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 ABSTRACT: The present study was carried out to compare the performances of regression models 

and Artificial Neural Networks (ANNs) in hypsometric relationships modeling and to analyze the 

influence of ANN type and sample size on ANN performance. The database was consisted by 65 

circular plots of 500 m² in which Diameter at Breast Height - DBH (cm) and Total Height - Ht (m) 

of 2538 trees were measured in plantations of Pinus caribaea var. caribaea in Macurije forest 

company, Cuba. The study was carried out in three stages: i) Adjustment of traditional hypsometric 

models and sigmoidal growth models; ii) ANNs training and comparison of the selected ANN with 

the regression model selected; iii) Analysis of sample size and ANN type influences on the 

estimates precision by means of a completely random experimental design with 5x2 factorial 

arrangement, with the factors sample size (N) and ANN type (R). The results indicated that the best 

equation to estimate trees heights was that of Gompertz. The ANNs MLP 1-4-1 and MLP 8-4-1 

were superior to the selected equation (Gompertz). Multi-Layer Perceptron ANNs generated more 

accurate estimates and their performances were less influenced by the sample size. 

 KEYWORDS: Artificial intelligence; regression analysis; diameter at breast height; total height. 

1 Introduction 

Different trees heights and diameters at breast height (DBH) are the most widely used 

dendrometric variables in forest measurement (CAMPOS and LEITE, 2013). Total height 

is an essential variable for forest surveys and serves as input variables for volume equations, 

site index (dominant height), taper model (MARTINS et al., 2016) and in forest biomass 

estimation (SANQUETTA et al., 2014a). 

Tree height can be obtained by direct measurement in the felled tree, or indirectly, 

using hypsometers or clinometers (MOTTA et al., 2016). Such indirect measurement or 

height estimation at the naked eye as is most commonly done in numerous time-saving 
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forest inventories leads to inaccurate estimates. These indirect measurements are also 

hampered by visual obstructions in the field (LEI et al., 2009; BINOTI et al., 2013), which 

increases errors in measurements. These errors can lead to underestimation or 

overestimation of this variable and all that depend on it, such as volume, forest biomass, 

site index, etc. 

An alternative of minimizing these errors and reducing significantly forest inventories 

costs is trees heights estimation by means of hypsometric models that express the 

relationship between tree height (h) and tree diameter at breast height (dbh) 

(SANQUETTA et al., 2009) and are based on regression analysis technique that many years 

of theory and application consecrate as a powerful tool for prediction (MARKHAM and 

RAKES, 1998). These hypsometric relationships, proposed by Ker and Smith (1957), are 

defined by Aldana (2010) as being the regression of height over diameter in a stand at a 

certain age. The equations obtained from these models adjustment are of great practical 

utility (ALDANA, 2010; AZEVEDO et al., 2011) for increasing surveys productivity and 

economic (MACHADO et al., 1993) for reducing forest inventories costs. Traditional 

hypsometric models, also known as local models, use dbh as a predictor variable, and the 

inclusion of any other variable such as age or site index generates models known mostly as 

generalist models (CAMPOS and LEITE, 2013). 

In recent decades, techniques such as Artificial Neural Networks (ANNs) have been 

successfully used in the field of forest modeling (MARKHAM and RAKES, 1998, 

OZÇELIK et al., 2013), including hypsometric relationships (BINOTI et al. 2013). ANNs 

are mathematical models that have as metaphor, human brain functioning with its biological 

neural networks (VALENÇA, 2010). Among the studies that applied ANNs techniques for 

hypsometric relationships modeling, the researches of Binoti et al. (2013), Vendruscolo et 

al. (2015) and Martins et al. (2016) in Eucalyptus sp. plantations; that of Ozçelik et al. 

(2013) in Crimean Juniper plantations; that of Almeida (2015) in Araucaria angustifolia 

plantations and that of Campos et al. (2016) in plantations of Eucalyptus grandis, 

Eucalyptus urophylla, Pinus caribaea var. hondurensis and Pinus oocarpa are examples of 

successful applications of ANNs in hypsometric relationships modeling in forest 

plantations. In the results of these studies, ANNs presented performances superior or equal 

to those of traditional regression models. ANNs being statistical models, the sensitivity of 

their performances to sample size is an axiom. However, issues related to sample size 

influence on the performance of each type of neural network, mainly in forest modeling, 

should be studied in greater depth. 

Based on the above, the present study was carried out with the objective of performing 

a comparative analysis of the capacities of regression models and ANNs in height 

estimation in plantations of Pinus caribaea Morelet var. caribaea Barr. & Golf. and to 

analyze the influence of neural network type and the sample size on the precision of the 

estimates made. 

2 Materials and methods 

2.1 Characterization of the study area 

The present study was carried out in Macurije Forest Company located in the 

westernmost region of the province of Pinar del Rio, Cuba (Figure 1). 
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Figure 1 - Geographical location of Macurije Forest Company, Pinar del Río, Cuba. 

2.2 Data collection and analysis of sample sufficiency 

The data used in the modeling were constituted by 2538 trees (Table 1) measured in 

65 circular plots of 500 m² raised in forest inventories made by means of a simple random 

sampling in Pinus caribaea var. caribaea plantations. The variables measured in each tree 

were: total height (Ht) and Diameter at Breast Height (dbh). Sample sufficiency was 

analyzed for an allowable error of 5% and 95% of probability, with expressions 01 and 02 

(SANQUETTA et al., 2014b) given by 

𝐸𝑀(%) =  
𝑡𝛼 ∗ 𝑆𝑥̅

𝑋̅
∗ 100 (1) 

and 

𝑛 =  
𝑡𝛼

2 ∗ 𝑆𝑥
2

𝐸2
∗ 100, (2) 

where: 𝐸𝑀= Sampling error; 𝑛 = Sample size; 𝑡𝛼= value of t student; 𝑆𝑥̅= Standard Error of 

the Mean; 𝑆𝑥
2 = variance; 𝐸 = 𝐿𝐸 ∗ 𝑥̅, 𝐿𝐸 = Limit of error allowed; 𝑋̅= average of observed 

heights. 
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Table 1 – Modeling data sample distribution by diameter (dbh) and height (H) class 

DBH (cm) 

Classes 

Ht (m) classes 
Total 

2.86 -7.85 7.86-12.85 12.86-17.85 17.86-22.85 22.86-27.85 

2.41-7.40 223 15 1   239 

7.41-12.40 221 217 17 3  458 

12.41-17.40 16 316 323 20 1 676 

17.41-22.40 1 149 594 96 12 852 

22.41-27.40 1 19 173 60 17 270 

27.41-32.40  3 14 11 7 35 

32.41-37.40    3 5 8 

Total 462 719 1122 193 42 2538 

 

Height-DBH relationship described by Figure 2 indicates, as would be expected in the 

case of data consistency, a direct proportionality between total height and dbh growth. 

 

 
Figure 2 - Total height (Ht) - diameter at breast height (dbh) relationship in Pinus caribaea Morelet 

var. caribaea Barr. & Golf. plantations, Macurije Forest Company, Pinar del Río, Cuba. 
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2.3 Traditional regression models for hypsometric relationships modeling 

The hypsometric equations for Pinus caribaea var. caribaea were obtained by fitting 

the models in Table 2.  

 

Table 2 – Hypsometric models adjusted for height estimation 

Models Authors Mathematical Expressions 

01 
Logistic/Verhulst 

(1838)* 
𝐻𝑖 =

𝛽0

1 + 𝑒𝑥𝑝[(𝛽1 − 𝐷𝐵𝐻𝑖) 𝛽2⁄ ]
+ 𝜀𝑖 

02 Gompertz (1832)* 𝐻𝑖 = 𝛽0[𝑒𝑥𝑝[−𝛽1𝑒𝑥𝑝 (−𝛽2𝐷𝐵𝐻𝑖)]] + 𝜀𝑖 

03 

Chapman-Richards/ 

Pienaar-Turnbull 

(1973)* 

𝐻𝑖 = 𝛽0(1 − 𝑒−𝛽1𝐷𝐵𝐻𝑖)𝛽2 + 𝜀𝑖 

04 Henricksen (1950) 𝐻𝑖 = 𝛽0 + 𝛽1𝐿𝑛𝐷𝐵𝐻𝑖 + 𝜀𝑖 

05 Curtis (1967) 𝐿𝑛 (𝐻𝑖) = 𝛽0 + 𝛽1(
1

𝐷𝐵𝐻𝑖

) + 𝜀𝑖 

06 
Stoffels – Soest 

(1953) 
𝐿𝑛 (𝐻𝑖) = 𝛽0 + 𝛽1𝐿𝑛(𝐷𝐵𝐻𝑖) + 𝜀𝑖 

𝐻𝑖  = Total height; 𝐷𝐵𝐻𝑖= Diameter at breast height;𝛽0; 𝛽1; 𝛽2 = parameters to be estimated; 𝜀𝑖 = random error. * 

In those models, 𝛽0 is the asymptotic parameter that corresponds to tree height at maturity; 𝛽1 corresponds to the 

location parameter, without biological interpretation and  𝛽2 determines the rate of expansion of height growth. 

The linear models were adjusted using ordinary least squares method and the nonlinear 

ones using Levenberg-Marquardt or Gauss-Newton iterative methods. 

2.4 Artificial Neural Network training for height estimation 

The database were divided according to the following proportions recommended by 

Valença (2010): 50% for trainings, 25% for test and the remaining 25% for cross validation. 

To increase the efficiency of the backpropagation algorithm, the data were normalized by 

linear transformation to the intervals [0, 1] or [-1, 1] according to the activation function 

used. The functions tested were: Sine, Identity, Logistic, Exponential and Hyperbolic 

Tangent. The software SPSS version 20.0, Assistat version 7.7, Statistica version 8.0, 

DataFit 9 and Minitab 17.0. were used for statistical analyzes, regression models fits and 

ANNs trainings. 
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2.5 Criteria for evaluation and selection of regression models and ANNs 

Every model has to undergo an evaluation or validation process to define the limits of 

its predictive capacity (ALDER, 1995). Models evaluation criteria used in the present study 

were: Adjusted coefficient of determination - 𝑅𝑎𝑗
2  (%) (Equation 3), Root Mean Square 

Error - 𝑅𝑀𝑆𝐸 (%) (Expression 04), Visual analysis of residuals distribution graphic 

(Expression 05), Bias (Expression 06), Standard error of the estimate - 𝑆𝑦𝑥(%) (equation 

7) as follow: 

𝑅𝑎𝑗
2 = 𝑅2 − [

𝐾 − 1

𝑁 − 𝐾
] . (1 − 𝑅2), (3) 

where: 𝑅2= coefficient of determination; 𝐾= number of parameters; 𝑁= number of 

observations. 

𝑅𝑀𝑆𝐸(%) = 100√
∑ (𝑌𝑖 − 𝑌̂𝑖)2𝑛

𝑖=1

𝑛
𝑌̅⁄ , (4) 

where: 𝑌𝑖= observed height; 𝑌̂𝑖= estimated height; 𝑌̅= arithmetic mean of observed heights; 

𝑛 = number of observations. 

𝐸𝑖 = (
𝑌̂𝑖 − 𝑌𝑖

𝑌𝑖

) ∗ 100, (5) 

where: 𝐸𝑖= Residue of i-th observation; 𝑌𝑖= Observed height (m); 𝑌̂= Height estimated by 

the equation or ANN. 

𝐵𝑖𝑎𝑠 =  𝑛−1 ∑(𝑌𝑖 − 𝑌̂𝑖),

𝑛

𝑖=1

 (6) 

where: 𝑌𝑖= Observed height (m); 𝑌̂= Height estimated by the equation or ANN; 𝑛= number 

of observations. 

𝑆𝑦𝑥(%) =  (
√𝑄𝑀𝑅

𝑌̅
) ∗ 100, (7) 

where: 𝑄𝑀𝑅 = Mean Square Residual; 𝑌̅ = mean of observed values. 
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In the models in which the variables were subjected to logarithmic transformation, it 

was necessary to correct the logarithmic discrepancy of the estimated values (equation 9) 

and recalculate the standard error of the estimate (equation 8) with Meyer (1938) correction 

factor (equation 10). 

 

𝑆𝑦𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = √
∑ (𝐻𝑖 − 𝐻̂𝑖

∗)2𝑛
𝑖=1

𝑛 − 𝑝
, (8) 

being: 

𝐻̂𝑖
∗ = 𝐻̂𝑖 ∗ 𝐹𝑀, (9) 

𝐹𝑀 = 𝑒0,5∗𝑄𝑀𝑅 , (10) 

where: 𝐻𝑖= observed height (m); 𝐻̂𝑖= height estimated by the equation (m); 𝐻̂𝑖
∗= estimated 

height corrected (m); 𝑛 = number of observations; 𝑝= number of parameters of the model; 

𝐹𝑀= Meyer's correction factor; 𝑄𝑀𝑅= Mean Square Residual; 𝑆𝑦𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑= corrected 

standard error of estimation. 

The regression equation or the ANN selected was one that, in addition to having a high 

𝑅𝑎𝑗
2 , a minor 𝑅𝑀𝑆𝐸 and a non-tendentious and surroundings to zero residuals distribution, 

satisfied the assumptions of normality verified by Kolmogorov-smirnov test, 

homoscedasticity verified by White test and absence of residuals autocorrelation verified 

by Durbin-Watson test. The assumptions, although desired, was not required in ANNs since 

they can be considered non-parametric statistical techniques. 

2.6 Regression equations performances versus ANNs performances in heights 

estimation in plantations of Pinus caribaea var. caribaea 

The comparison between observed values and those estimated by the ANNs or 

selected hypsometric equations was performed using the statistical procedure L & O 

proposed by Leite and Oliveira (2002), testing the hypothesis H0: observed values are equal 

to values estimated by selected regression equation and those estimated by trained ANNs. 

This procedure combines Graybill's F (H0) test, t test for mean error (𝑡𝑒̅) and the linear 

correlation (r) between observed and estimated values. 

2.7 Analysis of influence of sample size, neural network type and their interaction 

on the precision of the estimates.  

The analysis of the influence of sample size and ANN type in the precision of the 

estimates was made by means of a completely randomized experimental design with 5x2 

factorial arrangement in which the factors were: 1) Sample Size (N) with 5 levels: N1 (n = 



898 Rev. Bras. Biom., Lavras, v.36, n.4, p.891-915, 2018 - doi: 10.28951/rbb.v36i4.315 

2538), N2 (n = 1269), N3 (n = 635), N4 (n = 318) and N5 (n = 159) obtained by random 

resampling carried out in the database and 2) ANN type with 2 levels: R1 = Multilayer 

Perceptron (MLP) and R2 = Radial Basis Function (RBF). The data of the treatments were 

obtained by performing five trainings (repetitions) of each type of ANNs with each one of 

the samples. 

For each sample size, the optimal number of neurons in the intermediate layer was 

calculated using Baum-Haussler (1989) formula (equation 11) given by 

𝑁𝑖𝑛𝑡 ≤
𝑁 ∗ 𝜀𝑡𝑟𝑎𝑖𝑛

𝑁𝑖𝑛𝑝𝑢𝑡 + 𝑁𝑜𝑢𝑡𝑝𝑢𝑡

, (11) 

where: 𝑁𝑖𝑛𝑡 = number of neurons in the intermediate layer; 𝑁 = number of observations 

used for training; 𝜀𝑡𝑟𝑎𝑖𝑛 = error tolerance in training; 𝑁𝑖𝑛𝑝𝑢𝑡= number of neurons in the 

input layer; 𝑁𝑜𝑢𝑡𝑝𝑢𝑡 = number of neurons in the output layer. 

The hypotheses tested in the factorial arrangements were as follows: 

H01: The sample size (N) used for ANNs trainings does not influence its performance 

in trees height estimation; 

H02: The ANN type (R) does not influence the precision of height estimates made by 

trained Artificial Neural Networks; 

H03: The interaction N×R does not have a significant effect on the performance of 

ANNs in tree heights estimation. 

Equation 12 represents the structural model of the factorial design. 

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛼𝑗 + 𝛽𝑘 + (𝛼𝛽)𝑗𝑘 + 𝜀𝑖𝑗𝑘, (12) 

where: 𝑌𝑖𝑗𝑘= value of 𝑖-th height observed under the combination of 𝑗-th level of factor 𝑁 

with 𝑘-th level of factor 𝑅; 𝜇 = overall mean of all experiment data; 𝛼𝑗= effect of 𝑗-th level 

of factor 𝑁; 𝛽𝑘 = effect of 𝑘-th level of factor 𝑅; (𝛼𝛽)𝑗𝑘 = effect of interaction of 𝑗-th level 

of factor 𝑁 and 𝑘-th level of factor 𝑅; 𝜀𝑖𝑗𝑘 = experimental error. 

Multiple comparisons of means were performed using Tukey test at 5% significance 

level. 

3 Results and discussion 

3.1 Analysis of sample sufficiency for hypsometric relationship modeling 

The pilot sample of 2538 trees with a sampling error of 2.33%, less than 5%, was 

considered definitive for tree height estimation. The minimum sample size to meet the 

maximum permissible error of 5% is 519 trees. The correlation coefficient of 0.80 between 

dbh and Ht indicates the existence of a strong positive relation between both. According to 

Aldana (2010), this result is indicative of well-formed and well-managed sites. 

3.2 Hypsometric models for Pinus caribaea var. caribaea in Macuije forest company 

The results of regression model’s adjustments indicate that the candidate equations to 

be selected as suitable for heights estimation were those of Logistic, Gompertz, Chapman-
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Richards and Stoffels because they presented the highest coefficients of determination and 

lower RMSE and Syx (Table 3). 

 

Table 3 – Estimation of parameters of the adjusted hypsometric models 

Models  
Coefficients R2

aj 

(%) 

Syx 

(%) 
RMSE 

(%) 
Bias 

b0 b1 b2 

Logistic 22.36* 13.01* 5.768* 84.7 6.045 5.034 1.310 

Gompertz 25.23* 2.52* 0.087* 85.4 6.006 4.995 0.180 

Chapman-Richards 24.25* 0.012* 4.229* 84.0 6.486 5.478 2.687 

Henricksen (1950) -8.31* 7.673* - 65.49 5.291 6.357 1.003 

Curtis (1967) 2.99* -7.243* - 69.68 6.126 6.512 -3.330 

Stoffels (1953) 0.37* 0.771* - 76.21 6.285 5.128 -0.220 

*Parameter estimate significant to 99% of probability by t test. 

Curtis and Henricksen equations presented low coefficients of determination and a 

marked tendency to underestimate small and large heights (Figure 3). Gompertz and 

Stoffels equations, due to their bias values below 1% (Table 3) and random residuals 

distributions (Figure 3), do not present any trend in the estimates. Because of its greater 

precision and satisfaction of all statistical assumptions (Table 4), Gompertz equation is 

considered adequate to generate accurate and non-biased estimates.  

Table 4 – Verification of statistical assumptions in equations  

* Significant test at 5% significance; a. Correction of significance of Lilliefors; A = No serial autocorrelation in 

the residues; + = Existence of positive autocorrelation. 

 

 

 

 

 

Models 

Normality 
Serial 

Autocorrelation 
Homoscedasticity 

K-Sa Durbin-Watson White 

KS Sig. DW  Auto. LM Sig. 

Logistic 0.083 0.000 1.347 + 22.554 1.42E-07* 

Gompertz 0.077 0.162 1.834 A 1.598 0.463NS 

Chapman-Richards 0.079 0.100 1.089 + 8.648 0.57E-02* 

Henricksen (1950) 0.088 0.000 1.428 + 13.451 0.24E-03* 

Curtis (1967) 0.109 0.000 1.305 + 24.163 8.85E-07* 

Stoffels (1953) 0.051 0.073 1.909 A 0.627 0.731NS 
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Figure 3 - Residuals distribution for hypsometric equations. 
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Figure 3 (Continuation) - Residuals distribution for hypsometric equations. 

In Figure 4, it is possible to observe the behavior of each adjusted model and the good 

fit of Gompertz model to the database. It is also perceptible the tendency of underestimation 

of small and large heights identified in Curtis and Henricksen models. 
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Figure 4 - Equations behaviors in height estimation in plantations of Pinus caribaea var. caribaea, 

Macurije Forest Company, Cuba. 

3.3 Artificial Neural Networks for Pinus caribaea var. caribaea heights estimation 

The trained Artificial Neural Networks presented satisfactory results with all the 

coefficients of determination above 85% and all RMSE less than 2% (Table 5). Based on 

these criteria, ANNs MLP 1-4-1 and MLP 1-6-1 are the best candidates. 

Table 5 – Results of ANNs training for the estimation of the height 

№ ANNs Architecture  Var. 
Activations Functions 

R² 
RMSE 

(%) 
Bias 

Intermediate Output  

1 ANN1 MLP 1-2-1 DAP Tanh Tanh 85.71 1.865 0.025 

2 ANN2 MLP 1-3-1 DAP Identity Tanh 85.70 1.867 -0.109 

3 ANN3 MLP 1-6-1 DAP Logistic Tanh 85.71 1.863 -0.008 

4 ANN4 MLP 1-4-1 DAP Tanh Identity 87.77 1.863 0.080 
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Residuals distribution indicated that all the heights estimated by the ANNs were 

accurate and without tendencies of underestimation or overestimation (Figure 5). All these 

results point to the selection of ANN MLP 1-4-1, whose parameter estimates are 

summarized in Table 6, as the most suitable for accurate height estimation in Pinus caribaea 

var. caribaea plantations at Macurije Forest Company. 

 

     

      

Figure 5 – Residuals distribution for ANNs in heights estimation. 
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Figure 5 (continuation) – Residuals distribution for ANNs in heights estimation. 

 

Table 6 – Estimates of ANN MLP 1-4-1 parameters  

Predictors 

Estimated   

Hidden Layer 
Output 

Layer  

H(1:1) H(1:2) H(1:3) H(1:4) Height (m) 

Input 

Layer 

(Bias) 0.302 -1.236 -0.264 -0.243  

DAP (cm) 0.460 -0.740 -0.432 0.400  

Hidden 

Layer  

(Bias)     -1.284 

H(1:1)     0.032 

H(1:2)     -1.436 

H(1:3)     -1.148 

H(1:4)     0.023 

Variables addition in statistical models tends to increase the dependent variable 

explained variance (increase of the coefficient of determination). It is not different in the 
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case of ANNs. The flexibility of ANN structures allowed categorical variables (Diametric 

class) inclusion in the training, whose results indicate a significant improvement in the 

accuracy of the estimates (Table 7 and Figure 6). 

 

Table 7 – Results of ANNs training with inclusion of categorical variables 

№ ANNs Architectures  Var. 

Activation 

functions 
R² 

(%) 

RMSE 

(%) 
Bias 

Hidden Output 

1 ANN1 MLP 8-4-1 DBH 

DBH classes 

Identity Identity 90.747 1.321 -0.056 

2 ANN2 MLP 8-7-1 Tanh Identity 88.565 1.442 -1.644 

 

 

   
Figure 6 - Distribution of residues of ANNs with categorical variables. 
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relationship between diametric class and heights was observed, with a lower variation in 

the last class (32.41 – 37.41) due to the trend of height stabilization in the largest diametric 

class mainly observed in mature stands in which the increases of these variables are lower. 

 

 

Figure 7 – Estimation of tree heights by diametric class with ANN MLP 8-4-1. 

3.4 Regression equations vs ANNs in heights estimation 

The results obtained by applying Leite and Oliveira (2002) statistical procedure for 

the best equation and selected ANNs are in Table 8. The non-significance of Graybill's test 

F (Ho) and t test for mean error (𝑡𝑒̅) and the satisfaction of the condition 𝑟𝑦𝑗𝑦𝑖
≥ 1 − |𝑒̅| in 

all the models indicate that the observed values are statistically identical to those estimated 

by each of the selected models. 

Table 8 - Results obtained by applying the statistical procedure proposed by Leite and 

Oliveira (2002) for the best equation and trained ANNs 

 GOMPERTZ MLP 1-4-1 MLP 8-4-1 

𝑭 (𝑯𝒐) 1.1354ns 1.0533ns 0.7947ns 

𝒕(𝒆) 0.754ns 1.3248ns 1.0172ns 

𝒓 0.9193 0.9398 0.9521 

𝑴𝒆𝒂𝒏 𝑬𝒓𝒓𝒐𝒓 (𝒆) 0.1802 0.0800 -0.056 

𝒓𝒚𝒋𝒚𝒊
≥ 𝟏 − |𝒆̅| Yes Yes Yes 

ns = not significant at 95% probability. 
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Figure 8 presents a graphical view of the behavior of each selected model in heights 

estimation in plantations of Pinus caribaea var. caribaea. The proportionality observed, 

between growths in diameters and heights, is evidence of the biological realism of the 

selected models. 

 

 

Figure 8 – Comparison between ANNs and equations in heights estimation. 

The Neural Network MLP 1-4-1 and the Gompertz equation presented greater 

biological consistency since it was observed, in both models, a high growth rate in the 

beginning (small diameters) and this rate decreases and evolves towards a stabilization as 

the diameter stabilizes as indicated by Aldana (2010). In relation to ANN MLP 8-4-1, 

diametric class inclusion and ANN´s structure parallelism allowed to determine the best 

approximations by diametric class as indicated in Figure 8. 

3.5 Influence of sample size and ANN type on the accuracy of estimates 

ANNs trainings results are summarized in Table 9. They indicate that ANNs MLP-

type showed better accuracy in all samples. All ANNs, except ANN RBF 1-4-1 in sample 

N3, were without bias. The bias value of this neural network, negative and greater than 5%, 

indicates that it has a general tendency to underestimate the heights. 

The sample size is the most considered factor in studies of influence of data quality 

on the predictive capacity of ANNs. The results obtained in the present study (Table 9) 

indicate that the performances of ANNs are more influenced by the variance of the 

dependent variable measured by the coefficient of variation. Consideration of sample size 
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is due to the fact that its increase causes a reduction in variance but this does not always 

occur in practice. According to Table 9, the samples N3 and N4 presented lower coefficients 

of variation than the samples N1 and N2 that are superiors. It is then considered that a more 

objective analysis will be achieved based on the coefficient of variation (CV). 

Table 9 - Results of MLP and RBF ANNs training in different sample sizes 

SAMPLE 

SIZE 

CV 

(%) 

ANN 

TYPE 
ARCHITECTURE 

R² 

(%) 

RMSE 

(%) 
BIAS 

N1 34,737 
MLP 1-12-1 88.33 1.225 0.080 

RBF 1-12-1 85.98 1.293 0.117 

N2 38,641 
MLP 1-6-1 88.10 1.334 -1.233 

RBF 1-6-1 80.84 1.653 0.0825 

N3 30,645 
MLP 1-4-1 88.71 0.851 -0.048 

RBF 1-4-1 86.77 0.83 -5.863 

N4 30,078 
MLP 1-2-1 90.76 0.788 -0.534 

RBF 1-2-1 88.11 0.821 -0.590 

N5 39,756 
MLP 1-1-1 85.77 1.865 0.096 

RBF 1-1-1 76.28 2.713 0.078 

As observed in Figure 9, the lower coefficients of variation coexist with the higher R² 

and the lower RMSE. The increase in CV had a negative influence on the accuracy of 

trained ANNs. ANNs, despite their high learning and generalization capacity, are affected 

by the variation of the data as any statistical model. Large samples are preferred because 

they generally have lower variances. 

 

 

Figure 9 – Relationship between ANNs evaluation criteria and sample’s coefficients of variation. 
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Either the Backpropagation algorithm used for ANN training or the least squares or 

iterative methods used to adjust the regression models are based on the convergence of the 

error expected value to zero (MARKHAM; RAKES, 1998). That explains the dependence 

of ANNs on the variance of the data. This variance depends on the nature of the variables 

but also on the errors of the forest inventories, one of the main data sources for forest 

modeling. These errors can be classified in sampling errors and non-sampling errors. 

Non-sampling errors, which are measures of accuracy and not precision, are not 

objectives of the present study since their minimization does not depend on sample size and 

can occur even in censuses or total enumerations (SANQUETTA et al., 2009). These errors, 

difficult to detect and measure, are generally neglected in forest inventories total error 

calculation. According to Lesser and Kalsbeek (1997), these errors should be investigated 

and considered in forest inventories whose accuracy has a significant influence on quality 

of data used in forest modeling. 

The sampling errors, attributed to the part of the population that was not sampled, 

decrease as the sampling intensity increases and is zero when the entire population is 

sampled (SANQUETTA et al., 2009). These sampling errors are functions of the variance 

that generally depends on the sample size (BORDERS, 2011). Sample size increase tends 

to decrease the variance in the dependent variable, which tends to cause an increase in the 

portion of the variance explained by the models (R²) and a reduction in the standard error 

of the estimate (Syx) by increasing residuals degree of freedom. 

Despite the evidence of preference for larger sample sizes for ANNs as for any model 

based on statistical principles, the issue of resource availability (money and time) is very 

common in practice and mainly in hypsometric relationships modeling in which a smaller 

portion of the population is measured to make heights estimates for the remaining 

unmeasured portion. Time and costs minimization being the reason for the existence of 

these models, incur in high costs for their elaboration would be unintelligent. Is it really 

worth making investments in high quality data to get more accurate? Does the accuracy 

achieved in heights estimation justify the financial investment made?  

All samples that were superior to the minimum sample of 519 trees (indicated by 

sample sufficiency analysis) presented satisfactory results. The sample N4, although 

inferior to the minimum sample, presented one of the smallest coefficients of variation, 

which allowed the obtaining of ANNs with good generalization capacities. With this 

sample, a neural network was obtained with good accuracy but without guaranteeing 

estimates accuracy since a good part of the population variance was not considered. 

Artificial Neural Networks trained with small databases are often at risk of overfitting and 

when this problem occurs, ANNs generally exhibit optimal training parameters and lower 

generalization capacities. 

The results of analysis of variance (Table 10) between estimates obtained with ANNs 

of Table 9 indicated that factors sample size (N), ANN type (R) and their interaction (NxR) 

have a significant influence on the generalization capacity of Artificial Neural Network. 

The results of N×R interaction analysis by means of Tukey test (Table 11) showed 

that in the three smaller samples (N3, N4 and N5), there was no significant difference 

between the heights estimated by the two types of neural network. However, in samples N1 

and N2, it is observed that RBF type of ANNs generated higher estimates than those 

generated by MLP ANNs. There was then no difference between the uses of the two types 

of ANNs in the smaller samples. 
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Table 10 – Variance analysis for factorial arrangement 5×2 

SOURCES OF VARIATION DF SS MS F 

Treatments 9 144.036 16.004 61.444 ** 

Sample Size (N) 4 126.914 31.728 121.816 ** 

Ann Type (R) 1 12.955 12.955 49.740 ** 

N*R 4 4.167 1.042 3.999 ** 

Errors 1190 309.951 0.260  

Total 1199 453.987   
** = p < 0,01 

 

Table 11 – Tukey test for the interaction N×R 

Sample Size (N) 
ANN Type (R) 

R1 (MLP) R2 (RBF) 

N1 (n=2538) 13.223 aB 13.517 aA 

N2 (n=1269) 13.195 aB 13.437 aA 

N3 (n=635) 12.949 aA 13.016 bA 

N4 (n=318) 12.615 bA 12.760 cA 

N5 (n=159) 12.454 cA 12.545 dA 

Averages followed by the same letters (lowercase in the columns and uppercase in the lines) do not differ from 

each other for the Tukey test at 5% significance. 

Regarding the analysis of sample size variation influence on each type of ANN, a 

significant difference was observed between the performances of ANN MLP in samples N4 

and N5 and their stabilization, from sample N3 to sample N1 (Table 11). The RBF ANNs 

presented different performances in almost all the samples. These results indicate that RBF 

ANNs are more influenced by sample size than MLP ANNs. This result is in 

correspondence with those of Ferreira et al. (2014) according to which MLP architecture is 

the most suitable and accurate for heights estimation of Tibouchina granulosa seedlings. 

According to the same authors, MLP neural networks are able to capture the biological 

realism of the data, to learn and to generalize the assimilated knowledge. 

The influence of sample size, coefficient of variation and ANN type (1 = MLP; 2 = 

RBF) on ANNs accuracy were analyzed. The regressions of R² and RMSE on the variables 

sample size, coefficient of variation and ANNs type (1 = MLP; 2 = RBF) in the software 

DataFit 9 allowed to obtain the equations of expressions 14 and 15. Sample size exclusion 

is due to the non-significance of its contribution in the estimation of R² or RMSE. 
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𝑅2 = −2695.559 +

 283720.933 𝐶𝑉⁄   −  9642219.006 𝐶𝑉2 +⁄ 108932126.975 𝐶𝑉3⁄ +

9.476 𝐴𝑁𝑁⁄   (𝑅𝑎𝑗
2 = 74.50%; 𝑆𝑦𝑥 =2.523%) 

 

(13) 

𝑅𝐸𝑀𝑄 = −438,107  +  38,395 ∗ 𝐶𝑉 −  1,115 ∗ 𝐶𝑉2  +
 0,01076 ∗ 𝐶𝑉3 −                                        0,499 𝐴𝑁𝑁⁄   (𝑅𝑎𝑗

2 =

82,16%; 𝑆𝑦𝑥 =19,26%) 

(14) 

 

It is observed as discussed above, a tendency to increase the coefficient of 

determination with coefficient of variation decrease (Figure 10). MLP networks presented 

higher coefficients of determination than those of RBF networks. 

 

 

Figure 10 – Variation of ANNs coefficient of determination according to the coefficient of variation 

and ANN type. 

Obviously, an inverse trend is observed for RMSE (Figure 11). Increase of height 

coefficient of variation caused an increase of RMSE as expected. It is also noticeable that 

MLP networks presented RMSE smaller than those of RBF networks. 
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Figure 11 – Variation of ANNs RMSE according to the CV and ANN type. 

Conclusions 

The hypsometric equation obtained from Gompertz model was the most suitable for 

trees height estimation in Pinus caribaea var. caribaea plantations at Macurije Forest 

Company.  

Both Gompertz equation and trained ANNs (MLP 1-4-1) generated accurate estimates 

that did not differ statistically from the observed values. 

Diametric class inclusion as input variables improved the generalization capacity of 

Artificial Neural Networks (MLP 8-4-1) in local hypsometric relationships modeling.  

Multilayer Perceptron Artificial Neural Networks allowed to obtain more accurate 

estimates than those obtained with Radial Basis Function networks and their performances 

were less influenced by sample size variation. 
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GUERA, O. G. M., SILVA, J. A. A., FERREIRA, R. L. C., MEDEL, H. B., LAZO, D. A. Redes 

Neurais Artificiais para modelagem de relações hipsométricas de Pinus caribaea Morelet var. 

caribaea Barr. & Golf. Rev. Bras. Biom., Lavras, v.36, n.4, p.891-915, 2018. 

 RESUMO: O presente estudo foi realizado com o objetivo de comparar os desempenhos de 

modelos de regressão e de Redes Neurais Artificiais (RNAs) na modelagem de relações 
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hipsométricas e analisar a influência do tipo de RNA e o tamanho da amostra no desempenho das 

RNAs. A base de dados foi composta por 65 parcelas circulares de 500 m² nas quais foram medidas 

as variáveis DAP (cm) e Ht (m) de 2538 árvores em plantações de Pinus caribaea var. caribaea 

da empresa Macurije, Cuba. O estudo foi realizado em três etapas: i) Ajuste de modelos 

hipsométricos tradicionais e modelos sigmoidais de crescimento; ii) treinamento de RNAs e 

comparação da RNA selecionada com o modelo de regressão selecionado; iii) Análise da 

influência do tamanho da amostra e do tipo de RNA sobre a precisão das estimativas por meio de 

um delineamento experimental completamente aleatório com esquema fatorial 5x2, com os fatores 

tamanho da amostra (N) e tipo de RNA (R). Os resultados indicaram que a melhor equação para 

estimar a altura das árvores foi a de Gompertz. As RNAs MLP 1-4-1 e MLP 8-4-1 foram superiores 

à equação de Gompertz. As RNAs do tipo MLP geraram estimativas mais precisas e desempenhos 

menos influenciados pelo tamanho da amostra. 

 PALAVRAS-CHAVE: Inteligência artificial; análise de regressão; diâmetro à altura do peito; 

altura total. 
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