposed model to real datasets are considered to
illustrate its usefulness. Finally, the Section 6 close the paper with some concluding
remarks.
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2 The discrete power Lindley distribution

Assuming the power Lindley distribution as baseline distribution with the
survival function given by (5) and using the discretization method based on
the survival function, the discrete power Lindley distribution, hereafter DPL
distribution, has probability function written as:

P (X = x | α, β) =

(
1 +

βxα

β + 1

)
γx

α

−
(

1 +
β(x+ 1)α

β + 1

)
γ(x+1)α (6)

where x = 0, 1, . . ., α, β > 0 and γ = exp(−β). The DPL distribution satisfies
the log-concavity inequation (KEILSON and GERBER, 1971) and, therefore, is
unimodal for all α, β > 0. In Figure 1, for some values of α and β, it is illustrated
the behavior of probability mass function of DPL distribution.

Theorem 2.1. The probability mass function of DPL distribution is unimodal.

Proof. Let a discrete random variable X such that X ∼ DPL(α, β). Notice that:

[P (X = x | α, β)]2 = γ2x
α

[
1 +

2βxα

β + 1
+

β2x2α

(β + 1)2

]
− 2γx

α+(x+1)α
[
1 +

β(xα + (x+ 1)α)

β + 1
+
β2xα(x+ 1)α

(β + 1)2

]
+ γ2(x+1)α

[
1 +

2β(x+ 1)α

β + 1
+
β2(x+ 1)2α

(β + 1)2

]
≥ γ(x−1)

α+(x+1)α
[
1 +

β[(x− 1)α + (x+ 1)α]

β + 1
+
β2(x− 1)α(x+ 1)α

(β + 1)2

]
− γx

α+(x+1)α
[
1 +

β[xα + (x+ 1)α]

β + 1
+
β2xα(x+ 1)α

(β + 1)2

]
− γ(x−1)

α+(x+2)α
[
1 +

β[(x− 1)α + (x+ 2)α]

β + 1
+
β2(x− 1)α(x+ 2)α

(β + 1)2

]
+ γx

α+(x+2)α
[
1 +

β[xα + (x+ 2)α]

β + 1
+
β2xα(x+ 2)α

(β + 1)2

]
.

The right side of inequality above is the same as P (X = x − 1 | α, β)P (X =
x+ 1 | α, β). Therefore:

[P (X = x | α, β)]2 ≥ P (X = x− 1 | α, β)P (X = x+ 1 | α, β).

In this way, the probability mass function of DPL distribution satisfies the
log-concavity inequation and the result follows from Theorem 3 from Keilson and
Gerber (1971).
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Figure 1 - Behavior of the probability function of the discrete power Lindley
distribution considering different values for α and β (upper-left panel:
α = 1.2, β = 0.1, upper-right panel: α = 1.1, β = 0.2, lower-left panel:
α = 0.8, β = 0.3 and lower-right panel: α = 0.6, β = 0.3).

The cumulative distribution function and survival function of DPL distribution
are given, respectively, as,

F (x | α, β) = 1−
(

1 +
βxα

β + 1

)
γx

α

, (7)

and,

S(x | α, β) =

(
1 +

βxα

β + 1

)
γx

α

(8)

where x = 0, 1, 2, . . ., α, β > 0 and γ = exp(−β). Notice that the survival function
is the same for the continuous power Lindley and DPL in integer points of x.
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2.1 Hazard function

From the equations (6) and (8), it is obtained the hazard rate function which
the behavior is illustrated in Figure 2 as follows,

h(x | α, β) = 1−
[

1 + β + β(x+ 1)α

1 + β + βxα

]
γ(x+1)α−xα (9)

where x = 0, 1, 2, . . ., α, β > 0 and γ = exp(−β). Note that, for x→ 0 and x→∞,
the hazard hate function became into,

h(0 | α, β) = 1− 1 + 2β

1 + β
γ h(∞ | α, β) =

 0, if α < 1
1− γ, if α = 1

1, if α > 1.
(10)
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Figure 2 - Behavior of the hazard function of the discrete power Lindley distribution
considering different values for α and β (upper-left panel: α = 0.7, β =
0.5, upper-right panel: α = 1.2, β = 0.1, lower-left panel: α = 1.1, β =
0.2 and lower-right panel: α = 0.6, β = 0.3).
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2.2 Quantile

For all α, β > 0, the quantile function, as in the continuous case, can be written
in terms of the Lambert W function:

Q(p | α, β) =

⌊[
−1− 1

β
− 1

β
W−1(−(1 + β)e(−1−β)(1− p))

] 1
α

⌋
, 0 < p < 1 (11)

where W−1 is the lower branch of the Lambert W function and b·c denotes the

floor of Q(p | α, β). From (11) and taking p =
1

4
,
1

2
and

3

4
, the 25%, 50% and 75%

percentiles are written as,

Q

(
1

4
| α, β

)
=

⌊[
−1− 1

β
− 1

β
W−1

(
−3

4
(1 + β)e(−1−β)

)] 1
α

⌋
,

Q

(
1

2
| α, β

)
=

⌊[
−1− 1

β
− 1

β
W−1

(
−1

2
(1 + β)e(−1−β)

)] 1
α

⌋
,

Q

(
3

4
| α, β

)
=

⌊[
−1− 1

β
− 1

β
W−1

(
−1

4
(1 + β)e(−1−β)

)] 1
α

⌋
.

2.3 Moments

Let X be a discrete random variable following a DPL distribution. The kth-
order moment of X could be expressed in an infinite sum as:

E[Xk] =

∞∑
x=0

xkγx
α

−
∞∑
x=0

∞∑
j=0

xk
[−β(x+ 1)α]j

j!

+
β

β + 1

 ∞∑
x=0

xk+αγx
α

−
∞∑
x=0

∞∑
j=0

xk(x+ 1)α
[−β(x+ 1)α]j

j!

 . (12)

Notice that the kth-order moment of X does not have a closed form. However, it
could be approximated using numerical methods. If k

α ∈ N then E[Xk] reduces to:

E[Xk] = K

(
k

α
,

1

γ

)
−
∞∑
x=0

∞∑
j=0

xk
[−β(x+ 1)α]j

j!

+
β

β + 1

K ( k
α

+ 1,
1

γ

)
−
∞∑
x=0

∞∑
j=0

xk(x+ 1)α
[−β(x+ 1)α]j

j!

 (13)

where, from Zwillinger (2014), K is written as,

K(a, b) =
1

(b− 1)a+1

a∑
i=1

 1

ba−i

i∑
j=0

(−1)j(a+ 1)!(i− j)a

j!(a+ 1− j)!

 a = 1, 2, . . . , b 6= 1.

Rev. Bras. Biom., Lavras, v.36, n.3, p.649-667, 2018 - doi: 10.28951/rbb.v36i3.270 655



and the second and fourth terms are exponential series which is convergent for
α, β > 0. From (12) the expressions E[X] and Var[X] are, respectively,

E[X] =

∞∑
x=0

xγx
α

−
∞∑
x=0

∞∑
j=0

x
[−β(x+ 1)α]j

j!

+
β

β + 1

 ∞∑
x=0

x1+αγx
α

−
∞∑
x=0

∞∑
j=0

x(x+ 1)α
[−β(x+ 1)α]j

j!

 (14)

and,

Var[X] =

∞∑
x=0

x2γx
α

−
∞∑
x=0

∞∑
j=0

x2
[−β(x+ 1)α]j

j!

+
β

β + 1

 ∞∑
x=0

x2+αγx
α

−
∞∑
x=0

∞∑
j=0

x2(x+ 1)α
[−β(x+ 1)α]j

j!


−

{ ∞∑
x=0

xγx
α

−
∞∑
x=0

∞∑
j=0

x
[−β(x+ 1)α]j

j!

+
β

β + 1

 ∞∑
x=0

x1+αγx
α

−
∞∑
x=0

∞∑
j=0

x(x+ 1)α
[−β(x+ 1)α]j

j!

}2

. (15)

The dispersion index of DPL distribution, DI[X] = Var[X]/E[X], is presented
in Table 1. From the results, it is concluded that the DPL distribution could be used
for underdispersion when α, β > 1 or overdispersion when α, β ≤ 1 data modeling.
In Figure 3, it is also illustrated the behavior of the expected value and the variance
of DPL distribution for some values of α and β = 3.

Table 1 - Expected value, variance and DI of DPL distribution

(α, β) values E[X] Var[X] DI[X]

(0.5, 0.5) 18.202 1056.241 58.027
(1.0, 0.5) 2.847 7.544 2.649
(0.5, 1.0) 3.602 55.284 15.348
(1.0, 1.0) 1.042 1.705 1.636
(1.5, 1.5) 0.397 0.324 0.815
(2.0, 1.5) 0.365 0.249 0.681

2.4 Order statistics

Considering X1, . . . , Xn a random sample of the DPL distribution with
parameters α and β and X1:n, . . . , Xn:n the sample order statistics, the probability
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Figure 3 - Behavior of the expected value and the variance the discrete power
Lindley distribution considering different values for α and β = 3 (left
panel: Expected value; right panel: Variance).

function and the cumulative function of the ith-order statistics Xi:n are described,
respectively, by the equations:

P (Xi:n = x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i
j

)
(−1)j

(i+ j)(1 + β)i+j

× {[(1 + β)− (1 + β + βxα)γx
α

]i+j

− [(1 + β)− (1 + β + β(x− 1)α)γ(x−1)
α

]i+j}

and,

P (Xi:n < x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i
j

)
(−1)j [(1 + β)− (1 + β + βxα)γx

α

]i+j

(i+ j)(1 + β)i+j
.

Moreover, the correspondent kth-order moment of the ith-order statistics is
expressed as:

E[Xk
i:n] =

n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i
j

)
(−1)j

(i+ j)(1 + β)i+j

×{
i+j∑
m=0

(
i+ j

m

)
(1 + β)i+j−m(−1)m

m∑
l=0

(
m

l

)
(1 + β)m−lβl

∞∑
x=0

x(k/α)+lγmx
α

−
i+j∑
m=0

(
i+ j

m

)
(1 + β)i+j−m(−1)m

m∑
l=0

(
m

l

)
(1 + β)m−lβl

∞∑
x=0

xk(x− 1)lγm(x−1)α}.
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3 Maximum likelihood estimation

In this section, we will derive the maximum likelihood function for the model
presented in the previous section. Through the frequentist approach, the likelihood
function can used to obtain point estimates for the parameters α and β of the
proposed model. Moreover, suitable estimates for the confidence intervals can be
obtained using large sample approximations, that are based on the asymptotic
properties of the maximum likelihood estimators.

3.1 Inference under DPL distribution

Considering x1, . . . , xn a random sample of the DPL distribution, with
parameters α and β, and probability function given by (6) we have the likelihood
function written as:

L(α, β | x) =

n∏
i=1

[(
1 +

βxαi
β + 1

)
γx

α
i −

(
1 +

β(xi + 1)α

β + 1

)
γ(xi+1)α

]
. (16)

From (16), the log-likelihood can be written as:

`(α, β | x) = −n ln(β+1)+

n∑
i=1

ln
[
(1 + β + βxαi )γx

α
i − (1 + β + β(xi + 1)α)γ(xi+1)α

]
(17)

which is maximized solving numerically, in α and β, the non-linear system of the
equations,

Un =



∂`

∂α
=

n∑
i=1

β
[
(1 + β + β (xi + 1)) γ(xi+1)α (xi + 1)

α
ln (xi + 1)

]
(β xi + β + 1) γxiα − (1 + β + β (xi + 1)) γ(xi+1)α

−
β
[
(β xi + β + 1) γxi

α

xi
α ln (xi)

]
(β xi + β + 1) γxiα − (1 + β + β (xi + 1)) γ(xi+1)α

∂`

∂β
= − n

β + 1
+

n∑
i=1

(xi + 1) γx
α − (xi + 2) γ(xi+1)α

(β xi + β + 1) γxiα − (1 + β + β (xi + 1)) γ(xi+1)α

(18)
There is no closed form for the MLE of α and β, see (18). However, using

(17) one can estimate α and β using standard numeric optimization algorithms such
the Newton-Raphson or Nelder-Mead methods. By the usual maximum likelihood
theory, an asymptotic approximation for the variance of α̂ and β̂ can be obtained
from U−1n , which evaluated at α̂ and β̂ provides a consistent estimator for such a
measure.

In order to obtain interval estimates, we can use large sample approximations
for the 100×(1− η) % two sided confidence interval (CI), i.e. α̂±zη/2 ŝe (α̂) and β̂±
zη/2 ŝe

(
β̂
)

, where zη is the upper ηth percentile of the standard Normal distribution

and the standard error (SE) is estimated as the squared root of the variance of α̂

and β̂.

658 Rev. Bras. Biom., Lavras, v.36, n.3, p.649-667, 2018 - doi: 10.28951/rbb.v36i3.270



4 Simulation study

In this section we estimated, by Monte Carlo simulation, the biases and the
mean squared errors for the maximum likelihood estimators for α̂ and β̂. We
adopted α× β = (0.5, 1.0, 1.5)× (0.5, 1.0, 1.5) and sample sizes n = 20, 40, . . . , 200.
For each scenario, we had calculated:

BIAS(θ̂) =
1

B

B∑
i=1

(θ̂i − θi) and MSE(θ̂) =
1

B

B∑
i=1

(θ̂i − θi)2

where θ = (α, β) and B = 10.000 replications. The inverse-transform method
for discrete distributions was implemented to generate the pseudo-random samples.
The simulation process was performed using R software.

Tables 2 and 3 show the simulation results. In every scenario, the bias of α̂
is positive and tends to zero when the sample size increases. The bias of β̂, even
when oscillating between positive and negative, tends to zero when the sample size
increases in every scenario. The mean squared error of α̂ and β̂ tends to zero in
every scenario. In Figure 4 it is also illustrated the behavior of estimated the biases
and estimated mean-squared-errors of maximum likelihood estimators of the DPL
distribution.

Table 2 - Estimated bias and mean squared error for α̂

β = 0.5 β = 1.0 β = 1.5
n α α α

0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5

BIAS

20 0.0331 0.0668 0.1052 0.0442 0.0942 0.2262 0.0921 0.3254 0.9583
40 0.0171 0.0294 0.0518 0.0208 0.0407 0.0755 0.0330 0.0911 0.4669
60 0.0124 0.0188 0.0329 0.0137 0.0271 0.0459 0.0208 0.0501 0.2303
80 0.0101 0.0139 0.0249 0.0098 0.0202 0.0348 0.0153 0.0367 0.1286
100 0.0089 0.0108 0.0198 0.0077 0.0166 0.0286 0.0124 0.0287 0.0806
120 0.0080 0.0094 0.0161 0.0069 0.0136 0.0235 0.0101 0.0241 0.0550
140 0.0077 0.0077 0.0137 0.0058 0.0121 0.0192 0.0085 0.0212 0.0415
160 0.0071 0.0069 0.0121 0.0050 0.0111 0.0164 0.0073 0.0186 0.0337
180 0.0067 0.0063 0.0109 0.0045 0.0099 0.0141 0.0063 0.0166 0.0292
200 0.0065 0.0054 0.0101 0.0037 0.0093 0.0127 0.0059 0.0149 0.0264

MSE

20 0.0099 0.0420 0.1036 0.0179 0.0838 0.4539 0.0960 0.7393 2.3946
40 0.0041 0.0168 0.0423 0.0069 0.0283 0.0869 0.0137 0.1179 1.1408
60 0.0026 0.0105 0.0259 0.0043 0.0178 0.0460 0.0079 0.0371 0.5220
80 0.0019 0.0077 0.0189 0.0030 0.0129 0.0321 0.0055 0.0250 0.2602
100 0.0015 0.0061 0.0148 0.0024 0.0102 0.0253 0.0042 0.0189 0.1394
120 0.0012 0.0050 0.0123 0.0019 0.0083 0.0202 0.0034 0.0154 0.0798
140 0.0010 0.0043 0.0104 0.0017 0.0071 0.0168 0.0029 0.0130 0.0538
160 0.0009 0.0037 0.0090 0.0014 0.0061 0.0145 0.0025 0.0110 0.0401
180 0.0008 0.0033 0.0080 0.0013 0.0055 0.0128 0.0022 0.0096 0.0330
200 0.0007 0.0029 0.0072 0.0011 0.0049 0.0114 0.0020 0.0085 0.0263
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Table 3 - Estimated bias and mean squared error for β̂

β = 0.5 β = 1.0 β = 1.5
n α α α

0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5

BIAS

20 -0.0079 -0.0092 -0.0104 0.0036 0.0019 0.0080 0.0293 0.0414 0.0468
40 -0.0046 -0.0034 -0.0058 0.0003 0.0014 0.0023 0.0093 0.0155 0.0211
60 -0.0040 -0.0023 -0.0036 -0.0003 0.0010 0.0023 0.0042 0.0084 0.0136
80 -0.0034 -0.0016 -0.0027 -0.0002 0.0000 0.0012 0.0037 0.0068 0.0106
100 -0.0034 -0.0013 -0.0019 -0.0002 -0.0008 0.0003 0.0033 0.0048 0.0082
120 -0.0032 -0.0015 -0.0015 -0.0007 -0.0005 0.0008 0.0038 0.0037 0.0066
140 -0.0035 -0.0010 -0.0013 -0.0004 -0.0007 0.0013 0.0036 0.0035 0.0064
160 -0.0031 -0.0009 -0.0014 -0.0004 -0.0008 0.0011 0.0032 0.0024 0.0059
180 -0.0031 -0.0010 -0.0012 -0.0004 -0.0007 0.0014 0.0029 0.0019 0.0053
200 -0.0032 -0.0006 -0.0012 0.0003 -0.0007 0.0012 0.0022 0.0013 0.0046

MSE

20 0.0204 0.0209 0.0222 0.0594 0.0613 0.0638 0.5149 0.1676 0.1365
40 0.0100 0.0101 0.0107 0.0285 0.0286 0.0292 0.0589 0.0597 0.0600
60 0.0067 0.0066 0.0070 0.0186 0.0186 0.0192 0.0376 0.0385 0.0391
80 0.0050 0.0050 0.0053 0.0137 0.0140 0.0145 0.0278 0.0284 0.0292
100 0.0040 0.0041 0.0042 0.0109 0.0112 0.0114 0.0225 0.0222 0.0230
120 0.0033 0.0034 0.0036 0.0090 0.0093 0.0094 0.0186 0.0185 0.0191
140 0.0029 0.0029 0.0031 0.0077 0.0079 0.0080 0.0159 0.0161 0.0164
160 0.0025 0.0026 0.0027 0.0068 0.0069 0.0070 0.0140 0.0141 0.0144
180 0.0022 0.0023 0.0024 0.0060 0.0061 0.0062 0.0123 0.0126 0.0127
200 0.0020 0.0020 0.0021 0.0054 0.0056 0.0056 0.0110 0.0114 0.0114

5 Applications

In this section, the DPL distribution is considered as an attempt to adequately
model two datasets from different areas. The goodness-of-fit of the proposed model
is compared with those accessed by the Poisson (P), the discrete Lindley (DL) and
the discrete Burr XII (BURR) distributions in the application one; and the discrete
half-normal (DHN), Poisson (P) and the discrete Lindley (DL) in the application
two. Both applications was done in R software (R CORE TEAM, 2016).

As first application, let us consider the related data to the number of industrial
accidents of 647 women that worked in reservoirs with explosion hazard, in a
period of five weeks (see Greenwood and Wood, 1919). The mean and variance
are, respectively, x = 0.46 accidents and s2 = 0.69 accidents2, which evidences
over-dispersion. The fit of DPL distribution was compared to the fit of discrete
Burr XII distribution, P (X = x | β, α) = βlog(1+xα) − βlog(1+(1+x)α) , discrete
Lindley, P (X = x | β) = e−βx(1 + β)−1[β(1 − e−β) + (1 − e−β)(1 + βx)], and

Poisson, P (X = x | β) = e−ββx

x! .
In Table 4, we present the frequency distribution of each sample. The expected

frequencies was obtained using the estimated probabilities considering the MLEs of
the parameters. Frequencies in bold relate to those one closer to the observed
ones. The results show that the DPL distribution provide good fit to the number
of industrial accidents data set.
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Figure 4 - Behavior of estimated the biases and estimated mean-squared-errors
of maximum likelihood estimators of the DPL distribution (upper-left
panel: Estimated BIAS of α̂ × n, upper-right panel: Estimated MSE of
α̂ × n, lower-left panel: Estimated BIAS of β̂ × n and lower-right panel:
Estimated MSE of β̂ × n).

The MLEs, the SEs, and the goodness-of-fit measures are presented in Table 5.
The model selection was performed using the Akaike information criterion and the
Bayesian information criterion (BIC). Notice that the smaller AIC’s are provided
by the DPL distribution. The goodness-of-fit was evaluated by the χ2 statistic. In
this case, the chi-square value with 3 d.f. for the DPL distribution is χ2 = 3.77,
with corresponding p-value equals to 0.286, highlighting the adherence of the DPL
distribution. For the other models, the adherence hypothesis was rejected.
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Table 4 - Observed and expected number of accidents considering the DPL, BURR,
DL and P distributions

No of accidents Observed Expected Frequency
Frequency DPL BURR DL P

0 447 445.63 446.72 430.05 406.31
1 132 135.03 141.37 154.65 189.02
2 42 44.25 35.30 45.75 43.96
3 21 14.65 11.96 12.34 6.81

4+ 5 7.42 11.63 4.17 0.86

Table 5 - Parameter estimates and goodness-of-fit measures

Model MLE S.E. − logL χ2 p-value D.F. AIC BIC

P β̂ = 0.47 0.03 617.18 103.13 0.001 4 1236.37 1240.84

DL θ̂ = 1.57 0.05 595.28 11.29 0.023 4 1192.57 1197.04

BURR θ̂ = 0.18 0.01 597.95 12.74 0.005 3 1199.91 1208.86
α̂ = 1.64 0.12

DPL α̂ = 0.88 0.05 592.26 3.77 0.286 3 1188.53 1197.47

β̂ = 1.65 0.06

As second application, it is considered the data related to the number of red
European mites over the apple tree’s leaves (see, Bliss and Fisher (1953); Consul and
Jain (1973)). The mean and variance are, respectively, x = 1.14 mites and s2 = 2.25
mites2. As alternatives of DPL distribution we considered the discrete Lindley
distribution, the Poisson distribution and the discrete half-normal distribution with
pmf given by P (X = x | σ) = 2[Φσ(x+ 1)−Φσ(x)](GÓMEZ-DÉNIZ et. al., 2014).

In Table 6, we present the frequency distribution of each sample. The expected
frequencies was obtained using the estimated probabilities considering the MLEs of
the parameters. Frequencies in bold relate to those one closer to the observed ones.
The results show that the DPL distribution provide a good fit to the number of red
European mites over the apple tree’s leaves data set.

The MLEs, the SEs, and the goodness-of-fit measures are presented in Table 7.
The model selection was performed using the Akaike information criterion and the
Bayesian information criterion (BIC). Notice that the smaller AIC’s are provided
by the DPL distribution. The goodness-of-fit was evaluated by the χ2 statistic. In
this case, the chi-square value with 3 d.f. for the DPL distribution is χ2 = 2.53,
with corresponding p-value equals to 0.469, highlighting the adherence of the DPL
distribution. Except for DL and DPL models, the adherence hypothesis was rejected
for the other models.
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Table 6 - Observed and expected number of red European mites considering the
DPL, DL, DHN and P distributions

No of mites Observed Expected Frequency
Frequency DPL DL DHN P

0 70 69.34 63.13 52.35 47.65
1 38 37.48 41.93 42.81 54.64
2 17 20.32 23.10 28.63 31.33
3 10 10.81 11.64 15.66 11.97
4 9 5.71 5.56 7.00 3.43

5+ 6 6.33 4.64 3.56 0.97

Table 7 - Parameter estimates and goodness-of-fit measures

Model MLE S.E. − logL χ2 p-value D.F. AIC BIC
DHN σ̂ = 2.12 0.13 229.12 15.52 0.003 4 460.26 463.27

P λ̂ = 1.15 0.09 242.81 57.67 < 0.001 4 487.62 490.63

DL θ̂ = 0.94 0.05 223.63 5.47 0.241 4 449.26 452.27
DPL α̂ = 0.88 0.07 222.44 2.53 0.469 3 448.89 454.91

β̂ = 1.03 0.08

6 Conclusion

In this paper, the discrete power Lindley distribution was introduced as
alternative to model count data. To derive the proposed model, it is considered
the discretization method based on the survival function. Some mathematical
properties as the pmf behavior, hazard function, k− th moment and order statistics
were discussed. Moreover, it was performed a Monte Carlo simulation study
where the bias and the mean squared errors were computed and indicated that
the parameters are asymptotically non-biased and consistent. The usefulness of
the proposed model was evaluated by fitting it to two count datasets. The model
selection was performed using the AIC and the BIC criteria. The goodness-of-fit
was accessed by the χ2 statistic. The provided results illustrated that the DPL
distribution has a good fit and could compete with standard models or new proposed
discrete models.
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análoga discreta da distribuiçao potêencia de Lindley e suas aplicacoes. Rev. Bras.
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RESUMO: Métodos para gerar uma distribuição discreta análoga a uma distribuição

cont́ıinua têm sido amplamente considerados nas últimas décadas. Em geral, o

procedimento de discretização compreende transformar atributos cont́ınuos em atributos

discretos, gerando novas distribuições de probabilidade que poderiam ser uma alternativa

aos tradicionais modelos discretos, como os modelos Poisson e Binomial, comumente

usados na análise de dados de contagem. Tambéem evita o uso cont́ınuo na análise

de dados estritamente discretos. Neste trabalho, utilizando o método de discretização

baseado na função de sobrevivência, é introduzido um análogo discreto da distribuição

de potência de Lindley. Algumas propriedades matemáticas são estudadas. A teoria

da máxima verossimilhança é considerada para estimativas e inferência assintótica.

Um estudo de simulação também é realizado para avaliar algumas propriedades dos

estimadores de máxima verossimilhança do modelo proposto. A utilidade e exatidão do

modelo proposto é avaliada usando conjuntos de dados reais fornecidos pela literatura.

PALAVRAS-CHAVE: Discretizaçao; distribuição potência de Lindley; simulação de

Monte Carlo; estimadores de máxima verossimilhança.
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