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ABSTRACT: This work proposes a version of the Individual-Based Model (IBM) that
converges, on average, to the result of the SIR (Susceptible-Infected-Recovered) model,
and studies the effect of this IBM in two types of networks: random and scale-free. A
numerical computational case study is considered, using large scale networks implemented
by an efficient framework. Statistical tests are performed to show the similarities and
differences between the network models and the deterministic model taken as a baseline.
Simulation results verify that different network topologies alter the behavior of the
epidemic propagation in the following aspects: temporal evolution, basal reproducibility
and the number of infected in the final.
Keywords: Individual-based models; random networks; scale-free networks.

1 Introduction

Mathematical Epidemiology is an area of science that seeks to more effectively
model the behavior of epidemics using mathematical and computational tools. In
this sense, several models have been proposed with the purpose of describing and
quantifying, in the best possible way, the process of propagation of epidemics.
Generally, these models can be framed in two distinct classes: continuous-time
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models, based on ordinary or partial differential equations, being the SIR model
(KERMACK; MCKENDRICK, 1927) the main representative one; and discrete-time
models, with the purpose of simulating specific characteristics of the epidemic
behavior, being the Individual-Based Model - IBM (KEELING; GRENFELL, 2000;
NEPOMUCENO; RESENDE; LACERDA, 2018) an example.

The study of networks (or graphs) is a multidisciplinary area that aims
to understand how the objects connect and what are the implications of such
connections. Several previous works analyzed, analytically and using simulations,
classic epidemiological models and their extensions for networks (NOWZARI;
PRECIADO; PAPPAS, 2015; NADA, a; PASTOR-SATORRAS; VESPIGNANI,
2002) or under the point-of-view of Agent-Based Models (MACAL; NORTH, 2010;
ABAR et al., 2017). The purpose of including networks is to represent a process
of propagation of epidemics that most closely represents what occurs in different
realities. For example, the propagation of epidemics may be different in human
communities of large cities, where some individuals daily just move around their
houses and others have to travel long distances, and in small cities, in which few
individuals relate to a few contacts.

Some works have compared the classical deterministic SIR and its stochastic
versions (MAGAL; RUAN, 2014) and other works focus on the construction of agent-
based models for studying the effects of the spread of some disease in large scale, such
as influenza epidemic, respiratory infections, and bovine brucellosis (RAKOWSKI et
al., 2010; GE et al., 2018; NEPOMUCENO et al., 2018). A theoretical investigation
on how topology affects the spread of an epidemic in several important network
topologies has also been performed (GANESH; MASSOULIÉ; TOWSLEY, 2005;
HE; MIEGHEM, 2018). These articles state that the computational simulation of
complex networks leads to a much greater computational intensity and difficulty in
analyzing the significance of parameters. In fact, all network-based simulations are
limited, since there is no simple way to ascertain the sensitivity of the epidemiological
results to the details of the network structure (KISS et al., 2017). Generally, small
networks can be analyzed graphically, allowing visual understanding of their nature,
but increasing the size of the network the graphical analysis becomes very difficult,
and so statistics become relevant (NEWMAN, 2003).

The behavior of epidemics in societies with different structures has been modeled
by networks in several works (PASTOR-SATORRAS; VESPIGNANI, 2001a, 2001b;
BARTHELEMY et al., 2004; HWANG et al., 2005; SERRANO; BOGUNA, 2006;
EAMES, 2008; MILLER, 2009; NOEL et al., 2009; NEWMAN, 2009; BADHAM;
STOCKER, 2010). For example, the article (YOUSSEF; SCOGLIO, 2011) describes
an approach based on individuals to model the spread of diseases in networks. In
this approach, each individual has a probability of being in susceptible, infected
or recovered states. This model is built using a continuous-time Markov chain,
able to evaluate probabilities for each individuals in the network. By means of
mathematical analysis, they prove the existence of an epidemic threshold below which
the epidemic does not spread through the network. Using a different strategy, the
article (NEPOMUCENO; TAKAHASHI; AGUIRRE, 2016) proposed and analyzed
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a version of the IBM that uses exponential distributions to model the life expectancy
and duration of the infectious period. The article describes in detail a framework
that allows, among other things, to calculate the probability of eradication of a given
disease.

This article proposes an IBM model based on (NEPOMUCENO; TAKAHASHI;
AGUIRRE, 2016), which corresponds, on average, to the behavior of the SIR model,
and extends this model to simulate the effect of two topologies of networks. The
types of networks used in this work are:
• Random networks (IBM-RN): in which each node has the same probability of

connecting to any other node in the network (ERDÖS; RÉNYI, 1959);
• Scale-free networks (IBM-SFN): in which few nodes have many connections

and many nodes have few connections, ie the distribution of degrees follows a
power law (ALBERT; BARABÁSI, 2002).

It performs a numerical computational case study that considers large scale networks
implemented by an efficient framework. The implemented models are compared
to each other and to the version of the IBM that corresponds, on average, to the
continuous SIR model, in order to show the compatibility between them. Specifically,
for IBM-RN, the effect of the variation in the average number of neighbors and the
effect of the variation in the initial number of infected are studied. For IBM-SFN, the
average temporal curve and the effect of the variation in the initial number of infected
are analyzed. Furthermore, it compares the parameters, the basic reproduction
number (R0) and the mean of infected individuals in the final time (I∗) of the
IBM-RN and IBM-SFN in relation to the equivalent SIR model, in a statistical point
of view.

The paper is organized as follows. Section 2 describes the SIR and IBM models;
Section 3 describes the IBM in Random and Scale-Free Networks; Section 4 shows
and analyzes the obtained results, discussing the effects caused by the variation of
the simulation parameters; and Section 5 concludes the paper and proposes future
works.

2 SIR and IBM Models

This work considers the deterministic continuous SIR model and the IBM
stochastic discrete model. In this section, the theoretical basis of epidemic
propagation in SIR and IBM models is presented, as the equivalence between
SIR and IBM.

2.1 SIR Model (Susceptible, Infected and Recovered)

The SIR model (Susceptible, Infected and Recovered) (KERMACK;
MCKENDRICK, 1927) is one of the most used, since it represents the general classes
and the basic mechanisms of the behavior of an epidemic (birth, mortality, infection,
etc.). It uses the strategy of dividing the population into three compartments:
Susceptible (S) representing individuals who can contract the disease if they come into
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contact with another infected individual; Infected (I), representing those individuals
who are carriers of the disease and can transmit it to other individuals; Recovered
(R), representing those who have recovered from the disease and can not contract it
again.

The model can be described by the system of ordinary differential equations:
dS
dt = µN − µS − β

N IS, S(0) = St=0 ≥ 0
dI
dt = β

N IS − γI − µI, I(0) = It=0 ≥ 0
dR
dt = γI − µR, R(0) = Rt=0 ≥ 0

(1)

In which N is the population size; µ is the birth rate (new susceptible individuals),
equal to the mortality rate; β is the transmission coefficient, that defines whether
contagion occurs between susceptible and infected; and γ is the recovery rate. As
the population size is set to N, it can then neglect the equation for R(t), and by
dividing by N the equations for susceptible and infected, we arrive at a percentage
variables: s(t) = S(t)/N and i(t) = I(t)/N .

Analyzing the dynamics of the SIR model, it can be determined the existence
of two equilibrium points (P1 and P2). In P1, the population is free of disease and
in P2, the population of infected reaches an endemic equilibrium:{

P1(sf1, if1) = (1, 0)

P2(sf2, if2) =
(
µ+γ
β , µ

µ+γ −
µ
β

)
. (2)

The stability of the equilibrium points can be analyzed by the concept of the basic
reproduction number, R0, which is the average of secondary infections produced
when an infected individual is placed in a susceptible population (HETHCOTE,
2000; HEFFERNAN; SMITH; WAHL, 2005):

R0 =
β

γ + µ
. (3)

If R0 ≤ 1 or it=0 = 0, then the trajectories of the solutions will reach the eradication:
P1. If R0 > 1, then the trajectories of the solutions with it=0 > 0 will reach the
endemic point P1.

The parameters used in this work are: β = 3.5, γ = 1/3 e µ = 1/60, which leads
to R0 = 10, which resembles the value shown by the AIDS epidemic in Kampala
between 1985 and 1987 (ANDERSON; MAY, 1992). Additionally, P1 is a saddle
point (unstable) and P2 is an asymptotically stable focus. Recently an analytical
solution has been proposed for a similar SIR model (SHABBIR; KHAN; SADIQ,
2010). However, this work solves it numerically, using the Runge-Kutta’s method,
since the result would be used just in the comparison with IBM.
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2.2 IBM (Individual-Based Model)

The Individual-Based Model (IBM) (KEELING; GRENFELL, 2000; SOLÉ
et al., 1999; GRIMM, 1999; LOMNICKI, 1999; NEPOMUCENO; RESENDE;
LACERDA, 2018) was proposed in order to evaluate computationally spreading of
epidemics, in which each individual is represented by a group of unique and discrete
characteristics. An IBM can be classified as a Cellular Automata (WOLFRAM,
1983), since individuals may be considered sites that may be in states. The states
of each site are updated synchronously obeying probabilistic rules and the state of
each site depends only on the state of its neighbors in the previous time step (a
Markovian process).

Here, some premises based on the SIR model is used, such as (NEPOMUCENO;
TAKAHASHI; AGUIRRE, 2016):

• Constant Population: size N ;
• Categories of individuals: individuals are classified as Susceptible (S), Infected

(I) and Recovered (R);
• Category changes: at each instant of time, an individual can change from one

category to another (discrete-time transitions). The following changes may
occur:

– S, I, R → S: one individual dies and another one is born to take its place.
If the individual does not die, the following changes may occur:
∗ S → I: a susceptible makes contact with an infected and becomes

infected;
∗ I → R: an infected recovers from the disease and becomes recovered.

• Statistical distribution: all individuals have the same probability of contact;
uniform distribution in each interval of time is defined for the mortality rate
µ, the same of the birth rate, and for the recovery rate γ.

An individual Il,t is represented as follows:

Il,t = [C1 C2 . . . Cm], (4)

where l is the individual in question, t is the instant of time, Ci is each characteristic
that the individual presents and m is the number of characteristics. A whole
population Pt is represented as follows:

Pt = [I1,t I2,t . . . In,t]
T . (5)

The initial population may be defined at random or may be set according to the
purpose of the study. After evaluating all individuals, using a small ∆t, the time is
incremented by ∆t. The algorithm is finalized when the time reaches its final value
tf .

Here, at each instant of time, each individual is evaluated, in which the following
transitions may occur:

• each one is randomly chosen to death (and birth another susceptible) with
probability µ∆t;
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• otherwise, if the individual is infected, another individual must be randomly
chosen, who may be infected with probability β∆t

N−1 ;
• if the individual is infected, its recovery may be implemented with

probabilityγ∆t.

2.3 Equivalence between SIR and IBM

This section justifies the proposed IBM, showing that its result converges, on
average, to the result of the SIR model. For this, consider the following events,
defined in the time interval (k∆t, (k + 1)∆t):

• ∆(k): one individual of the category I recovers, going to the category R;

• Ω(k): one individual dies and, consequently, another one is born in category
S;

• Γ(k): one individual of category S is randomly drawn;

• Φ(k): one individual has a contact with an individual of the category I;

• Λ(k): one individual of the category S goes to the category I.

The probability of an individual to recover is: P (∆(k)) = γ∆t, the probability
of renewal of an individual is: P (Ω(k)) = µ∆t, and the probability of new infections
is: P (Λ(k)) = P (Γ(k) ∩ Φ(k)) = P (Γ(k))P (Φ(k)), because they are independent
events. Therefore, the probability of drawing a susceptible individual is:

P (Γ(k)) =
S(k)

N
, (6)

the probability of contact with an infected individual is proportional to the number
of infected persons present at that time:

P (Φ(k)) =
β∆t

N − 1
I(k), (7)

and, from Equations (6) and (7), follows that:

P (Λ(k)) =
β∆t

N − 1

S(k)I(k)

N
. (8)

The average number of individuals per unit of time of class I who recover from
infection and pass into class R is given by: γ∆tI(k). The average numbers of
individuals, per unit time, of the classes S, I and R that die and are replaced by
others of the class S are given, respectively, by: µ∆tS(k), µ∆tI(k), µ∆tR(k).

In IBM, at each time interval, the algorithm is executed once for each individual,
that is, for N times. Thus, the average number of individuals, per unit of time,
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going from class S to class I is given by:

N
β∆t

N − 1

S(k)I(k)

N
. (9)

For large values of N , Equation (9) can be rewritten as:

β∆tS(k)I(k)

N
. (10)

These features allow to mathematically describe the dynamics of the average
behavior of the IBM as:

S(k + 1) = S(k) + µ∆tN − µ∆tS(k)− β∆tI(k)S(k)

N
,

I(k + 1) = I(k)− µ∆tI(k)− γ∆tI(k) +
β∆tI(k)S(k)

N
,

R(k + 1) = R(k) + γ∆tI(k)− µ∆tR(k).

(11)

Notice that Equation (11) matches with the discrete version of Equation (1),
used to obtain solutions of the SIR model by numerical integration. Thus, it can be
concluded that the proposed IBM model converges on average to the result of the
SIR model.

3 IBM in Random and Scale-Free Networks

An important feature to consider in modeling epidemics is the social behavior of
individuals. Generally, SIR and IBM models consider that all individuals are equally
likely to relate to each other, ie contacts between individuals are randomly chosen
following a uniform distribution. However, this is not found in today’s societies,
where we find individuals with different numbers and types of relationships.

Generally, in the epidemiological context, the nodes of the networks are the
individuals of a certain population and the edges represent the contacts that can be
made between two individuals.

The SIR and IBM models in their original formulation have the relationships
between individuals represented by a complete graph, in which every node has edges
connecting it with all others. In this work, we seek for models in which the relations
(edges) between the individuals (nodes) of the population are represented by any
network. The insertion of social networks in the SIR model is not a simple task, but
in IBM it may be simpler, which makes this model a valuable tool. The types of
networks used in this work are: random and scale-free.

3.1 Random Networks

The model of a random network has N nodes and k connections randomly
chosen from the N(N − 1)/2 possible connections (ERDÖS; RÉNYI, 1959). A
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number of CkN (N − 1)/2 equally likely different graphs can be generated. Therefore,
the total number of connections is a random variable proportional to the probability
p with expected value given by:

E(k) = p

(
N(N − 1)

2

)
(12)

The number of edges in each node follows a Poisson distribution, where histogram
of the number of connections is shaped like a Gaussian. Therefore, these networks
are also called Gaussian networks.

3.2 Scale-Free Networks

Some authors (ALBERT; BARABÁSI, 2002) have modeled a network that has
a distribution of connections that follows a power law, ie few nodes establish many
connections and many nodes establish few connections. Thus, the probability of a
connection exists is given by:

P (k) = k−γ (13)

where k is the connectivity coefficient or number of connections and the exponent γ
usually ranges between 2 and 3 for most real networks. As power laws are independent
of any scale characteristic, these networks are now referred to as scale-free networks.
Non-scale networks are present in a wide variety of real-world systems in several
areas of knowledge.

The construction of a scale-free network can be done by adding new nodes to
the current network in a progressive way. The network starts with N disconnected
nodes. Firstly, a couple of nodes are randomly drawn, and the connection is made
between them. After this initiation, an iterative process is executed in which, at
each step, a node not yet connected is randomly drawn, and is connected to another
randomly node already belonging to the network. In each addition, connections
are established following the principle of preferential attachment, with probability
described by:

P (ki) =
ki
M∑
i=1

ki

(14)

where ki is the number of connections of node i. When all nodes are already
connected, it proceeds by drawing contacts between nodes belonging to the network,
using the principle of preferential attachment, until a total of kN edges are reached.

3.3 Proposed IBM in Networks

Here, a new version of IBM is proposed, which considers that individuals are
organized in any type of network (specifically, a complete graph, a random network
or a scale-free network). This means a modification in the paradigm of the infection
process: for each individual, look for the pair to be infected just in the list of
adjacencies of the current individual, which corresponds to its neighbors.
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Generally, the addition of different networks will greatly limit the spread of
the epidemic. In fact, the spread of the disease will be slower, since using the same
transmission coefficient (β), there are now far fewer neighbors to go through and thus
possibly infect (YOUSSEF; SCOGLIO, 2011). The concept of density of the network
can be used to find an adjusted β value, which behaves similarly to the original IBM.
The value of the adjusted transmission coefficient for IBM with network is defined
as β̄ and the Equations (7) and (8) with the adjusted transmission coefficient β̄ are
changed by

P (Φ(k)) =
β̄d∆t

N − 1
I(k), (15)

and, from Equations (6) and (7), follows that:

P (Λ(k)) =
β̄d∆t

N − 1

S(k)I(k)

N
. (16)

which seeks to make the expansion of the epidemic in this network resemble the
expansion in the original IBM using β, the Equation 11 can be rewrite, and the
relationship between these two transmission coefficients is found:

β = β̄d = β̄
k

N − 1
(17)

where d is the density of the network (defined by k/(N−1)), k is the average number
of contacts and N is the number of individuals in the population.

As in most of the research works in this area, static networks were used here, ie
networks in which nodes and connections do not change over time. The explanation
for this premise is that the dynamics of the epidemic is faster than the changes in
the nodes of the network, because the average life span of individuals is much larger
than the lifetime of an epidemic.

The proposed IBM has been implemented according to the Algorithm 1. The
state changes occur with the probabilities described above, comparing with a number
drawn with uniform distribution in the interval [0,1]. For death and recovery, it is
to compare with µ∆t and γ∆t, respectively, and for infection it is to compare with
(β∆t)/(N − 1) for each contact with another individual, which may be susceptible
or not. Notice that this algorithm can be used for any kind of networks, including a
complete graph, which would correspond to the original IBM.

4 Numerical Results

This section describes the results obtained through the simulations with the
aim of achieving the objectives of this work: comparison between IBM and SIR
models, effects of variation of some parameters of these models, behaviors observed
after the addition of different networks to the IBM.

Simulations are performed in a population of N = 490, 000 and average numbers
of neighbors k = 8 and 24. The other parameters used are: ∆t = 0.1 (time step),
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Algorithm 1: IBM-networks

1 FirstInfected {Index of the initial infected}
2 Pop[:,0]← 0 {Generates an initial susceptible population}
3 Pop[FirstInfected,0]← 1 {Initial infection}
4 for t← 1 to tf step ∆t do
5 for n← 1 to N do
6 if rand() < µ∆t then
7 Pop[n, t].estado← 0 {Death}
8 else
9 if Pop[n, t− 1].estado = 1 then

10 foreach i ∈ adjacency list of n do

11 if i 6= n and rand() < β∆t
N−1 then

12 if Pop[i, t− 1].estado = 0 then
13 Pop[i, t].estado← 1 {Infection}
14 end

15 end

16 end
17 if rand() < γ∆t then
18 Pop[n, t]← 2 {Recover}
19 end

20 end

21 end

22 end

23 end

µ = 1/60, γ = 1/3, β = 3.5, β̄ = 3.5(N − 1)/k, with the following initial conditions:
It=0 = {1, 1% N , 10% N}, St=0 = N − It=0 and Rt=0 = 0. The value of the
infection coefficient β̄ is defined according to Equation (17).

4.1 IBM in Random Networks (IBM-RN)

In this subsection, the effects caused by considering random networks in IBM
(called as IBM-RN) are studied.

For first, the effect of the variation in the average number of neighbors 8 and 24
is studied. Figure 1 shows the average temporal curve of the IBM-RN by considering
k = 8 and 24, in relation to the SIR curve. It is shown both the time evolution
of infected in the initial stretch of the disease spread and in the final stretch, in
order to highlight the differences among them. It is observed that as the number of
neighbors increases, a larger number of infected persons is verified and this peak is
reached more quickly. Furthermore, increasing the number of neighbors leads to a
result closer to that obtained by the simulation of the SIR, both in the transitory
and in the steady state. In fact, in the limit k = N − 1 case, the random network is
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a fully connected network, which is the original IBM version, that has already been
shown to be equivalent to the SIR model. It is worth noting that the final number
of infected (I∗) grows as a function of the number of neighbors: SIR (k = N − 1),
k = 24 and k = 8. However, the percentage difference is small (between 3.5% and
4.3%). Considering 8 neighbors, it is possible to verify that R0 presents an average
value of 4.93. Using It=0 = 1 the eradication of the disease was verified in only 6
of the 100 executions. Using It=0 = 1% N and It=0 = 10% N there was a similar
behavior regarding the equilibrium, but with no cases of eradication of the disease.
Considering 24 neighbors, the number of eradications for the values of It=0 was
exactly the same, but R0 presented a larger value, corresponding to an average value
of 6.55.

Figura 1 - Mean temporal evolution curves in IBM-RN varying the number of
neighbors. Temporal evolution of the infected population with a focus
on the initial stretch of the disease spread and in the final stretch; and
the phase plans for each of the values of k. The parameters used for the
simulation of SIR and IBM are: N = 490, 000, ∆t = 0.1, k = {8, 24},
µ = 1/60, γ = 1/3, β = 3.5, β̄ = {214375.0, 71458.1875}, St=0 = 489999,
It=0 = 1 and Rt=0 = 0.

Now, the effect of the variation in the initial number of infected is analyzed.
Figure 2 shows the effect of this variation on the temporal intensity of infected and
susceptible people in a random network of 8 neighbors, in relation to SIR. Just like
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in SIR, and therefore in the IBM original form, as It=0 increases there is an increase
in the peak intensity, which occurs more rapidly. As the peak becomes smaller
and later, the curve becomes smoother, which does not occur in the SIR model.
It is believed that this smoothing is due to the lower number of initially infected
individuals that makes the spread of disease slower in the random network. This
same result is obtained for different numbers of neighbors, as in the case k = 24,
wherein as the number of neighbors increases the result is getting closer to that
obtained in the SIR model.

Figura 2 - Mean temporal evolution curves in IBM-RN varying the initial number
of infected. Temporal evolution of the infected population and the phase
plans for each of the values of It=0. The parameters used for the simulation
of SIR and IBM are: N = 490000, ∆t = 0.1, k = 8, µ = 1/60, γ = 1/3,
β = 3.5, β̄ = 214375.0, It=0 = {1, 1% N , 10% N}, St=0 = N − It=0 and
Rt=0 = 0.

The impact of the variation of the initial number of infected in the final number
of infected is analyzed using k = 8 neighbors. Figure 3 shows the boxplot of the
values of I∗ for each initial infected: 1, 1% N e 10% N , and the value observed in
the SIR model. The 6 eradication cases that occurred in the case of just 1 initially
infected were withdrawn. It can be seen that the values of I∗ of the samples of
IBM-RN are inferior to the SIR, even though a much higher transmission coefficient
(β̄) was used. From the Lilliefors test, each sample of IBM-RN was found to be
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normal at 95% confidence; by the Bartlett test, they are homocedastic with 95%
confidence. The data are independent as they were generated using an appropriate
random number generator. Since the premises of ANOVA have been respected, it
shows that there are no statistical evidences, with 95% confidence, that there are
differences between the means of I∗ varying the initial number of infected, just as
it occurs in the SIR model and IBM in their original formulation, which indicates
that the initial number of infected influences in the transient state but not in the
stationary state. With fewer infected individuals initially, the disease expands more
slowly, but goes to the same equilibrium.

Figura 3 - Boxplots of the final infected values I∗ for different initial number of
infected It=0 in IBM-RN.

It is believed that the proposed IBM-RN may better represent a real population,
as an alternative to traditional SIR/IBM models, making possible to occur individuals
with different neighbors. However, since the degree distribution of individuals is
described by a Poisson distribution, the most individuals will have near-average
numbers of neighbors, which may not approach to the reality.

4.2 IBM in Scale-Free Networks (IBM-SFN)

In this subsection, the effects caused by the addition of the scale-free network to
IBM (called as IBM-SFN) are studied, considering an average number of neighbors
fixed equal to k = 8.
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Figure 4 shows the average temporal curve of the IBM-SFN, in relation to the
SIR curve. It is shown both the time evolution of infected in the initial stretch of the
disease spread and in the final stretch, in order to highlight the differences among
them. It can be observed that in the scale-free network, unlike the random network,
the rise to the infected peak starts faster than in the SIR model, even if the peak
value is lower. This indicates that the network topology causes the disease to spread
more rapidly at the outset, even though the same number of individuals are not
contaminated, than in IBM in its original formulation. Here again, it is possible
to infer that the final number of infected I∗ grows as a function of the number of
neighbors, with the SIR value as a limiting factor, even though the percentage is
small, with values ranging approximately between 3% and 4.3%. For only 1 initially
infected individual, it is possible to verify that R0 presented an average value of
3.94. The disease was eradicated just in 8 out of 100 trials. In simulations using
It=0 = 1% N and It=0 = 10% N similar behavior was observed in equilibrium and
no cases of disease eradication occurred.

Figura 4 - Mean temporal evolution curves in IBM-SFN for the number of neighbors
k = 8. Temporal evolution of the infected population with a focus on
the initial stretch of the disease spread and in the final stretch; and the
phase plans. The parameters used for the simulation of SIR and IBM are:
N = 490, 000, ∆t = 0.1, k = 8, µ = 1/60, γ = 1/3, β = 3.5, β̄ = 214375.0,
St=0 = 489999, It=0 = 1 and Rt=0 = 0.
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Now, the effect of the variation in the initial number of infected is analyzed.
Figure 5 shows the effect of this variation on the temporal intensity of infected and
susceptible people in a scale-free network of 8 neighbors, in relation to SIR. For
IBM-SFN with k = 24 a similar behavior is observed. Just like in IBM-RN, as It=0

increases there is an increase in the peak intensity, which occurs more rapidly, and
as the peak becomes smaller and later, the curve becomes smoother.

Figura 5 - Mean temporal evolution curves in IBM-SFN varying the initial number
of infected. Temporal evolution of the infected population and the phase
plans for each of the values of It=0. The parameters used for the simulation
of SIR and IBM are: N = 490, 000, ∆t = 0.1, k = 8, µ = 1/60, γ = 1/3,
β = 3.5, β̄ = 214375.0, St=0 = 489999, It=0 = {1, 1% N , 10% N} and
Rt=0 = 0.

The impact of the variation of the initial number of infected 1, 1% N e 10%
N in the final number of infected is analyzed. Figure 6 shows the boxplot of the
values of I∗ for each initial infected, and the value observed in the SIR model. The 8
eradication cases that occurred in the case of just 1 initially infected were withdrawn.
As in IBM-RN, it can be seen that the values of I∗ of the samples are inferior to the
SIR, even though a much higher transmission coefficient (β̄) was used. Thus, the
expansion of the disease in the scale-free network is faster than in SIR, although the
infected peak is smaller. It is also verified that with fewer infected individuals at the
beginning, the disease expands more slowly, but goes to the same equilibrium of cases
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where there were more initially infected individuals, just as occurred in the random
network. Using the Lilliefors test with 95% confidence, it can be seen that premise
of normality of ANOVA has not been respected. For this reason, the Kruskal Wallis
test was performed, which shows that there are no statistical evidences, with 95%
confidence, to affirm that there are differences between the means of I∗ observed
when the initial number of infected in IMB-SFN with 8 neighbors, just as it occurs
in the SIR, IBM in its original formulation and in IBM-RN. It is noteworthy that,
by the Levene test, with 95% confidence, the samples are homocedastic and the
data are independent since they were generated through the use of an appropriate
random number generator.

Figura 6 - Boxplots of the final infected values I∗ for different initial number of
infected It=0 in IBM-SFN. The parameters used for the simulation of SIR
and IBM are: It=0 = {1, 1% N , 10% N}, St=0 = N − It=0 and Rt=0 = 0.

It is believed that the scale-free network can better represent a real population
since it is based on a construction in which random contacts are drawn, taking into
account the criterion of preferential attainment. It is verified in its distribution of
the neighbors with the occurrence of many individuals with few contacts and few
individuals with many contacts. It is believed that this is approaching reality since
there are people who are actually more popular and therefore more connected while
others are less connected.
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4.3 Comparison between IBM in Random and Scale-Free Networks

The experiment of this subsection compares the parameters of the IBM model
in random (IBM-RN) and scale-free (IBM-SFN) networks with the parameters of
the equivalent SIR model, showing if it is possible to adjust the time evolution of
these IBM, so that they are statistically equivalent to the respective trajectories of
the SIR model, as can be done for the original IBM. Specifically, in relation to the
SIR parameters (γ, β̄ and µ) and to the IBM estimated parameters (γ̂, β̂ and µ̂),
the following null hypotheses are defined:

Hγ
0 : γ̂ = γ

Hβ
0 : β̂ = β

Hµ
0 : µ̂ = µ .

Figure 7 show the relative frequency histograms for the IBM estimated
parameters, within the respective Gaussians with same means and standard
deviations, their theoretical value and the 5% critical values of significance of
the tests. In this simulation, the IBM estimated parameters are:

• IBM-RN: γ̂ = 0.0517, β̂ = 0.1056 and µ̂ = 0.0104;

• IBM-SFN: γ̂ = 0.0673, β̂ = 0.1504 and µ̂ = 0.0117.

Therefore, considering IBM-RN, the test does not reject none of the hypotheses Hγ
0 ,

Hβ
0 and Hµ

0 with a significance level of 5%. In relation to IBM-SFN, the hypothesis

Hµ
0 is not rejected, but hypotheses Hγ

0 and Hβ
0 is rejected with level significance of

5%. This means that the average IBM-RN result can be obtained by simulating an
appropriate SIR model, which should not occur for the average IBM-SFN result.

Figure 8 illustrate the infected and susceptible curves obtained with the mean
of the IBM evolutions and the curves of the corresponding SIR model. It can be
highlighted that, despite the reasonable adjustment in the number of infected of the
SIR model in relation to the IBM mean curves, the number of susceptible curve has
notable differences in IBM-SFN. Hence, a study is made on the susceptible curves,
in order to validate this difficulty in the adjustment of the parameters of the SIR
model for this network. Indeed, for each IBM susceptible curve, the residue of the
curve is defined as the sum of the residues at each point of the curve:

R(S) =
∑

S − SSIR. (18)

Considering the same parameters estimated from the SIR model, Monte Carlo
simulations are made using IBM in its original formulation to generate the null
hypothesis of the mean of the residuals. The residue of IBM in networks and of IBM
in its original formulation are denoted by RR and RM , respectively. The alternative
hypotheses are considered in order to verify the differences found in the susceptible
curves. The level of significance used in all tests is α = 0.05. Table 1 shows the
results obtained from this analysis. Notice that, in fact, the empirical p-values found
corroborate with the susceptible graphs of Figure 8.
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Figura 7 - Histograms of the parameters estimated for IBM-RN and IBM-SFN.
Gaussian curves of the same means and standard deviations are also
shown. The parameters used for the simulation of SIR and IBM are:
N = 490, 000, ∆t = 0.1, k = 8, µ = 1/60, γ = 1/3, β = 3.5, β̄ = 214375.0,
St=0 = 489999, It=0 = 1% and Rt=0 = 0.

IBM in networks H0 H1 empirical p-value
IBM-RN RR = RM RR 6= RM 0.85
IBM-SFN RR = RM RR > RM 0.10

Tabela 1 - Statistical analysis of the number of susceptibility curves obtained by
IBM in networks. The p-values indicate the percentage of IBM executions
in networks that lead not to reject the null hypothesis H0, unfavorable
to the alternative hypothesis H1.

Therefore, it can be concluded that the inhomogeneity of the distribution
of connections between the nodes differentiates the models with respect to their
dynamic behavior. If a community is organized according to a complex random
network, then the IBM of this network behaves according to the SIR model, with
a new transmission rate β, but statistical analyzes indicate that if a community
is organized according to a complex scale-free network, the IBM behavior of this
network has difficulties in being modeled by the SIR model, with a new transmission
rate that preserves its meaning.
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Figura 8 - Comparison between the mean infected and susceptible curves of IBM-RN
and IBM-SFN in relation to the SIR model. The parameters used for
the simulation of SIR and IBM are: N = 490, 000, ∆t = 0.1, k = 8,
µ = 1/60, γ = 1/3, β = 3.5, β̄ = 214375.0, St=0 = 489999, It=0 = 1%
and Rt=0 = 0.

Finally, in order to compare the networks with respect to the basic reproduction
number (R0) a group of 100 simulations of each model with the same parameters as
before, but now with the initial condition of only one individual initially infected
and all others susceptible.

Table 2 summarizes the data found and it can be verified that the value of the
mean R0 is higher in the random network than in the non-scale. This was already
expected in the non-scale network because of the existence of many individuals with
few neighbors and few with many ones. In the random network, most individuals
have the same number of neighbors, which means that the disease spreads more
easily. It is also verified that the value presented for the SIR has always been higher
than the one observed in the other models. It can also be observed that the higher
the value of R0, the greater the value of the mean infected individuals in the final
time I∗.

5 Conclusions

This paper proposed a version of IBM that is proved to converge, on average,
to the result of the SIR model, and studied the behavior of this IBM in two different
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Model R0 I∗

IBM-RN 4.93 3.494
IBM-SFN 3.94 3.214
SIR 10 4.285

Tabela 2 - Comparison of the mean values of basic reproduction number R0 and the
number of infected individuals in the final time I∗ in the models IBM-RN,
IBM-SFN and SIR.

types of network: random and scale-free networks, seeking to better represent what
is expected to happen in a more realistic population. In fact, the use of different
networks showed different behaviors in the spread of an epidemic in relation to the
original IBM:

• The peak of infected in IBM in networks is always lower than in the SIR model
and the rise and fall is smoother. While in IBM-RA the peak of infected is
always later than in SIR, the opposite occurs in IBM-RSE. By increasing the
average number of neighbors, the curve of infected individuals is closer than
in the SIR model.

• The dynamics present differences throughout the transient regime, being that
the scale-free network has a faster expansion than in the SIR model, which is
faster than in the random network. However, the means of the final infected
do not change in the models in networks. This indicates that the network
topology does not seem to influence the permanent state, only the transient
state.

• The mean value of R0 is lower in the scale-free network, then in the random
network, and are both always smaller than the theoretical value of the SIR
model. The increase in the mean value of R0 was reflected in the increase in
the mean value of the final number of infected.

• The scale-free IBM does not seem to be tuned to the SIR model, as can occur
in the original IBM and in IBM in random networks. It was concluded that
the non-homogeneity of the distribution of links between the nodes distances
the models with respect to their dynamic behavior, having the SIR model as a
baseline.

Other approaches may be undertaken in future works, such as the implementation
of mechanisms to control the epidemic by using of vaccination or isolation.
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RESUMO: Este trabalho propõe uma versão do Modelo Baseado em Indiv́ıduos (MBI) que

converge, em média, para o resultado do modelo SIR (Susceptible-Infected-Recovered),

e estuda o efeito deste MBI em dois tipos de redes: aleatória e sem escala. Um

estudo de caso computacional numérico é realizado, utilizando redes de larga escala

implementadas por uma estrutura eficiente. Testes estat́ısticos são realizados para

mostrar as semelhanças e diferenças entre os modelos de redes e o modelo determińıstico

tomado como referência. Resultados de simulação verificam que diferentes topologias

de redes alteram o comportamento da propagação da epidemia nos seguintes aspectos:

evolução temporal, reprodutibilidade basal e número de infectados no final.

PALAVRAS-CHAVE: Modelo Baseado em indiv́ıduos; redes aleatórias; redes sem escala.
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