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ABSTRACT: We present a short review of the asymmetric distributions α-stable, skew
normal, skew Student’s t and skew Laplace. We compare the performance for these
distributions, in general, are used to model asymmetric data, using AIC and BIC. These
criterias were able to selecting the best model for each data set. We also apply these
models to gene expression data and we verify these distributions are qualified to model
these observations.
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1 Introduction

Skewed distributions have been used in modeling financial, economics, medical
and genetic data sets. These distributions can adjust data with asymmetric
structure.

In analysis of data with asymmetric structure it is common transformation
in to the variables. However, transforming the variables may cause problems such
as the difficult interpretation of the results, (AZZALINI and CAPITANIO, 1999).
Also, transformations do not always eliminate completely the asymmetry.

The most used asymmetric distribution is the skew normal. This class of
analytically treated distributions can model the skewness of the data and has the
normal distribution as a special case.
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The skew normal distribution was proposed by Azzalini (1985) and has received
the attention from researchers as Genton et al. (2001), Gupta et al. (2004) and
Arellano-Valle et al. (2005), among others.

The skew Student’s t distribution is an extension of the skew normal
distribution, Azzalini & Capitanio (2003). It has been applied to data with
asymmetric structure and extreme observations. Fernández & Steel (1998)
and Jones & Faddy (2003) bring examples of applications of skew Student’s t
distributions in financial, astronomy, biological and engineering data sets.

The skew Laplace distribution was constructed using the method described by
Fernandez et al. (1995).

Applications of skew Laplace distribution to biological data are found in Julia
& Vive-Rego (2008) and Rubio & Steel (2010).

The α-stable distribution defines a class of asymmetric distributions which
was characterized by Paul Lévy by the year 1920 in his studies about the sum
of random variables identically distributed, apud Nolan (2009). In general, this
distribution does not have a closed probability density function, being defined
through its characteristic function. Three particular cases are normal, Cauchy and
Lévy distributions. Applications of the α-stable distribution can be found in Nolan
(2003), Rachev (2003) and Rachev and Mittinik (2000) and Gonzalez et al. (2009)
in the context of financial returns and genetic data.

The choice of a probabilistic model is a important factor in data analysis. For
selection of the model the criteria most used are: the Akaike information criterion
- AIC (AKAIKE, 1974), the Schwarz Bayesian criterion - BIC(SCHWARZ, 1978)
and the likelihood ratio test - TRV (BOZDOGAN, 1987; WOLFINGER, 1993;
LITTELL et al., 2002). We develop a simulation experiment to verify the capability
of the AIC and BIC to identify the best fitting distribution.

In Section 2, we make a brief descripton of the asymmetric distributions
considered here. In Section 3, we describe the inferences for the parameters as
well as the procedures used in the simulation. the criteria for model selection, the
software and the functions used in this study. In Section 4, we report the results of
applications to a set of gene expression data. Finally, in Section 5, we present the
final considerations.

2 Methodology

Following we describe the α-stable, the skew normal, the skew Student’s t and
the skew Laplace distributions.

2.1 The α-stable distribution

The term α-stable refers to distributions whose sum of identically and
independently distributed (i.i.d.) random variables belongs to the same family
than their components. In other words, if X1, X2 . . . , Xn are α-stable i.i.d. random
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variables, then for every n belonging to the set of natural numbers,

X1 +X2 + · · ·+Xn
d
= cnX + dn, (1)

where X is also a random variable with α-stable distribution, for any constant
cn > 0 and dn ∈ <, and the symbol d

= indicates equality in distribution. The
distribution (1) is called strictly stable if dn = 0 for all n, Nolan (2009).

The α-stable distribution in its general case has no closed expression for
the probability density function and the cumulative distribution function, being
expressed by the characteristic function.

The α-stable distribution is described by four parameters (α, β, γ, δ) and
can be presented in two parameterizations denoted by AE(α, β, γ, δ0, 0) and
AE(α, β, γ, δ1, 1).

Definition 2.1. A random variable X has distribution AE(α, β, γ, δ0, 0) if its
characteristic function is

E
[
eitX

]
=

{
e−γ

α|t|α[1+iβtan(πα2 )sen(t)(γ|t|1−α−1)]+iδ0t for (α 6= 1),

e−γ|t|[1+iβ
2
π sen(t)ln(γ|t|)]+iδ0t for (α = 1).

(2)

Definition 2.2. A random variable X has distribution AE(α, β, γ, δ1, 1) if its
characteristic function is

E
[
eitX

]
=

{
e−γ

α|t|α[1−iβtan(πα2 )sen(t)]+iδ1t for (α 6= 1),

e−γ|t|[1+iβ
2
π sen(t)ln|t|]+iδ1t for (α = 1).

(3)

The location parameters δ0 and δ1 are related, and given by

δ0 =

{
δ1 + βγtan

(
πα
2

)
, (α 6= 1),

δ1 + β 2
πγ ln(γ), (α = 1),

δ1 =

{
δ0 − βγ tan

(
πα
2

)
, (α 6= 1),

δ0 − β 2
πγ ln(γ), (α = 1).

(4)

Here we use the parameterization AE(α, β, γ, δ0, 0).
Parameters α, β and γ have the same interpretation in both parametrizations

while parameter δ has not, Nolan (2009).
The parameter α is the stability index or exponent characteristic and it defines

the local intensity level, that is, the degree of concentration of the observations of
the surrounding medium distribution; α ∈ (0, 2]. The parameter β defines the
asymmetry of the distribution, if β = 0 the distribution is symmetric, if β > 0 the
distribution is skewed to the right, and if β < 0 the distribution is skewed to the
left; β ∈ [−1,+1]. The parameters α and β determine the shape of the distribution.
The parameter γ defines the dispersion or distribution range, γ ≥ 0 and parameter
δ sets the location of the distribution, δ ∈ (−∞,+∞).

If β = 0 the parameterizations coincide, when β 6= 0 and α 6= 1 the
parameterizations differ for + or - βγ tan

(
πα
2

)
, and when β 6= 0 and α = 1 the

parameterizations differ for + or - β 2
πγ ln(γ).
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AE(α, β, γ, δ0, 0) has continuous distribution function for all four parameters.
The parameterization AE(α, β, γδ0, 0) is a model belonging to a family of
distributions location and scale for α ∈ (0, 2].

The mode of a random variable X ∼ AE(α, β, γ, δ1, 1) tends to +∞ if [sin(α−
1)β] > 0 or tends to −∞ if α → 1. The parameter AE(α, β, γ, δ1, 1) has no
continuous distribution function for α = 1 (NOLAN, 2009).

There are at least three particular cases where it is possible to write the
expression of probability density function: they are the normal, Cauchy and Lévy
distributions (NOLAN, 2009).

2.2 Skew Normal distribution

The skew normal distribution, introduced by Azzalini (1985), is a class of
continuous probability distributions that extends the normal distribution allowing
the presence of asymmetry. Its probability density function is

fZ(z;λ) = 2φ(z)Φ(λz), (5)

where φ(z) is the density of a standard normal distribution and Φ(λz) is the normal
cumulative distribution function on λz, and λ ∈ < is the asymmetry parameter.

The normal distribution can be recovered in Equation (5) when λ = 0. When
λ > 0 the distribution is skewed to the right and when λ < 0 is skewed to the left.

Suppose a random variable Z with skew normal distribution with parameter
λ, denoted by Z ∼ SN(λ). Some basic properties of the skew normal distribution
given by Azzalini (1985) are

1. SN(0) = N(0, 1);

2. If Z ∼ SN(λ), then −Z ∼ SN(−λ);

3. When λ → +∞, Z d→ |Y |, and when λ → −∞, Z d→ −|Y |, where Y ∼
N(0, 1);

4. If Z ∼ SN(λ), then Z2 ∼ χ2
1.

We use the linear transformation to add the location and scale parameters,

X = ξ + ωZ, (6)

where X is a random variable with asymmetric normal distribution with parameters
(ξ, ω, λ), i.e., X ∼ SN(ξ, ω, λ), and Z is a random variable with density function
given by (5).

The probability density function of X is given by

fX(x; ξ, ω, λ) =
2

ω
φ

(
x− ξ
ω

)
Φ

(
λ

(
x− ξ
ω

))
, (7)
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where ξ is the location parameter, ξ ∈ (−∞,+∞); ω is the scale parameter, ω > 0;
λ is the shape parameter, λ ∈ (−∞,+∞), also called asymmetry parameter. The
asymmetry of the distribution is limited to the interval (−1, 1).

The expression (7) can be rewritten as

fX(x; ξ, ω, λ) =
1

ωπ
exp

{
−1

2

(
x− ξ
ω

)2
}∫ λ( x−ξω )

−∞
exp

{
− t

2

2

}
dt. (8)

2.3 Skew Student’s t distribution

The skew Student’s t distribution is an extension of the skew normal
distribution. Its probability density function is given by

fZ(z;λ) = 2tν(z)T (λz), (9)

where tν(z) is the density of a Student’s t distribution with ν degrees of freedom,
T (λz) is the cumulative distribution function of λz and λ ∈ < is the asymmetry
parameter, see Azzalini and Capitanio (2003). We can recover the Student’s t
distribution in (9) by setting λ = 0.

The skew Student’s t distribution emerges as a mixture in the opposite scale
of an skew normal distribution with a gamma distribution.

Lemma 2.3. (AZZALINI and CAPITANIO, 2003) If a random variable V ∼
Gamma(ψ, λ) has mean ψ/λ and variance ψ/λ2, then for any a, b ∈ <

E
(

Φ
(
a
√
V + b

))
= P

(
T ≤ a

√
α/β

)
, (10)

where T has Student’s t distribution not centered with 2ψ degrees of freedom and
−b non-centraly parameter.

Azzaline and Capitanio (2003) applies the Lemma 2.3 to a variable whit
distribution Gamma(ν/2, ν/2) and defines the density function ot the skew Studet’s
t distribution given by

fX(x; ξ, ω, λ, ν) =
2

ω
tν(y)Tν+1

(
λy

√
ν + 1

ν + y2

)
, (11)

where y = x−ξ
ω and y ∈ <, then X has skew Student’s t (ST) distribuion whith

parameter (ξ, ω, λ, ν), i.e., X ∼ STν(ξ, ω, λ) λ ∈ (−∞,+∞).
In this case ξ is the location parameter, ξ ∈ (−∞,+∞); ω is the scale

parameter, ω > 0; λ is the asymmetry parameter, λ ∈ (−∞,+∞), and ν is the
degreee of freedom, ν ≥ 1.

Some properties of the skew Student’s t distribution, as given by Azzalini and
Capitanio (2003), are

1. STν(0) = Tν(0, 1).
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2. When λ → +∞, STν(λ) tends to the density of the Student’s t distribution
truncated, TTν(0, 1).

3. If Z ∼ STν(λ), then ξ + ωZ ∼ STν(ξ, ω, λ).

2.4 Skew Laplace distribution

The skew Laplace distribution is obtained by the conversion of the Laplace
distribution to an asymmetric density function, as described in Kotz et al. (2001).
This distribution is a continuous probability distribution with three parameters
(ξ, ω, λ) and its probability density function is

fX(x; ξ, ω, λ) =

√
2

ω

λ

1 + λ2

exp
(
−
√
2λ
ω (x− ξ)

)
, para x ≥ ξ,

exp
(√

2
ωλ (x− ξ)

)
, para x < ξ,

(12)

where ξ is the location parameter, ξ ∈ (−∞,+∞); ω is the scale parameter, ω > 0;
and λ is the asymmetry parameter, λ > 0. The notation used for this distribution
is SL(ξ, ω, λ).

The Laplace distribution or double exponential distribution is a particular case
of skew Laplace distribution when λ = 1.

3 Results

In the study of simulation we estimate the parameters of the α-stable, skew
normal, skew Student’s t and skew Laplace distributions, using the maximum
likelihood method, and we calculated the corresponding standard errors of
maximum likelihood estimates (EMV’s) using Fisher’s expected information matrix,
I(θ0).

Taking the inverse of Fisher’s expected information matrix, [I(θ0)]−1, we have
on its main diagonal the values sii, which are the correspondents standard errors
of θi, and calculated asymptotic confidence intervals with a coefficient of 95%
confidence, for the parameter vector, θ, of the distributions, through expression:
θ̂i ± 1.96

√
sii.

We used the Akaike Information Criterion - AIC (AKAIKE, 1974), and the
Schwarz Bayesian Criterion - BIC (SCHWARZ, 1978) to select the best model.

We simulate each random variable X for each distribution using functions
avaliable in packages fBasics, VGAM and sn of the R software (R 2.11.1, 2011).

We simulated data sets using one set of parameters from each of the
distributions considered for several sample sizes.

The data was simulate from a α-stable distribution with parameters α = 1.65,
β = 0.4, γ = 0.3 and δ = 0.2, and with sample sizes, n = 30, n = 100, n = 1000 and
n = 10000, and we fit the model to these observations using α-stable, skew normal,
skew Student’s t and skew Laplace distributions.
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Table 1 - Estimates of parameters and corresponding standard errors
Generating Parameters Estimates of parameters (standard errors)
distribution values n = 30 n = 100 n = 1000 n = 10000

α-stable α=1.65 1.6375 (0.3554) 1.6740 (0.1821) 1.6749 (0.0443) 1.6462 (0.0153)
β=0.40 -0.3220 (0.6439) 0.6897 (0.4065) 0.4748 (0.1189) 0.3895 (0.0364)
γ=0.30 0.2326 (0.0523) 0.3040 (0.0319) 0.2783 (0.0082) 0.3018 (0.0030)
δ=0.20 0.1558 (0.2975) 0.1602 (0.0668) 0.1950 (0.0187) 0.2010 (0.0066)

Skew ξ=-0.20 -0.5060 (0.6526) -0.0313 (3.4313) -0.1793 (0.1254) -0.2274 (0.0257)
normal ω=0.50 0.5612 (0.3224) 0.4164 (0.0364) 0.4831 (0.0533) 0.5108 (0.0134)

λ=0.70 0.9999 (2.8502) 0.0070 (16.1544) 0.2352 (1.6372) 0.6443 (0.1252)
Skew ξ=-0.20 -0.4658 (0.0921) -0.3180 (0.1105) -0.2061 (0.0635) -0.2050 (0.0216)

Student’s t ω=0.50 0.7850 (0.2181) 0.5795 (0.1143) 0.4833 (0.0322) 0.4989 (0.0109)
λ=0.60 8.6902 (8.8983) 1.8165 (0.8752) 0.5993 (0.1983) 0.6098 (0.0659)
ν=5 40.6564 (323.4978) 4.2818 (1.7717) 4.3650 (0.6135) 4.9473 (0.2425)

Skew ξ=-0.20 -0.2730 (0.0170) -0.2110 (0.0171) -0.1844 (0.0110) -0.2069 (0.0046)
Laplace ω=0.50 0.4401 (0.0850) 0.4084 (0.0450) 0.4817 (0.0166) 0.5007 (0.0057)

λ=0.60 0.6159 (0.0903) 0.5672 (0.0507) 0.6159 (0.0190) 0.5910 (0.0065)

We repeated the same procedure applied above for skew normal, skew
Student’s t and skew Laplace distribubions, i.e., we simulate the data sets from
a distribution and fitting all four distributions.

The data sets was simulate from a skew normal distribution with parameters
ξ = −0.2, ω = 0.5, and λ = 0.7; and from a skew Student’s t distribution with
parameters ξ = −0.2, ω = 0.5, λ = 0.6 and ν = 5; and from a skew Laplace
distribution with parameters, ξ = −0.2, ω = 0.5 and λ = 0.6, all of them with
sample sizes given above.

Table 1 shows the true values of parameters, their estimates and corresponding
standard errors for sample sizes from 30 to 10000, for replica of simulated data from
α-stable, skew normal, skew Student’s t and skew Laplace distributions.

We observe that as the sample size increases the parameter estimates of all
parameters get closer to the true values and the corresponding standard errors tend
to zero.

These results indicate that the estimators are consistent and also validate the
computational procedure.

The exceptions are the estimates of asymmetry parameter λ of the skew normal
distribution and the degrees of freedom of the skew Student’s t distribution, ν, for
sample size of n = 100.

In the study of simulation we also identified not convergencie of the estimation
of the skew normal distribution parameters when the observations are generated
from a α-stable distribution, with parameter α = 0.1 and large sample size, n =
10000. Also, when the α-stable distribution parameter approaches 2.0, the program
is unable to estimate this parameter.

Simulating data sets from each distribution and using AIC and BIC criteria
to identify the best fitting model produced the results presented in Table 2. We
can observe that for sample sizes n ≥ 100 the model is correctly identified for all
distributions considered. For n = 30 data sets generated from α-stable and skew
Student’s t are identified as skew Laplace and data sets generated as skew Laplace
and skew normal are identified as skew normal distribution. Those results indicate
that for large sample sizes criteria AIC and BIC are effective in identifying the
best model (n>100 in our experiments).
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Table 2 - Results of model selection using AIC and BIC criteria
Generation Modeled n = 30 n = 100 n = 1000 n = 10000
Distribution Distributions AIC BIC AIC BIC AIC BIC AIC BIC

α-stable α-stable 36.9 56.1 163.3 192.1 1352.3 1399.6 15415.2 15481.0
normal(*) 35.3 49.7 359.7 381.4 1895.8 1931.2 25573.8 25623.1

Student”s t(*) 36.3 55.5 166.2 195.0 1364.2 1411.4 15497.6 15563.3
Laplace (*) 34.2 48.6 194.9 216.5 1438.7 1474.2 16602.6 16651.9

normal(*) α-stable 50.6 69.8 116.6 145.43 1200.6 1247.8 12301.8 12097.5
normal(*) 48.5 63.0 114.6 136.2 1198.3 1233.7 12018.9 12068.2

Student’s t(*) 50.6 70.0 116.6 145.4 1200.5 1247.5 12020.7 12086.4
Laplace(*) 51.1 65.5 151.7 173.3 1292.5 1327.9 12954.4 13003.7

Student’s t(*) α-stable 91.7 111.0 165.8 194.7 1709.7 1757.0 18472.6 18538.2
normal(*) 49.5 63.9 187.7 209.3 1806.8 1842.3 17836.0 17885.3

Studen’s t(*) 43.3 62.5 165.2 194.1 1701.9 1749.2 16937.5 17003.1
Laplace(*) 41.5 55.9 188.8 216.54 1720.2 1755.6 17224.7 17273.94

Laplace(*) α-stable 46.6 65.8 177.7 206.6 1502.5 1549.7 20362.6 20428.3
normal(*) 42.0 56.4 154.1 175.8 1721.3 1756.8 18596.1 18645.4

Student’s t(*) 42.5 61.7 126.8 154.5 1478.4 1525.7 15925.5 15991.2
Laplace(*) 44.5 58.9 125.7 148.5 1464.9 1500.3 15747.8 15797.1

(*)Skew

Table 3 - Coverage of Confidencial Intervals of 95%
Generation Parameters Coverage (%)

Distribitutions Values n = 30 n = 100 n = 1000 n = 10000(∗)
α-stable α=1.65 92.6 96.2 96.2 94.7

β=0.40 93.4 95.5 94.3 92.8
γ=0.30 88.3 93.2 89.8 95.6
δ=0.20 99.3 96.1 99.2 93.6

skew normal ξ=-0.20 99.9 100.0 99.8 95.4
ω=0.50 83.2 81.6 82.9 96.5
λ=0.70 100.0 100.0 99.8 96.1

Skew Student’s t ξ=-0.20 87.3 92.4 94.4 95.3
ω=0.50 88.4 94.1 94.0 94.9
λ=0.60 100.0 99.9 95.6 95.3
ν=5 87.6 91.5 94.9 95.0

Skew Laplace ξ=-0.20 95.3 95.3 84.2 84.2
ω=0.50 86.6 90.5 94.9 95.5
λ=0.60 72.1 80.3 86.7 91.1

(*) For this size of sample replicates were made 640

Using the same true values of parameters given the above the simulation
process was replicated 1000 times for n ∈ {30, 100, 1000} and was replicated 640
times for n = 10000. For each simulated data set we estimate 0.95 confidence
intervals. The proportion of times the interval contains the true value are presented
in Table 3.

As we observe, the intervals for dispersion/scale parameters are under
dimensioned, γ for α-stable distributon and ω for skew normal, Student’s t
and Laplace distributions. The same occurs with the asymmetry and location
parameters of the skew Laplace, λ and ξ respectively. For small sample sizes there
are several parameters with under dimensioned confidence intervals but results are
not conclusive.
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3.1 Application to gene expression data

The gene expression data are from an experiment known in the microarray
literature as “Swirl Zebrafish” (Danio rerio), Ferreira and Leandro (2009). This
experiment was conducted using the fish “Zebrafish” as a model organism for the
study of growth in vertebrates.

A goal of the Swirl experiment is to identify genes with altered expression
in the swirl mutant compared to wild-type zebrafish. Two sets experiments
were performed, for a total of four replicate hybridizations. For each of these
hybridizations, target cDNA from the swirl mutant was labeled using one of the
Cy3 or Cy5 dyes and the target cDNA wild-type mutant was labeled using the other
dye. Target cDNA was hybridized to microarrays containing 8.448 cDNA probes.
The data sample consists of 33.792 observations, and the data were removed from
the site<http : //bioinf.wehi.edu.au/limmaGUI/DataSets.html>.

We estimate the parameters of the α-stable, skew normal, skew Student’s t and
skew Laplace distributions for gene expression data, and calculate the asymptotic
Confidence Intervals for these parameters, as described in Mood and Graybill (1974).
Table 4 presents the results. The significance test for the asymmetry parameters
of the distributions indicates that there is evidence for asymmetry, β of the α-
stable (p-value <0.0002), λ of the skew normal (p-value <0.0001), skew Student’s t
distribution (p-value <0.001) and skew Laplace (p-value <0.0001) distributions are
all significant at 0.05 significance level.

Figure 1(a) illustrate the histogram and the fitted distributions. Figure 1(b)
shows the estimated densities for the considered distributions: α-stable (solid line),
skew normal (dashed line), skew Student’s t distribution (dotted line) and skew
Laplace (dashed-dotted line).

The model selection criteria AIC and BIC indicate the α-stable distribution
as the best fitting model. These results are in Table 5.
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Table 4 - Parameters estimates, standard errors and 0.95 confidence intervals for
the “Swirl Zebrafish” data

Distributions Parameters Estimates Standart Errors 2.5% 97.5%
α-stable α 1.9160 0.0055 1.9053 1.9267

β 0.2257 0.0560 0.1160 0.3354
γ 0.3103 0.0014 0.3076 0.3130
δ -0.2888 0.0026 -0.2940 -0.2837

skew normal ξ -0.6112 0.0064 -0.6265 -0.5958
ω 0.5789 0.0048 0.5694 0.5884
λ 0.9999 0.0314 0.9393 1.0605

skew Student’s t ξ -0.3673 0.0199 -0.4064 -0.3282
ω 0.4187 0.0042 0.4105 0.4269
λ 0.2208 0.0580 0.1071 0.3344
ν 8.5805 0.3043 7.9841 9.1770

skew Laplace ξ -0.2607 0.0042 -0.2689 -0.2525
ω 0.5203 0.0029 0.5148 0.5259
λ 1.0350 0.0071 1.0211 1.0489

Figure 1 - Histogram and pdf’s of fitted densities (a) and fitted cdf’s (b) for “Swirl
Zebrafish” data.
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Table 5 - “Swirl Zebrafish” data: Model selection AIC’s and BIC’s
Distributions AIC BIC
α-stable 43768.28 43843.70

skew normal 45901.85 45958.41
skew Student’s t 44190.40 44265.83
skew Laplace 46898.73 46955.30

Discusions

We develop a simulation study to explore practical aspects of asymmetric
distributions α-stable, skew normal, skew Student’s t and skew Laplace.

We have that as the sample size increses the standard errors are reduced,
indicating consistency of the estimators used and also validating the computational
procedures.

We also verify the capability of AIC and BIC to identify the right model.
In our study of simulate the choice of the right model happened for sample sizes
n ≥ 100 for all distributions considered but this is parameter dependent.

We detected that the confidence intervals for dispersion/scale parameters are
under dimensioned for all sample sizes considered while for small sample sizes the
results are not conclusive.

The application to gene expression data results identify the α-stable
distribution as the best fitting model indicating the relevance of this distribution.

This result agrees with Gonzalez et al., (2009) in which the authors apply
the alpha-stable distribution for 4 different cDNA dual dye microarray datasets,
including “Swirl zerafish”.

In general, gene expression data sets are composed of sample sizes n ≥ 100,
like the data sets analyzed by Gonzalez et al., (2009). Therefore, the results found
in this simulation study are valid to analyze gene expression data.

There were also difficulties in the estimation of the parameters. This happens
when the true values of parameters are near the border of the region where the
parameters were defined.

MACERAU, W. M. O.; MILAN, L. A. Usando distribuições assimétricas para
modelagem de dados de expressão gênica. Rev. Bras. Biom., Lavras, v.39, n.4,
p.266-278, 2021.

RESUMO: Apresentamos uma breve revisão das distribuições assimétricas α-estável,
normal, t de Student e Laplace. Comparamos o desempenho dessas distribuições, em
geral, usadas para modelar dados assimétricos, usando AIC e BIC. Esses critérios foram
capazes de selecionar o melhor modelo para cada conjunto de dados. Também aplicamos
esses modelos a dados de expressão gênica e verificamos que essas distribuições são
qualificadas para modelar essas observações.
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