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ABSTRACT: Three relevant facts about the least absolute shrinkage and selection

operator (Lasso) are studied: The estimatives follows piecewise linear curves in relation

to tuning parameter, the number of nonzero selected covariates is an unbiased estimator

of its degrees of freedom and when the number of covariates p is greater than the numbers

of observations n at most n covariates are selected. These results are well known and

described in the literature, but with no simple demonstrations. We present, based on a

geometrical approach, simple and intuitive heuristics proofs for these results.

KEYWORDS: Covariates selection; degrees of freedom; piecewise linear; Shrinkage;

Stein’s lemma.

1 Introduction

Suppose the usual regression situation: data
(
xi,yi

)
, i = 1, . . . , n, where

xi = (xi1, . . . , xip)
′

is a vector of predictors variables and yi is the corresponding

response. Consider as usual that the observations are independent and 1
n

n∑
i=1

xij =

0, 1n

n∑
i=1

x2ij = 1. Tibshirani (1996) defines the Lasso estimative as the solution of

the quadratic convex optimization problem:
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β̂Lasso (t) = arg
β

min ‖y −Xβ‖2

subject to ‖β‖1 =
p∑
i=1

βi ≤ t
. (1)

The parameter restriction defines, for each t, a convex diamond shaped region
K in Rp. We can think the n×p design matrix X = (xij) as a linear transformation
from the Euclidean space Rp to Rn. We will suppose, to avoid generalized inverses,
that X is injective. In this case, we have a geometrical set-up described as: the
image of Rp, by the linear transform X, is a p-dimensional subspace of Rn, the
image of the convex subset K is the convex subset Kp = X (K).

To obtain the Lasso estimative we have to find the point in Kp closest to the
data vector y. To do this we project y orthogonally into the subspace image of X
(y∗P = PIm(X)y) and then find in Kp the point yp closest to y∗P . As X is injective,

the pre-image of this point defines the estimative β̂Lasso (t). In the parameter
space, this is equivalent to find in K the point closest, in the Mahalanobis distance,
〈β1,β2〉m = β1

′X ′Xβ2, to the ordinary least squared estimative β̂ols. This can

be done by constructing several hyperboloids on β̂ols, until one of these reach a
tangent point on K. (see Figure 1).

Figure 1 - Geometrical description of Lasso.

The Lasso estimative shrinks the coefficients towards zero as t goes to zero.
Another main characteristic is that, with high probability, some coefficients are
set exactly equal to zero since β̂Lasso (t) occurs in a singular face. Therefore the
estimation process is also a model selection process.

LASSO regression theory has been successfully applied, for example,
in healthcare (LEE et al., 2014; MUSORO et al., 2014), civil engineering
(MANGALATHU et al., 2018) in new statistical methods (BELLONI et al., 2014;
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LEE et al. 2016; CAVALCANTE et al., 2017).
The organization of this paper is as follows. In Section 2, we point out that, in

relation to the tuning parameter t, the coordinates curves of β̂Lasso (t) are piecewise
linear. We will present a simple but intuitive proof of this fact. In Section 3, we
review the Stein’s unbiased risk estimation and, with a very simple mathematical
approach, we obtain the known unbiased estimator of the degrees of freedom for
the Lasso. In Section 4 we prove that if the number n of observations are less than
the number p of covariates then the Lasso selects at most n covariates.

2 Lasso trace curves are piecewise linear

Since the curves defined by Ridge estimator are named Ridge trace curves

(HOERL and KENNARD, 1970) we will name
(
β̂Lasso (t)

)
i
, i = 1, . . . , p as Lasso

trace curves. A typical picture of Lasso trace curves is given, for example, in Hastie
and Tibshirani (2015) (Figure 2).

Figure 2 - Lasso trace curves.

Tibshirani (1996) showed that for the orthogonal case the Lasso trace curves
are piecewise linear. Efron et al. (2004) presented a new model selection algorithm,
named Least Angle Regression (LARS). This algorithm is piecewise linear by
construction. The authors observed that the same geometry of the algorithm applies
to the Lasso, despite of the fact that the two methods seems to be quite different.

Since authors couldn’t find a simple approach for this fundamental property,
a very elementary proof, although incomplete, using only undergraduate analytical
geometry, will be present.

There are two families of hipersurfaces in Rp: the family of parallel ellipsoids
centered in (a1, . . . , ap) and the family of diamond shaped convex sets (or simplest
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diamond set) of the form
p∑
i=1

|βi| = t, where t is a parameter. It is clear that each

ellipsoid has only two tangent points with planes that are faces in the family of
diamond sets, both are border of convex subsets Rp. It is intuitive that by the
convexity of these two subsets. That they are tangent in two points. Of course, we
are considering only regular points, that is, points in hyperfaces of the diamond set
to avoid measure theory that is necessary if we consider singular faces. We will be
concerned only with the tangent point closest to the origin. It is a typical problem
in Mathematical analysis to show that tangents points between these two families
defines a smooth curve, which is called by definition β̂(lasso) (t). We have to show
that this curve is a straight line. First we will suppose that the family of ellipsoids
have principal axes parallel to the coordinates axes.

Therefore the family of ellipsoids is of the form:

(β1 − a1)
2

r21
+ . . .+

(βn − ap)2

r2p
= r,

where r1, . . . , rp are fixed number and r > 0 is a family parameter.

Clearly for each r there is only two values t such that the ellipsoid and the
hyperplane are tangents. We will consider only the tangent point closest to the
origin and will suppose also that this tangent point is in a (p− 1)-dimensional
face of the hypercube. In tangency point the hyperplane and the ellipsoid have
a common normal vector. If this tangent point has positive coordinates a normal
vector of the hyperplane is the vector (1, . . . ,1), and this vector is also normal
to the ellipsoid. Let’s (β1 (s) , . . . ,βp (s)) be a curve in the ellipsoid, such that

(β1 (0) , . . . ,βp (0)) = β̂(Lasso)(t)) is the tangent point. By implicit differentiation of

(β1 (s)− a1)
2

r21
+ . . .+

(βp (s)− ap)2

r2p
= r,

follows that:

2 (β1 (0)− a1)β′1 (0)

r21
+ . . .+

2 (βp (0)− ap)β′p (0)

r2p
= 0.

Hence, the vector
(

(β1(0)−a1)
r21

, . . . ,
(βp(0)−ap)

r2p

)
is perpendicular to the tangent

vector
(
β′1 (0) , . . . ,β′p (0)

)
. As this vector is a generic vector on the tangent space

of the ellipsoid, it is necessarily parallel to the vector (1, . . . ,1). That is,(
(β1 (0)− a1)

r21
, . . . ,

(βp (0)− ap)
r2p

)
= α (1, . . . ,1) .

As α is dependent to the tangent point β̂(Lasso) (t) it is also a function of t
and then
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((
β̂Lasso (t)

)
1
− a1

)
r21

, . . . ,

((
β̂Lasso (t)

)
p
− ap

)
r2p

 = α(t) (1, . . . ,1) .

Thus, the tangent point satisfies the equation


((
β̂Lasso (t)

)
1
− a1

)
r21

, . . . ,

((
β̂Lasso (t)

)
p
− ap

)
r2p

 = α(t) (1, . . . ,1) .

This shows that the tangent points β̂Lasso(t) lies in a straight line. If the
ellipsoids don’t have its principal axes parallel to the coordinates axes a new
coordinate system can be built in such way that the ellipsoid with this new

coordinates have its axes parallel. What happens with the plane
p∑
i=1

|βi| = t in this

new β̃ coordinates system? The normal vector change from (1, . . . ,1) to (b1, . . . ,bp)

and it is easy to see that
p∑
i=1

∣∣∣biβ̃i∣∣∣ = t.

Therefore we have


((
β̂Lasso (t)

)
1
− a1

)
r21

, . . . ,

((
β̂Lasso (t)

)
p
− ap

)
r2p

 = α(t) (b1, . . . ,bp) ,

and in this case we have again a straight line in this general situation. That is, we
have the situation described in Figure 3.

As the tuning parameter t varies, the tangent point may move from a p − 1
dimensional face of the hypercube to a lower dimensional face. In this case the
normal vector changes, as an example, for a (p− 3)-dimensional face the normal
vector (1,1,0,0,1, . . . ,1). And so,


((
β̂Lasso (t)

)
1
− a1

)
r21

, . . . ,

((
β̂Lasso (t)

)
p
− ap

)
r2p

 = α(t) (1,1,0,0,1, . . . ,1) .

Again we have a strait line but with a new direction. This fully describes the
behavior of Lasso trace curves.
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Figure 3 - Ellipsoids with principal axes in general position.

3 Degrees of freedom

If a model, for example, an ordinary linear regression, fits some data y,
producing an estimate µ̂ = m (y), m : Rn → Rn, the question of how well
m (y) will predict a future dataset, independently generated from the same random
mechanism that produced y, is probably the main problem to be answered. This is
the prediction error and it’s the sum of expectation of the fitting error plus a penalty
related to the covariance between the data y and the model m (y) (EFRON, 2004).
This drives us to the concept of degrees of freedom (df) as a covariance penalty.

Definition: The degrees of freedom of a model µ̂ = m (y) is defined as

df =
cov (y,m (y))

σ2
=

n∑
i=1

cov (yi,(m (y))i)

σ2
,

where σ2 is the error variance.
In the linear case, µ̂ = My, where M is a n × n matrix, the degrees of

freedom is the trace of M . If we are in the usual regression or analysis of variance
(Anova), M is a projection matrix and, therefore, trace(M) = p, the dimension of
the projection space, that is, the rank of M , agreeing with the usual definition of
degrees of freedom.

The degrees of freedom is a population parameter and has to be estimated.
For this, we have to use the multidimensional version of classical Stein’s lemma.
Under very reasonable mathematical conditions on m (y) we have:
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Stein’s lemma: If

n∑
i=1

cov (yi,(m (y))i)

σ2
= E [div (m (y))] = E

[
n∑
i=1

∂(m (y))i
∂yi

]
then div (m (y)) is an unbiased estimator of degrees of freedom.

3.1 Degrees of freedom for the Lasso

It is well know that the nonzero number of covariates select by Lasso is an
unbiased estimator of the degree of freedom for the Lasso. Thus, the model µ̂ =
m (y) is given by m (y) = PKp

(y) = yp, where PKp
is the minimum projection

distance of the data y on the convex set Kp. To calculate div(PKp
(y)) we will

follow Kato (2009).
Let PK : Rp → K be the minimum Mahalanobis distance projection on the

convex set K. Therefore,

m (y) = Xβ̂Lasso (t) = XPK β̂ols (y) = XPK (X ′X)
−1
X ′y.

To compute the divergence of m (y) we will have to use the chain rule. If
f : Rn → Rn, then df (x) is a linear transformation df : Rn → Rn. The divergence
definition does not depend on coordinates and is given by divf (x) = tr (df (x)). If f
is the linear transformation f (y) = My, then df (y) = M and div (y) = tr (M). In

the case of composition, g ◦ f : Rn
f→Rp

g→Rn, a derivative is given by composition
of linear transformation d (g ◦ f) = dg (f (x)) ◦ df (x).

Thus, dm(y) = X · dPK
(
β̂ols(y)

)
(X ′X)

−1
X ′. It follows that,

divm(y) = tr
(
X dPK

(
β̂ols(y)

)
(X ′X)

−1
X ′
)

= tr
(
dPK

(
β̂ols(y)

)
(X ′X)

−1
X ′X

)
= tr

(
dPK

(
β̂ols(y)

))
.

Therefore, the divergence of m (y) is equal to the divergence the projection

PK , in relation to the variable β, applied to the point β̂ols (y).
In the orthogonal case, X ′X = I, the Mahalanobis metric is the Euclidian

metric and an explicit formula for the projection PK is possible, given by:

PK (β) =

(
signal(β)1(|(β)1 − γ|)

+
, . . . ,signal(β)p

(∣∣∣(β)p − γ
∣∣∣)+) ,

where γ is a constant.
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In this case the Lasso estimator is(
β̂Lasso (t)

)
i

= signal
(
β̂ols (y)

)
i

(∣∣∣(β̂ols (y)
)
i
− γ
∣∣∣)+,

where γ depends on the value of t.

With this formula is possible to calculate divPK

(
β̂ols (y)

)
∂

∂βi
signal(β)i(|(β)i| − γ)

+
=

{
signal(β)isignal(β)i = 1, if |(β)i| > γ

0, if |(β)i| ≤ γ
.

Then, tr
(
dPK

(
β̂ols (y)

))
is the number of nonzero coordinates on Lasso

estimative, that is, the number of selected covariates.
For the general case, the proofs of the degrees of freedom for the Lasso (KATO,

2009; TIBSHIRANI and TAYLOR, 2012) are quite of complex since the diamond
shaped set K has faces with dimensions 0, 1, . . . , p−1 and it is necessary to find the
intersections of ellipsoids with these low dimensional faces. Such a situation requires
measure theory. Here, we will present a mathematical semi-complete proof, however
with a much more intuitive and useful application for a broad statistical audience.

The only thing that we have to intuitively accept is that each face has a domain
of attraction. That is, for almost every β that projects on a face L there is an open
subset around β that also projects in the same face. Let us give an example: for the
orthogonal case, on R2, the singular face with only one point (0,t) has the domain
of attraction as Figure 4.

Figure 4 - Attraction domain of a singular face in the orthogonal case.

What changes for the non orthogonal case? The Mahalanobis metric preserves
straight lines. The only thing that changes is the angles. Therefore, the orthogonal
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projection in the Mahalanobis distance is the same as a oblique projection in
Euclidean metric as seen in the previous section (see Figure 5).

Figure 5 - Attraction domain of a face with Mahalanobis metric.

Consider now a l-dimensional face F such that β̂Lasso (t) = PK

(
β̂ols (y)

)
∈ F .

Any small enough open ball centered on β̂ols (y) is necessarily mapped on the face
F . It’s possible to get, in this ball, a small l-dimensional subspace, parallel, on the
Mahalanobis metric, to the face F . As the projection PK preserves distance (see
Figure 6), the derivative of the projection PK on the point β̂ols (y) can be given by
the following matrix:

dPK

(
β̂ols (y)

)
=


 1

. . .

1


l×l

0

0 0

 .
Then, div

[
dPK

(
β̂ols (y)

)]
= l. But the dimension of the face l is exactly the

number of selected covariates and the results follows.

4 The case p > n

Zou and Hastie (2005) proposed the elastic net estimator as an alternative
to the Lasso. They pointed out that if the number of covariates p is greater than
the number of observations, the Lasso selects at most n covariates. It implies that
Lasso is not a very satisfactory variable selection method if p > n. They claim
that this deficiency comes from the nature of the convex optimization problem that
defines the estimator, but they do not present any other explanation or proof for
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Figure 6 - Projection over a face.

this fact. There is a great source of confusion here. Lasso is defined based on
the minimum squares estimator and if the tunning parameter t is such that, for

example, t =
∥∥∥β̂ols∥∥∥

1
then β̂Lasso = β̂ols and certainly the number of covariates

selected is p. Such confusion is recurrent and quite frequent is statistics forums,
and the answers posted are somewhat incomplete. We develop a more in-depth
discussion of this issue.

The linear transformation X can’t be injective if the dimension of the image of
X is k < n. Then KerX has dimension n−k. The geometric construction developed
in the previous sections remains fully valid, that is, after defined the value for the
tunning parameter t we want to find the vector in Kp as close as possible to the
data vector. Using the orthogonal projection of y in Im (X) and any generalized
inverse of X, β̂ols is obtained. Again it is possible to build the family of ellipsoids(
β − β̂ols

)′
X ′X

(
β − β̂ols

)
= c. The difference here is that these ellipsoids are

singular in the sense that they are in some subspace of dimension k. If the value
of c is changed until the ellipsoid get a tangent point with the hyperface ‖β‖1 = t

we have a Lasso estimate, which we will call momentarily β̂pLasso. This estimative
solves the variational take of problem min ‖Xβ − y‖ restricted to ‖β‖1 ≤ t. As

X
(
β̂pLasso + z

)
= X

(
β̂
p

Lasso

)
, we have that β̂p

Lasso + z is also a solution of the

minimization problem for all z belonging to kerX.

Consistent with the Lasso estimation philosophy of shrinkage and covariate
selection, it is reasonable to choose among the solutions β̂pLasso+z one of minimum
norm, that is, we have to solve a new minimization problem
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min ‖β‖1, restricted to β = βplasso + z, z ∈ kerX. (2)

The solution to this problem is simple and follows from the proposition.

Proposition (Boyd-Vandenberghe, page 141, 2004) The convex optimiza-
tion problem

min f
restricted Ax = b

,

has solution x∗ with ∇f (x∗) orthogonal to the kerA.

Proof:

Assuming that all coordinates of β = βplasso + z are positive, we have
∇‖β‖1 = (1,1, . . . ,1). If some coordinate is negative, simply place -1 in the
corresponding position. Since kerX has dimension p − k this subspace for
dimensionality reasons can’t have empty intersection with all coordinate subspaces
of dimension n because dim kerX = p − k and dim kerX + n = p − k + n > p.
Therefore there is a coordinate plane of dimension less than or equal to n that
intercepts the subspace {β̂pLasso + z ; z ∈ kerX}. We can suppose, without loss
of generality, that kerX is not parallel to a hyperface ‖β‖1 = t. In this case a

vector normal to the subspace {β̂p
Lasso + z ; z ∈ kerX} can’t be parallel to the

vector (1,1, . . . , 1). Therefore the solution of the minimization problem (2) can only
occurs in the intercession of {β̂pLasso + z ; z ∈ kerX} with a coordinate subspace.
The vectors of this intersection are then candidates for to be a Lasso estimative and
they have at most n non-zero covariates (Figure 7).
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Figure 7 - Lasso selects at most n covariates.

5 Conclusion

The theory of lasso estimators is strongly based on geometric constructions,
although it is presented as a convex optimization problem. In this paper it is shown
that using basic linear algebra and geometric arguments gives a greater intuitive
understanding of the basic facts of the theory.
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RESUMO: Neste artigo são estudado três fatos relevantes sobre a teoria de Lasso (Least

absolute shrinkage and select operator): As estimativas seguem curvas lineares por partes

em relação ao parâmetro de ajuste; o número de covariáveis selecionadas diferentes

de zero é um estimador imparcial de seus graus de liberdade e quando o número de

covariáveis p é maior que o número de observações n, no máximo n covariáveis são

selecionadas. Esses resultados são bem conhecidos e descritos na literatura, mas sem

demonstrações simples. Apresentamos, com base em uma abordagem geométrica, provas

heuŕısticas simples e intuitivas para esses resultados.
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