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ABSTRACT: Genotype x environment interaction is a key issue in plant breeding and
new cultivars development. The modelling of such interactions has huge importance
to decisions in plant breeding and breeding program optimization. In this context
AMMI, W-AMMI and GGE models claims to address such interactions. The present
paper aims to check the behaviour of such models in face of data with well behaved
parametric properties. The results shows that the three models are efficient to model
GxE interactions.
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1 Introduction

One constant interest in statistics, design and analysis of experiments is the
study of main effects of factors and, in many cases, of the interactions among
different levels of factors.

In the context of Multi Environmental Trials one of the main issues to be
evaluated is the interaction between the factors genotype and environment.

Duarte and Venkovsky (1999), Yan et al. (2000), Hongyu et al. (2014),
Hongyu et al. (2015), Rodrigues et al. (2016) show the role and importance of
studying genotype x environment interactions and Sarti (2013) shows its economical
importance for decisions in plant breeding. By its turn, Yan and Kang (2003)
describes the role of models in cultivar recommendation.

Several models can be used to study interactions among factors and to evaluate
genotype over environment interactions. This is the case of Additive main effects
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and multiplicative interaction - AMMI models Gauch (1992) and GGE model Yan
and Kang (2003), as well as their variants, such as the weighted AMMI - WAMMI
Hongyu et al. (2015) and the robust version of AMMI Rodrigues et al. (2016).

Every statistical model claims to answer a particular question. To check
how good the models answer such questions we can use simulated data, with well
established properties, such as the ones described in data section of this paper.

The scope of this study is to compare AMMI, WAMMI and GGE models in
the context of simulated dataset called simf2 described in the methodology obtained
from Sarti (2019). The comparison of such statistical models can supply different
parameters and information about the same key interest question and produce
insight about genotype x environment interactions.

In addition to the comparison between the models, results show that AMMI,
W-AMMI and GGE can be used in situations where the data are generated by a non
normal but yet continuous distribution of probability such as logistic distribution.

2 Methodology

2.1 Data

In this paper we use a dataset called simf2 obtained via simulation by Sarti
(2019).

This data set is comprised by simulated values of yield (ton ∗ ha−1) for 10
maize hybrids genotypes in a 4 blocks experimental design conducted across five
environments. The later represent the macro regions of maize production in Brazil.
The data were simulated from distributions of probability fitted for data sets of
real muti environmental maize trials in Brazil. Details about the fitting of such
distributions and the simulations can be found on Sarti (2019).

The structure of simf2 is presented in Table 1

Table 1 - General structure of simf2 data set
block environment yeild ton ∗ ha−1 genotype
1 e1 9735.15 g1
2 e1 10483.14 g1
3 e1 11198.90 g1
4 e1 12430.01 g1
1 e2 7398.40 g2
2 e2 8146.39 g2
... ... ... ...
3 e5 9746.52 g10
4 e5 10977.63 g10

The statistical model for this block design is:
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yijh = µ+ gi + ej + (ge)ij + bh(j)
+ εijh (1)

Where:

• yijh is the response of i-th genotype in j-th environment for block h andi =
1...g,j = 1...e and h = 1...r

• µ is constant, frequently the general mean

• gi is the effect of the genotype i

• ej is the effect of the environment j

• (ge)ij is the interaction factor for genotype i in the environment j

• bh(j)
is the effect of block h inside environment j.

• εijh is the experimental error associated to genotype i, inside environment j
in the block h, assumed

The distributions of probability from where Sarti (2019) simulated the dataset
simf2 are Logistic, Mixture of Normal and Normal. They were fitted from real
data experiments in Brazil as shown in Sarti (2019).

This made possible an important result of this paper showing that AMMI,
W-AMMI and GGE modelling can be applied in situations where the response
variable comes from a non normal, but is still continuous model, like the logistic
distribution.

The relationship between the region from Brazil used in the simulations to
obtain simf2, and the respective model used by Sarti (2019) to describe the region
where the experiments were conducted are shown in Table 2.

Given the economical importance of Maize in central Brazil, Sarti (2019)
chooses 3 environments to represent it e1, e4 and e5.

For our purposes we will consider the general structure of simf2 shown in
Table 1 and more details about how the data set was obtained can be found in Sarti
(2019).

The methodology used by Sarti (2019) in the simulation mentioned before
enforced the relationships between genotypes and environments as stated in the
Table 3.

In this table we see specific and non specific adaptation of genotypes to
environments. For more details about it we suggested the reading of Sarti (2019).

Later in this article our interest will be the ability of AMMI, W-AMMI and
GGE models to capture the relationships stated in Table 3.
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Table 2 - Relationship among distributions from where simf2 dataset was simulated
and Brazilian region they represented, as shown in Sarti (2019)

environment
related
region
considered

probabilistic
model /
parameters

e1,e4,e5 Center
logistic
scale = 1106.83 kg
location = 8392.22 kg

e2 North

normal mixture
mean1 = 4640.68 kg
mean2 = 8425.84 kg
standard deviation1=1239.72 kg
standard deviation2=1239.72 kg

e3 South
normal
mean = 11562.492 kg
standard deviation = 1620.763 kg

Table 3 - Specific relationships between genotype x environment
genotype specific environment
g1 e1 (center1)
g2 e2 (north)
g3 e3 (south)
g4 e4 (center 2)
g5 e5 (center 3)
g6 e1 (center 1)
g7 e4 (center 2)
g8 e3 (south)
g9 e4 (center 2)
g10 e2 (north)

2.2 Analysis of variance

As a protocol for proceeding AMMI analysis we will use the recommendations
presented by Gauch (2013) who suggests the following steps (i) analysis of variance,
(ii) model diagnosis, (iii) mega-environment delineation, and (iv) agricultural
recommendations.

The same reasoning will be applied to weighted AMMI and an analogous
process to GGE analysis.

Analysis of variance is a statistical procedure to investigate the effect of two or
more levels of treatments. Each experimental design has its own analysis of variance
design.

In case of Multi Environmental Trials (MET) we conduct an analysis of

Rev. Bras. Biom., Lavras, v.38, n.3, p.290-323, 2020 - doi: 10.28951/rbb.v38i3.433 293



variance to check if the interaction term of the model is significant. If this is the
case, we proceed interaction modelling techniques for the interaction term.

To present the reasoning about ANOVA we present first a single factor design
as shown in Equation 2. Later in this section we expand the model to show how is
the ANOVA for the block design regarding simf2 data set.

yij = µ+ τi + εij (2)

Where:

• µ is the general mean

• τi is the effect of i-th treatment τ

• ε is the expected mean error associated with the measure ε N(o, σ2)

• SQ =
∑I
i=1

∑J
j=1 y

2
ij − C

• C =
(
∑I

i=1

∑J
j=1 yij)

2

IJ

• SQT =
∑I

i=1 y
2
i.

J − C

•
∑I
i=1 yi. is the total of treatment i

• SQres = SQTotal − SQtreat

For which we are interested in testing the following hypotheses:{
H0 ≡ τ1 = τ2 = . . . = τi ≡µ+τi µ1 = µ2 = . . . = µi

H1 ≡ τi 6= τj ≡µ+τi µi 6= µj for at least one contrast
(3)

The analysis of variance in this simple case decomposes the total variance
in different parts, named between treatments and experimental error (inside). In
general these two variations can be measured by sum of squares for each component.

To test hypothesis Ho the test F is used given our parametric context under
the assumptions of normality.

In this case, MSTret/MSRes has a distribution F on (i-j) and I(J-1) degrees
of freedom under iid and normality assumptions.

In some situations, when the same experiments are repeated in some design
inside several environments, a joint analysis can be made. In our case the main
interest is to evaluate if the interaction between genotype and environment are
statistically significant.

The basic model of ANOVA for a block experiment conducted in several
environments is in Equation 4 followed by its ANOVA table.

yijh = µ+ gi + ej + (ge)ij + bh(j)
+ εijh (4)
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Table 4 - Analysis of Variance table for Equation 4
Source of Variation Df Sq Mean Sq
blocks inside environments e(r-1) SQbie MSBie
Genotypes (g-1) SQg MSg
Environments (e-1) SQe MSe
GxE Interaction (g-1)(e-1) SQgxe MSgxe
Residuals e(g-1)(r-1) SQres MSgxe
Total (ger-1) SQres

Equation 4 describes the joint analysis of variance for detecting genotype by
environment interactions.

Where:

• yijh is the response of i-th genotype in j-th environment for block h andi =
1...g,j = 1...e and h = 1...r

• µ is constant, frequently the general mean

• gi is the effect of the genotype i

• ej is the effect of the environment j

• (ge)ij is the interaction factor for genotype i in the environment j

• bh(j)
is the effect of block h inside environment j.

• εijh is the experimental error associated to genotype i, inside environment j
in the block h, assumed

Is this context of joint analysis mean analysis require estimatives of mean
residual variance QMEM =

∑
j SQResj∑
j=1GFRes

and j = 1, 2...e

2.3 AMMI model

According to Dias (2005), Hongyu (2015), Hongyu et al. (2015), Rodrigues et
al. (2016), Sarti (2013) and Sarti (2019) in data set containing g genotypes and e
environments we have g x e interaction components to be estimated. Each effect is
unfolded in its relative components.

Hongyu (2015) citing Gauch (1992) relates that the mean of a variable for
a given genotype in an environment are result of additive effects (additive main
effects). The interaction effects, by its turn, are a result of a multiplication
of contributions from the genotypes and from the environments (multiplicative
interaction effects).
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Hongyu (2015) states that given a set of g genotypes tested inside e
environments with r repetitions can be summarized as in Equation 5 that represents
a matrix of means of genotypes inside each environment.

Ygxe =


ȳ1,1 ȳ1,2 · · · ȳ1,e
ȳ2,1 ȳ2,2 · · · ȳ2,e
...

...
. . .

...
ȳg,1 am,2 · · · ȳg,e

 (5)

Hongyu (2015) states that in cases when interactions are statistically
significant the SQgxe should be decomposed to avoid additional residual in some
sum of squares.

Gollob (1968), Mandel (1969) suggest the decomposition of the interaction
GxE term by the bilinear term shown in Equation 6.

(ge)ij =

n∑
k=1

λkγikαjk (6)

In equation 6 λ1 ≥ λ2 ≥ · · · ≥ λp, e γik, αjk satisfy the ortonormalization
coefficient

∑
i γikγ

′
ik =

∑
j αjkα

′
jk = 0 para k 6= k′ and

∑
i γ

2
ik =

∑
j α

2
jk = 1.

On the other hand, the statistical equation underlying AMMI models is shown
in Equations 7, 8 and 9, based in Duarte and Vencovsky (1999), Dias (2005), Hongyu
(2015) and Sarti (2019).

yijr = µ+ gi + ej +

n∑
k=1

λkγikαjk + ρij + br(j) + εijr (7)

Where

• yijr is value for i-th genotype inside environment j in r-th block and i =
1, 2, . . . g, j = 1, 2, . . . , e and r = 1, 2, . . . , h;

• µ is a constant that corresponds to the general means

• gi is the effect of genotype i

• ej is the effect of the environment j

• λk is the square root of eigen value k from matrix (GE)(GE)t or (GE)t(GE)
with k = 1, 2, . . . , p and p = min{(g − 1)(e− 1)}

• γik is the i-th element of column vector γk associated to λk

• αjk is the j-th element associated to the vector row αk associated to to λk

• ρij is the additional residual value that contais the two multiplicative efects
terms not included in the model
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• br(j) is the effect of block r inside environment j

• εijk is the experimental error associated to genotype i environment j and block
r assumed iid normally distributed with (µ, σ2/r) and r the number of blocks

Yijk =

additive︷ ︸︸ ︷
µ+ gi + ej +

multiplicative︷ ︸︸ ︷
n∑
k=1

λkγikαjk +εijk (8)

Yijk =

additive︷ ︸︸ ︷
µ+ gi + ej +

multiplicative︷ ︸︸ ︷
n∑
k=1

λkγikαjk

p∑
k=n+1

λkγikαjk +εijk (9)

Hongyu (2015) citing Gauch (1992), Dias (2005) and Sarti (2019) state that
the term (ge)ij is represent by a summation of p terms, each of the λk expressed in
terms of the same unit of Yij by an effect of genotype (γik) and an environmental
factor (αjk), both of them being adimensional, or

∑n
k=1 λkγikαjk. The term λk

describes the information relative to the interaction in the k-plot, therefore, the
summation of p plots comprises (SQGEI) =

∑n
k=1 λ

2
k and the effects γik and αjk

represent the weights of genotypes i and environment j in this specific part of the
interaction.

Hongyu (2015) citing Gauch (2013) states that AMMI models do not try
to recover all SQGEI but just the part of it most determined by genotype and
environment (rows and columns of matrix GE).

Hongyu (2015) quoting Duarte e Venkovsky (1999) states that AMMI models
separate the pattern

∑n
k=1 λkγikαjk from the noise

∑p
k=n+1 λkγikαjk.

Hongyu (2015) states that each element from the GE matrix can be given by
the relation stated in Equation 10. For details about the single value decomposition
of matrix GE we recommend Hongyu (2015) and Sarti (2019).

(ĝe)ij = Yij − Ȳi. − Ȳ.j + Ȳ.. (10)

Hongyu (2015) citing Gauch (2013), Duarte and Venkovsky (1999) and Dias
(2005) state that AMMI models explain the sum of squares of the interaction by an
approximation of rank n to the matrix GE, in general with n much less than p, this
aims to explain the GEI by a reduced number of axes, resulting in an informative
model without loosing too many degrees of freedom.

According to Gauch (2013), Duarte and Venkovsky (1999) and Dias (2005),
Hongyu et al. (2015) and Hongyu (2015) show that procedures can be used to
determine the number of axes to be retained in order to explain the patterns related
to the interaction. The authors state that one method is to quantify the number
of degrees of freedom related to SQGEI related to each member o AMMI family.
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Thus we can get the mean square related to each plot. After that an F-test can be
performed to evaluate the significance of each component relate to the mean square
error.

Hongyu (2015) states that a stop rule to select which AMMI model to be used
(AMMI0,AMMI1,...,AMMIn) is based in a F test for the axes of interaction.

Hongyu (2015) quoting Cornelius (1993) states the statistic described in
Equation 11 which is considered a robust method. Under the hypothesis that there
are no more than n multiplicative terms for the interaction it follows a F distribution
with parameters (g− 1−n)(e− 1−n) degrees of freedom for residuals. In this case
Hongyu (2015) states that this can be a good test to get the n+1 first components
of the interaction.

Fr =
SQGEI −

∑n
k=1 λ

2
k

f2QMRes
(11)

where

• λk is the k-th eigen value of the matrix (GE)(GE)t and QMres is the mean
square of the residuals

2.4 Weighted AMMI model

Dias (2005),Hongyu (2015) and Sarti (2019) state that in cases when a
double entry table of data containing genotypes and environments has heterogenous
variances among environments the values of table must have different weights fot
its related residual squares in estimation processes. The same author quoting
Robertson (2014) states that when the variance and covariance structure for the
error differ significative among the environments this should be considered in AMMI
analysis.

In this paper we use the generalization proposed in Hongyu et al. (2014) ,
Hongyu et al. (2015) and Hongyu (2015) named as weighted AMMI and stated in
Equation 12.

yijr/s
2
j = µ+ gi + ej +

n∑
k=1

λkγikαjk + ρij + br(j) + εijr (12)

where

• yijr = is value for i-th genotype inside environment j in r-th block and i =
1, 2, . . . g, j = 1, 2, . . . , e and r = 1, 2, . . . , h;

• s2j is the variance of experimental error of environment j or means square
residual for the related environment

• µ is a constant that corresponds to the general means
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• gi is the effect of genotype i

• ej is the effect of the environment j

• λk is the square root of eigen value k from matrix (GE)(GE)t or (GE)t(GE)
with k = 1, 2, . . . , p and p = min{(g − 1)(e− 1)}

• γik is the i-th element of column vector γk associated to λk

• αjk is the j-th element associated to the vector row αk associated to to λk

• ρij is the additional residual value that contais the two multiplicative efects
terms not included in the model

• br(j) is the effect of block r inside environment j εijk is the experimental error
associated to genotype i environment j and block r assumed iid normally
distributed with (µ, σ2/r) and r the number of blocks

2.5 Genotype main effects + genotype environment interaction - GGE
methods

Sites regression models
Sites regression is a fundamental concept originated by the kind of multi

environmental trials we address in this paper. The reasoning behind this methods
is to explore the GEI interaction via the fundamental relationship expressed in
Equation 13 and its fundamental consequence: P − E = G + GE Hongyu (2015)
quoting Yan and Kang (2003).

p = G+ E +GE (13)

Hongyu (2015) and Hongyu et al. (2014) , Hongyu et al. (2015) argues
that Sites regression methods are based in biplot methods. In this sense, Hongyu
(2015) argues that the methods of sites regression is similar to AMMI modelling,
the difference being that in Sites regression the principal effects of genotypes are
considered together with GEI effect meanwhile in AMMI models they are considered
additive effects.

Sites regression can be mathematically posed as in Equation 14

Ȳij = µ+Gi + Ej + (GE)ij Ȳij − µ− Ej = Gi + (GE)ij (14)

Where:

• Ȳij is the general mean of i-th genotype inside the j-th environment

• µ is the general mean
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• Gi is the effect of i=th genotype

• Ej is the effect of environment j

• GEij is the effect of the genotype x environment interaction

The same Equation can be stated as:

Ȳij − µ− Ej = gi1e1j + gi2e2j + εij (15)

These relationships can be rewritten and be used to describe a single value
decomposition as shown in Hongyu (2015) quoting Yan and Kang (2003) and Sarti
(2019).

Ȳij − µ− Ej = λ1µi1vj1 + λ2µi2vj2 + εij (16)

Where:

• λ1 λ2 are the greatest eigenvalues of first and second principal components

• µi1 and µi2 are the eigen vectors of genotype i for Principal components 1 and
2 and vj1 and vj2 the eigen vectors of environment j to Principal Components
1 and 2.

GGE Biplot
Hongyu (2015) quoting Yan and Kang (2003), Yan and Thinker (2006), Yan

(2010) and Yan (2011) states that the GGE biplot model is based in a graphical
representation of a matrix of data. These biplots models are built in the first and
second principal components that use Site Regression modelling. Same authors stat
that in conditions when the first principal components is highly correlated to main
effects of genotypes it can be viewed as a proportion of yield given by genotype
effect. Hongyu (2015) and Hongyu et al. (2014) , Hongyu et al. (2015) argue that
the second principal component represent the GEI part of the variable. Hongyu
(2015) and Hongyu et al. (2014) , Hongyu et al. (2015) state also that three main
aspects can be obtained via gge biplot Yan and Kang (2003):

• Grouping of environments with similar behaviours showing the genotypes with
greater potential and its identification inside each subgroup of environments

• Inter relationship between environments indicating the best environment to
test the cultivars e indicating which environment is less favorable

• Inter relationship among genotypes making easier their comparisons and
ranking
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Hongyu (2015) states quoting Yan and Kang (2003) and Yan et.al. (2000)
that when different genotypes are adapted to different groups of environments and
the variation between groups is greater than inside groups we have the formation
of a mega environment. Hongyu et al. (2014) , Hongyu et al. (2015) states quoting
Trethowan, et al. (2001) also that this definition of mega environments can be
viewed as an important decision framework for plant breeders.

Hongyu (2015) states that in mega environments studies the mean of the
graphic is not related to the general mean but to the environment mean instead.
Hongyu (2015), Hongyu et al. (2014) , Hongyu et al. (2015) and Yan and Kang
(2003) state that the cosine of an angle between two environments can be seen as
the correlation among them.

Hongyu (2015), Hongyu et al. (2014) , Hongyu et al. (2015) quoting Yan
(2001), Yan (2002) , Yan and Kang (2003) state that GGE biplot is built by means
of the simple dispersion of gi1 and gi2 for genotypes and e1j and e2j for environments.
Hongyu (2015) state yet that the Equation 15is environment centered given origin
to one main factors to be considered in GGE analysis: Evaluations should consider
only one variable by MET. example given: grains weight

To deal with this issue Yan and Kang (2003) proposed the correction presented
in Equation 17

¯Yij − µ− Ej
dj

= gi1e1j + gi2e2jεij (17)

Where

• dj =
√

1
g−1

∑g
i=1(Yij − Ȳ.j)2 is considered the standard phenotypic deviation

for environment j

• Ȳij is the response of genotype i and environment j

• Ȳ.j is the mean of environment j

• g is the number of tested genotypes

Hongyu (2015) states that for MET with just one characteristic the last
correction assume that environments have the same importance, thus, do not allow
to detect differences among environments.

A second transformation can be obtained via

Ȳij/sj − µ− Ej = gi1e1j + gi2e2j + εij (18)

Where:

• sj =
√

1
m(r−1)

∑m
i=1

∑y
k=1(Yijk − ¯Y.ij)2
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• ¯Y.ij is the mean of genotyoe i and environment j in repetition k inside
environment j.

Single values decomposition in GGE biplots
Hongyu (2015), Yan and Kang (2003) and Yan et al. (2001) state that

single value decomposition is very important in biplot analysis returning the
principal components providing measures of the variability captured by each of
these component.

Pge = Ug,rSr,rV
T
e,t[r ≤ min(g, e)] Pij =

r∑
k=1

uikλkvkj (19)

Where

• Pge is a interactions matrix (G+GEi)

• Ug,r is a matrix containing g rows and r columns which characterizes genotypes

• Ve,t has r rows and e columns describes environments

• Sr,r is the diagonal matrix containing r single values.

• Single value decomposition decomposes the matrix in r principal components
each of them containing genotype vector ui, vector environment vj and single
values λ decomposed in Pij expression

• λk ≥ λk+1,

• r is the number of principal components to represent P r ≤ min(g, e). When
r < g there are association between genotypes and if g < r we have association
between environments.

Hongyu (2015) quoting Yan and Kang (2003), states that principal components
cannot be directly computed before making the partition of of single values in
genotypes and environments. This partition is described in Equation 19.

For a biplot (dimension=2) Hongyu (2015) state the Equation 20.

Pij = (λs1ui1)λ1−s1 vj1 + (λs2ui2)λ1−s2 vj2 + εij (20)

Where

• s=[0;0.5;1] is the factor of partition of the single values

• λs1ui1 is used as abcissa and λs2ui2 for genotypes

• λ1−s1 vj1 as abcissa λ1−s2 vj2 as ordinate for environments
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Hongyu (2015) quoting Yan and Kang (2003) informs that the factor s in
previous equations is used to resize scores of rows and columns for a better visual
interpretation of the biplot. In this sense if s=1 the single value partition is centered
in genotypes, if s=0 the allocation is made completely to environment scores if
the value is s=0.5 squared roots of λk will be allocated for both genotype and
environment scores.

Hongyu (2015) states that partition centered in genotypes or in environments
allow evaluation of genotypes and environments of test.

Hongyu (2015) , Yan and Kang (2003) and Dias (2005) state that the
approximation of any element of matrix P of rank 2 can be estimated visually
by inner product of genotype and environment and the cossin of the angle (inner
product property of biplot).

The interpretations of the graphic respects the following rules Hongyu (2015),
Hongyu et al. (2015) and Yan and Thinker (2006).

• if the angle of a genotype and a vector of environment is < 90◦ the genotype
is greater than mean

• if the angle is > 90◦ then is less than average

• if the angle is close to 90◦ then the genotype is closer to the mean

Hongyu (2015) and Yan and Kang (2003) declare that the arrow that passes
through the origin of biplot is the mean average environment (MAE). The arrow
points to a greater average performance of genotypes. The line that is perpendicular
to MAE indicates less stability over environments. In this graph PVS=1 and the
single values are totally directed to genotypic scores Hongyu (2015) quoting Yan
(2011).

Hongyu (2015) and Hongyu et al. (2015) quoting Yan (2011) state that when
data are centered in environments the length of the vector of an environment is
proportional to the stardard deviation of genotypes means, this value being equal
to phenotypic variance σp in a test environment and this can be used as a value of
discrimination of the environment.

Hongyu (2015) and Hongyu et al. (2015) quoting Yan (2011) also argues
that environments with shorter vectors are less discriminative, in other words, all
genotypes have a tendency of performing similarly and thus little or no information
about genoytipic differences can be relevant in this environment, therefore, this
environment should not be used as tester.

2.6 Information criteria

Hongyu (2015), Hongyu et al. (2015) quoting Yan and Thinker (2006) state
an information criteria to evaluate the accuracy of a biplot in describing a two
entry data table. Given a double entry data table containing g genotypes and e
environments, the number of principal components to represent such table is k =
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min(e, g−1). Same authors state that if there is no correlation among environments
all the k PCS should be completely independent and the proportion of total variance
explained by each principal component is 1/k Hongyu (2015).

When some correlation among environments is present the proportion of
variance explained by the first principal components should be greater than 1/k,
and the variance explained by other pcs should be less than 1/k Hongyu (2015),
Hongyu et al. (2015) and Yan and Thinker (2006).

This information criteria can be measure as in Equation 21:

varibility captured byPCi
total variability

× k (21)

Where

• k = min(e, g − 1)

If the information criteria is IR > 1 we have some association among
environments, if it is approximately 1 there are no patterns and when IR is less
than 1 no information is present.

2.7 Computational Implementation

The analysis which results are presented later were made using R programming
language (R CORE TEAM, 2019).

Ammi analysis were conducted by means of the R package agricolae Mendiburu
(2015), specifically using the function AMMI. The help session of the package about
AMMI analysis is a good source for users interested in details about AMMI models.
Weighted AMMI was implement by usage of a function programmed by the author
based on the one present in agricolae .

GGE Biplot methodology was implemented by means of GGEBiplots package
for R Dumble. All the graphics used in GGE biplots result session were obtained
with functions from this package.

3 Results

Here are presented the results according to the protocol mentioned in the
methodology section.

3.1 AMMI analysis of simulated dataset

Analysis of variance
The ANOVA table for dataset simf2, containing 10 genotypes simulated in 5

environments is shown in Table 5.
From it we can deduce that environments, genotypes and repetition inside

environments and the interaction were all statistically significant justifying the
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posterior analysis of interaction. The coefficient of variation for the experiment
was calculated as 4,74%.

The table of means of genotypes across environments is presented in Table 7
and in Table 9. Data show that the sum of squares of the interacion is 246221662.25
which comprises 21.8% if the total data variability.

We can check that g1 was the highest mean production genotype followed by
g2, g4, g5 and g6. Regarding environments e3 and e5 are the ones with greater
mean of yield.

Another way of seeing the GEI interaction is in Figure 1.

Figure 1 - Interaction Plot for simf2 showing the productivity of genotypes ton ∗
ha−1.

Table 5 - Anova for Simulated data set simf2
Df Sum Sq Mean Sq F value Pr(>F)

ENV 4 625528118.89 156382029.72 15.40 3.441e-05 ***
REP(ENV) 15 152357920.20 10157194.68 45.57 < 2.2e− 16 ***
GEN 9 74161716.42 8240190.71 36.97 < 2.2e− 16 ***
ENV:GEN 36 246221662.25 6839490.62 30.69 < 2.2e− 16 ***
Residuals 135 30089061.71 222881.94
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Table 6 - Means of AMMI model
ENV GEN Prod (ton/ha)

e1 g1 10961.80
e1 g10 8088.94
e1 g2 8625.06
e1 g3 9509.42
e1 g4 8625.06
e1 g5 9230.74
e1 g6 10961.80
e1 g7 9230.74
e1 g8 9509.42
e1 g9 10072.42
e2 g1 9751.12
e2 g10 5965.96
e2 g2 9751.12
e2 g3 3681.58
e2 g4 9234.70
e2 g5 4687.14
e2 g6 8825.58
e2 g7 8472.29
e2 g8 5040.42
e2 g9 5040.42
e3 g1 13295.11
e3 g10 12784.19
e3 g2 13295.11
e3 g3 13295.11
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Table 7 - Means of AMMI models part2
ENV GEN Prod (ton/ha)

e3 g4 12619.96
e3 g5 10308.60
e3 g6 10759.10
e3 g7 12085.10
e3 g8 14456.07
e3 g9 12352.35
e4 g1 10961.80
e4 g10 9509.42
e4 g2 9509.42
e4 g3 10434.40
e4 g4 10961.80
e4 g5 10434.40
e4 g6 9509.42
e4 g7 10961.80
e4 g8 10434.40
e4 g9 10961.80
e5 g1 10961.80
e5 g10 9509.42
e5 g2 9509.42
e5 g3 10434.40
e5 g4 10961.80
e5 g5 10434.40
e5 g6 9509.42
e5 g7 10961.80
e5 g8 10434.40
e5 g9 10961.80
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Table 8 - Coordinates of Simf2 AMMI biplot
type Prod PC1 PC2 PC3 PC4

g1 GEN 11186.33 21.13 -2.96 11.63 -0.00
g10 GEN 9171.59 -5.29 19.32 -1.20 0.00
g2 GEN 10138.03 33.72 25.90 5.36 0.00
g3 GEN 9470.98 -40.07 5.62 7.24 -0.00
g4 GEN 10480.66 21.75 8.05 -25.83 0.00
g5 GEN 9019.06 -18.41 -30.47 -14.96 0.00
g6 GEN 9913.07 28.09 -29.57 26.12 0.00
g7 GEN 10342.35 14.13 -5.31 -19.17 -0.00
g8 GEN 9974.94 -29.04 22.69 12.35 0.00
g9 GEN 9877.76 -26.00 -13.27 -1.53 0.00
e1 ENV 9481.54 -11.26 -32.38 33.84 0.00
e2 ENV 7045.03 71.95 4.37 -2.56 0.00
e3 ENV 12525.07 -22.13 48.85 13.18 0.00
e4 ENV 10367.87 -19.28 -10.42 -22.23 0.00
e5 ENV 10367.87 -19.28 -10.42 -22.23 0.00

Table 9 - Genotype x Environment means of genotypes from data simf2
genotype e1 e2 e3 e4 e5

g1 10961.80 9751.12 13295.11 10961.80 10961.80
g2 8625.06 9751.12 13295.11 9509.42 8625.06
g3 9509.42 3681.58 13295.11 10434.40 9509.42
g4 8625.06 9234.70 12619.96 10961.80 8625.06
g5 9230.74 4687.14 10308.60 10434.40 9230.74
g6 10961.80 8825.58 10759.10 9509.42 10961.80
g7 9230.74 8472.29 12085.10 10961.80 9230.74
g8 9509.42 5040.42 14456.07 10434.40 9509.42
g9 10072.42 5040.42 12352.35 10961.80 10072.42
g10 8088.94 5965.96 12784.19 9509.42 8088.94
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Considering the matrix stated in Equation 5 we proceed the interaction
analysis by the related decomposition in single values GE = USV t. The genotypes
means are shown in Table 9. This matrix will have rank p = min(9, 4) so the
interaction can be decomposed in 4 principal components.

The decomposition of such matrices is presented in Matrices S, U and V.
U matrix contains the singular vector to the left of the interaction, S is a

diagonal matrix containing singular values and V a matrix which columns owns
singular values to the right of the interaction.

S =


6355.64 0 0 0 0

0 3625.09 0 0 0
0 0 2147.54 0 0
0 0 0 1646.21 0
0 0 0 0 0.00



U =



0.24 −0.04 0.33 0.02
−0.07 0.30 −0.17 −0.22
0.39 0.42 −0.02 −0.33
−0.52 0.08 0.29 0.19
0.28 0.21 −0.19 0.60
−0.18 −0.48 −0.19 0.36
0.33 −0.51 0.50 −0.22
0.21 −0.06 −0.40 0.11
−0.40 0.35 0.31 −0.02
−0.28 −0.27 −0.46 −0.51



V =


−0.23 −0.60 0.59 −0.19
0.83 0.14 0.20 0.24
−0.40 0.76 0.25 −0.11
0.11 −0.10 −0.61 −0.64
−0.31 −0.19 −0.43 0.70



Table 10 - Proportion of variance measured by the principal components
percent acum Df Sum.Sq Mean.Sq F.value

PC1 66.40 66.40 12.00 161576760.49 13464730.04 60.41
PC2 21.60 88.00 10.00 52565081.27 5256508.13 23.58
PC3 7.60 95.50 8.00 18447774.50 2305971.81 10.35
PC4 4.50 100.00 6.00 10840092.47 1806682.08 8.11

The decomposition of sum of squares of interaction in principal components is
shown in Table 10. The sum of squares of each component comprises the total sum
of squares of interaction. In this case all the principal components are significant.
In same table we can see that the percentage of variation captured by each principal
component are 66,40; 21,60;7,60 and 4,50 respectively. We can check that PC1 and
PC2 summarizes 88% of total variability of the interaction.

Rev. Bras. Biom., Lavras, v.38, n.3, p.290-323, 2020 - doi: 10.28951/rbb.v38i3.433 309



In next stage we proceed the graphical analysis of AMMI modelling, the
coordinates of such graphics are in table 8.

Figure 2 - AMMI biplots PC1 x PC2 and PC1 x yeild for simf2 datasets.

The main graphical representations of AMMI modelling of dataset simf 2 are
shown in Figure 2 that shows on the left the representation of PC1 x PC2 biplot
and on the right we have the picture that contrasts PC1 component and yield of
genotypes.

Via such figures it is possible to analyze the variability dispersion of genotypes
and several important characteristics about environments.

The variability of main effects of genotype and environments is displaced in
horizontal axis of Figure 2b PC1xPC2 the multiplicative ones related to GEI is
represented in vertical axis.

The interpretation of PC1xPC2 model form AMMI allows evaluation of
stability of genotypes over environments by evaluation of magnitude of genotypes
and environments scores in the interaction axis. Hongyu (2015), Hongyu et al.
(2015) quoting Gauch (2013) state that lower scores imply in more stable accros all
environments genotypes. Visually these genotypes will be closer to the origin of x,
y coordinates.

Genotypes closer from the environment vector are adapted in such
environments.

In the case of dataset simf2 the genotypes more close to the center are g10, g1
and g4 therefore are the most stable across environments from the set considered.

By the other hand the graphic shown in Figure 2 b allow to contrast PC1 and
yield of grains. By this graph we can see that g1, g2, g4, g6 and g7 are higher than
mean genotypes. They should be recommended to be produced but considering
their stability to specific environments. In case of genotype g10 in despite of being
lower than average it has great stability over environments and its improvement
should be strongly recommended via breeding methods, ex given: usage of sister
lines of its parental inbreed lines. Sister Lines are inbreed lines extremely close to
each other from genetic pedigree point of view. Such sister liner can be crossed
between themselves and then the resulting line crossed with the line which will then
form the hybrid genotype of maize.
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The environment which behaviour was the better considering these genotypes
was the south.

Table 3 shows the specific adaptation of each genotype to environments.
We also note given the directions of environment vectors that e2 and e3 are

divergent (exactly as it should be once one represents north and south regions from
Brazil as stated in the data description).

All these properties shown by AMMI analysis reflected the properties induced
in simulations of dataset simf2 described in the methodology section, showing
that AMMI modelling is indeed efficient in capturing such aspects of genotype x
environment interaction.

Weighted AMMI analysis of simulated dataset
The analysis of Variance for weighted AMMI analysis is the same as ANOVA

for AMMI and is shown in Table 11. The GEI interactions is present and significant.
The use of weighted AMMI is motivated by situations when we face

heterogeneous environments, this heterogeneity is expressed by the heterocesdacity
among environments. In this situation environment error variance is given by the
means squares of residuals.

The means and genotypes for weighted AMMI are in Tables 13 and 14. The
values are in a different scale from the original data because of the weighting
produced.

Table 11 - Weighted AMMI ANOVA
Df Sum Sq Mean Sq F value Pr(>F)

ENV 4 617225742.25 154306435.56 15.19 3.441e-05***
REP(ENV) 15 152357920.23 10157194.68 45.57 < 2.2e− 16 ∗ ∗∗
GEN 9 104580085.15 11620009.46 52.14 < 2.2e− 16 ∗ ∗∗
ENV:GEN 36 243429708.74 6761936.35 30.34 < 2.2e− 16 ∗ ∗∗
Residuals 135 30089061.71 222881.94
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Table 12 - Means of environments and genotypes Weighted AMMI
ENV GEN WEIGHTED MEAN (TON HA)

1 e1 g1 0.011941
2 e1 g10 0.00881
3 e1 g2 0.00939
4 e1 g3 0.01035
5 e1 g4 0.0093
6 e1 g5 0.01005
7 e1 g6 0.01194
8 e1 g7 0.01005
9 e1 g8 0.01035
10 e1 g9 0.01097
11 e2 g1 0.00173
12 e2 g10 0.00106
13 e2 g2 0.00173
14 e2 g3 0.00065
15 e2 g4 0.00164
16 e2 g5 0.00083
17 e2 g6 0.00157
18 e2 g7 0.00150
19 e2 g8 0.00089
20 e2 g9 0.00089
21 e3 g1 0.00865
22 e3 g10 0.00831
23 e3 g2 0.00865
24 e3 g3 0.0086
25 e3 g4 0.0082
26 e3 g5 0.0067
27 e3 g6 0.0070
28 e3 g7 0.0078
29 e3 g8 0.0094
30 e3 g9 0.0080
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Table 13 - Means of environments and genotypes Weighted AMMI Part 2
ENV GEN WEIGHTED MEAN (TON HA)

31 e4 g1 0.0271
32 e4 g10 0.02354
33 e4 g2 0.023
34 e4 g3 0.0258
35 e4 g4 0.02714
36 e4 g5 0.02583
37 e4 g6 0.02354
38 e4 g7 0.02714
39 e4 g8 0.02583
40 e4 g9 0.02714
41 e5 g1 0.02714
42 e5 g10 0.02354
43 e5 g2 0.02
44 e5 g3 0.02583
45 e5 g4 0.0271
46 e5 g5 0.0258
47 e5 g6 0.02354
48 e5 g7 0.02714
49 e5 g8 0.02583
50 e5 g9 0.02

Table 14 - Table of genotypes means weithed AMMI
type Y PC1 PC2 PC3 PC4

g1 GEN 0.01 0.01 -0.01 0.00 -0.01
g10 GEN 0.01 -0.02 0.02 -0.00 0.00
g2 GEN 0.01 -0.03 0.02 -0.01 -0.00
g3 GEN 0.01 0.01 0.00 0.03 0.00
g4 GEN 0.01 0.02 0.02 -0.01 0.01
g5 GEN 0.01 0.01 -0.01 -0.00 0.02
g6 GEN 0.01 -0.03 -0.04 0.00 0.00
g7 GEN 0.01 0.02 0.00 -0.02 -0.00
g8 GEN 0.01 0.00 0.01 0.03 -0.01
g9 GEN 0.01 0.02 -0.01 -0.01 -0.02
e1 ENV 0.01 -0.01 -0.04 0.02 -0.00
e2 ENV 0.00 -0.02 0.00 -0.01 0.03
e3 ENV 0.01 -0.01 0.03 0.03 -0.01
e4 ENV 0.01 -0.02 0.00 -0.04 -0.02
e5 ENV 0.03 0.06 0.00 -0.00 0.00
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The single value decomposition for GE weighted AMMI is shown in the
following matrices S, U and V.

S =


0.00413 0 0 0 0

0 0.00304 0 0 0
0 0 0.00247 0 0
0 0 0 0.00112 0
0 0 0 0 0.0000



U =



0.15 −0.26 0.04 −0.27
−0.38 0.38 −0.02 0.06
−0.54 0.32 −0.25 −0.12
0.16 0.08 0.59 0.11
0.30 0.28 −0.26 0.40
0.21 −0.24 −0.03 0.54
−0.48 −0.67 0.04 0.15
0.26 0.05 −0.44 −0.02
0.06 0.24 0.53 −0.20
0.27 −0.17 −0.21 −0.62



V =


−0.13 −0.77 0.41 −0.14
−0.29 0.08 −0.16 0.83
−0.19 0.63 0.55 −0.26
−0.28 0.01 −0.71 −0.47
0.89 0.05 −0.10 0.05


The w-AMMI biplots are shown in Figure 3.
The understanding about the specific adaptation of each genotypes to the

different environments is the same as the conclusions made by AMMI models. The
main results from W-AMMI for simf2 dataset are pretty much the same got by
AMMI analysis. Thus w-AMMI captured all the properties of the simulated dataset
being therefore a good recommendation of model to study GEI.
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Figure 3 - AMMI biplots PC1 x PC2 and PC1 x yield for simf2 datasets. The graph
on the left describes the variability captured by first and second principal
components and the the picture on the left describes the variability got
by PC1 versus the yield of each genotype.

GGE analysis of simulated dataset
In this section we will cover the four objectives of GGE methodology:

investigation of mega environments, genotype evaluation, test environments and
comprehension of GEI.

GGE Biplot:
The GGE biplot for simulated data set is present in Figure 4that can be used

to:

• genotype classification in any environment

• classify environments regarding any given genotype performance

By example, g1 and g6 have obtuse angles considering environment e2 and e4
therefore they had less than average productivity in environments.

Rev. Bras. Biom., Lavras, v.38, n.3, p.290-323, 2020 - doi: 10.28951/rbb.v38i3.433 315



Figure 4 - GGE Biplotfor simf2 In x axis is shown the scores for First principal
component and i y axis the scores of PC2. The graphic comprises 81.58%
of the total variability. The genotypes are displayed as g1 to g10 and the
five environments from e1 to e5.
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Mega environment analysis
Hongyu (2015) ad Hongyu et al. (2015) state that an mega environment is a

group of environments or sub regions where a set of genotypes have similar behaviour
and adaptability. The biplot "Which won where" is an important tool to make this
analysis.

This graph for simf2 data is shown in Figure 5. As we can see there is a
irregular polygons and lines that arise from the origin of the biplot, intercepting
each side of the polygons perpendicularly. The vertices of such polygons are the
genotypes markers which the distant is the greatest from origin. Thus, all the
genotypes are inside the polygon Hongyu (2015), Hongyu et al. (2015) quoting Yan
(2011).

According to Yan (2000) a line that crosses perpendicularly one side of the
polygon represent an hypothetical environment and the two genotypes that define
this side of polygon represent the same productivity. The lines that irradiate from
origin divide the biplot in sectors and for each sector there is a genotype at the
vertice, and such genotype showed the best behaviour for environments in this
sector Hongyu (2015), Yan (2000), Yan and Kang (2003) and Yan (2011).

Following the reasoning from last paragraph we can see from Figure 5 that
g1, g2, g10, g3, g5 and g6 represent the vertices of the polygon. Regarding
environments, e2 and e4 can be grouped, e3 is a single environment stratus and
the same happens with e5.

The GGE biplot which won where what is shown in Figure 5.

Figure 5 - Which won where what biplot for simf2.
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Mean x stability
The GGE biplot shown the means x stability is present in 6.

Figure 6 - Means x stability gge biplot for simf2.

Hongyu (2015), as well as Yan and Kang (2003), state that an ideal genotype
should have high mean performance and produce at a range of several environments.
The GGE biplot that shows discrimination and representative is in Figure 7 is a
good tool to evaluate these aspects of genotypes.

Figure 6, according with the rules described in methodology section, allows
the ranking of genotypes as g1 > g6 > g2 > g7 > g4 > g9 > g10 > g5 > g8 > g3.

Mean x stability
Hongyu (2015) states that the Disciminative and representative gge biplot

allow the discrimination of genotypes and representation of target environments.
In the case of simf 2 all vectors of environments were long implies that are

good environments to discriminate the genotypes. Environments that have small
angels with MAE are better representatives of the target environment.

Regarding environment stability and performance the relationship among
genotypes and environments via GGE analysis was the same as in Table 3 showing
the capacity of GGE analysis in detecting the properties of the data simulated with
specific properties.
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Figure 7 - Discrimination representative of ggbiplot for simf2.

3.2 Comparison between AMMI, w-AMMI and GGE biplots

Table 14 describes the single values for GGE, AMMI and WAMMI models and
its respective principal components.

Using Table 14 was obtained Table 15 which is a correlation matrix. Such
table describes the correlation between the explained variability obtained by means
of principal components in GGE, AMMI and WAMMI models.

In Table 15 we can check that the 3 models are highly correlated with
correlations near to 1. In other words the three models describe in an efficient
way the variability contained in simf2 data set.

Table 15 - Single Values from PCS of GGE, AMMI and W-AMMI models
PC GGE biplot AMMI W AMMI
1 7156.89 6355.64 0.00413
2 4231.38 3625.09 0.00304
3 3516.99 2147.54 0.00247
4 1797.54 1646.20 0.00112
5 0.00 0.00 0.00

This information is confirmed by the Table 16 that shows the Information
Criteria for Each model and respective principal components. For all the models
AMMI and WAMMI we have PC1 > 1.
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Table 16 - Correlation between the PCS for GGE, AMMI and W-AMMI models
GGE AMMI W AMMI

GGE 1.00 0.98 0.99
AMMI 0.98 1.00 0.95

W-AMMI 0.99 0.95 1.00

Comparing the models the PC1 of AMMI model was the greater being the one
that most explained the variability of the data set followed by GGE and finally by
WAMMI.

Hongyu (2015) and Hongyu et al. (2015) quoting (GAUCH, 2006) state that
AMMI model have higher accuracy in visualizing patterns in experiments when
compared to GGE biplots.

Hongyu (2015) and Hongyu et al. (2015) quoting (GAUCH, 2006) state that
one critic to be made to GGE is that this methodology does not separate the G
effect from GEI, but Yan (2011) declares that if the breeder interest in selection of
genotype is not based in separation of G and GEI factors GGE biplot can be used.

Table 17 - Information criteria for AMMI, W AMMI and GGE models
PC AMMI IR W-AMMI IR GGE IR
1 66.4 3.32 50.6 2.53 62.94 3.147
2 21.6 1.08 27.4 1.37 19.45 0.9725
3 7.6 0.038 18.2 0.91 13.25 0.6625
4 4.5 0.0225 3.8 0.19 4.36 0.218

A general remark, however, is that, even capturing the same amount of
variability and general characteristics of environments and genotypes, GGE and
AMMI should be used carefully. This is because in GGE the terms of main effects
of genotypes and interaction are summed together G+GEI. This doesn’t happen
when we use AMMI and WAMMI models. In breeding programs this information
should be considered during selection of genotypes via GGE and AMMI methods.

Lastly, but not least important, we can say that AMMI modelling can be used
to model of data generated by non normal continuous distribution such as logistic
distribution. This result is possible once such distribution was used to simulated
the data sets.

As recommendation for futures studies we suggested the comparison of the
same models with another important version of AMMI called ROBUST AMMI
described in Rodrigues et.al. (2016), as well as use of simulated data with different
values for the coefficient of variation for the experiments.
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RESUMO: A interação genótipo x ambiente é uma questão fundamental no
melhoramento de plantas e no desenvolvimento de novas cultivares. A modelagem
de tais interações tem enorme importancia nas decisões de melhoramento de plantas
e otimização de programas de melhoramento. Nesse contexto, os modelos AMMI,
W-AMMI e GGE permitem o estudo dessas interações. O presente trabalho tem como
objetivo verificar o comportamento de tais modelos na presença de dados simulados com
propriedades paramétricas bem conhecidas. Os resultados mostram que os três modelos
são eficientes para modelar interações GxE.
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