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ABSTRACT: Breast cancer is one of the most common diseases among women worldwide
with about 25% of new cases each year. In Brazil, 59,700 new cases of breast cancer
were expected in 2019, according to the Brazilian National Cancer Institute (INCA).
Survival analysis has been an useful tool for the identifying the risk and prognostic
factors for cancer patients. This work aims to characterize the prognostic value of
demographic, clinical and pathological variables in relation to the survival time of 2,092
patients diagnosed with breast cancer in Parana State, Brazil, from 2004 to 2016. In
this sense, we propose a Bayesian analysis of survival data with long-term survivors
by using Weibull regression models through integrated nested Laplace approximations
(INLA). The results point to a proportion of long-term survivors around 57.6% in the
population under study. In regard to potential risk factors, we namely concluded that
40-50 year age group has superior survival than younger and older age groups, white
women have higher breast cancer risk than other races, and marital status decreases that
risk. Caution on the general use of these results is nevertheless advised, since we have
analyzed population-based breast cancer data without proper monitoring by a health
professional.
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1 Introduction

Cancer treatment and prevention have made progress over the past few decades
and continue to have the attention of medical researchers and related fields. As
reported by the Brazilian National Cancer Institute (INCA, 2019), the estimated
incidence of breast cancer in 2019 in Brazil was 59,700 new cases, representing
29.5% of the various types of cancer in women. Araújo and Fernandes (2008)
discuss the impact of the diagnosis and the confrontation of the breast cancer such as
psychological effects caused on the personal image and feelings of fear of death since
it is an irremediable illness. Among the socioeconomic, demographic, behavioral,
regional and health factors interrelated to breast cancer prevention, Rodrigues et
al. (2015) pointed out that women with a good socioeconomic status are the profile
of women who are best at preventing breast cancer. This type of cancer occurs
mostly in women, not exempting males but with a lower incidence, and represents
approximately 1% of total cases of the disease (APARÍCIO, 2013).

According to INCA (2019), breast cancer can evolve in different ways because
the disordered multiplication of breast cells that can invade adjacent tissues or other
more distant body organs. These behaviors are due to the distinct characteristic of
each tumor. It should also be noted that there are several types of breast cancer,
defined by the International Classification of Diseases (ICD) for Oncology. Breast
cancer ICD is an useful tool that allows more information about the pathologies
cataloged by the World Health Organization (WHO), ranging from C500 to C509.
Sometimes there is a need to study the effect of these DCI groups separately,
investigating the individual behavior related to the location of each tumor.

Several survival models have been used to analyze cancer data such as
parametric survival models e.g. Weibull regression (see details in LEE and WANG,
2003; LAWLESS, 2003; COLOSIMO and GIOLO, 2006) or semiparametric survival
models e.g. Cox regression (COX, 1972). These regression models, also known by
proportional hazards models, are very popular in the survival analysis due to their
easy implementation and interpretation. Alternatively, other modeling approaches
can be employed for cancer data, for instance, Suguiura (2017) presented a study
of breast cancer that took into account the geographic information of the Health
Units in the State of Parana under a multilevel Multinomial model with Gaussian
random effects. Its main objective was to verify the frequency of occurrence of a
certain type of ICD attending the patient’s residence local, apart from some cancer
risk factors.

In some cancer clinical trials, there has been a significant increase in the
proportion of patients who do not experience the event of interest during the
study period, such patients being commonly known as long-term survivors. The
survival models that contemplate patients ‘immune’ to the event of interest are
called survival models with long-term survivors or with ‘cure’ fraction (see e.g.
MALLER and ZHOU, 1996; IBRAHIM et al., 2001; LAMBERT, 2007). These
models have become the target of interest on the part of health managers, who
want to keep up with trends in the survival of patients with ‘curable’ diseases.
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Based on an experience with calculated survivorships of patients following
treatment for cancer, Berkson and Gage (1952) developed a simple function, in
terms of two physically significant parameters, which fits such survivorship data
very well. These two parameters can be used to briefly compare the mortality of two
differently treated groups, types of cancer or other characteristics. One parameter
represents the proportion of the population that is subject only to mortality rates
‘normal’ (‘cured’), while the other is the cancer mortality rate, for which the rest
of the population (‘uncured’) is subject. Also for cancer studies, Lambert et al.
(2006) report that cure occurs when the mortality rate (risk) returns at the same
level as expected in the general population.

Some studies have been published on survival models with cure fraction,
incorporating different forms of cure fraction. For example, Sposto (2002) analyzed
data from children with lymphomas and leukemias, with a significant proportion of
patients cured after therapy through a parametric non-mixing model to incorporate
mortality and thus obtain the estimates of the cure fraction. Cucchetti et al. (2015)
performed a survival analysis with a cure fraction for patients after hepatectomy
of colorectal liver metastases. Ramires et al. (2018) have used generalized additive
models to investigate the proportion of cure rate in women diagnosed with breast
cancer. For further details on survival models with cure fraction, see the following
works and their references: Yakovlev and Tsodikov (1996) for biologically significant
inferences from cancer data, Ibrahim et al. (2001) for cure models from a Bayesian
perspective, Achcar et al. (2012) and Martinez et al. (2013) for using mixture and
non-mixture cure fraction models, and Amico and van Keilegom (2018) who do a
review on cure survival models.

This work aims to characterize the prognostic value of demographic, clinical
and pathological variables in relation to the survival time of breast cancer patients
from a population-based data, obtained through INCA and involving 2,092 patients
who were observed with breast cancer in the Parana State, Brazil, from 2004 to
2016. In this sense, we propose a Bayesian analysis of survival data with long-term
survivors by using Weibull regression models through integrated nested Laplace
approximations (INLA), which is a method for approximate Bayesian inference and
encompasses a large family of models that are used in practice. INLA has been
promoted as a fast alternative to MCMC namely for disease mapping applications
(CARROL et al., 2016; DE SMEDT et al., 2015). The article is organized as
follows: Section 2 presents the methodology used in survival analysis with fraction
of long-term survivors, while Section 3 exposes both descriptive analysis of the
real breast cancer data and the inferential results of the proposed models using
a Bayesian approach via INLA. Some conclusions are presented on the proposed
survival analysis, including a criticism about the limitations found both in the
analyzed data set and in the chosen software. Ultimately, a simple example of
INLA code for fitting Weibull survival model with long-term survivors is shown in
Appendix.
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2 Methods

2.1 Material

The breast cancer data that motivated this work were obtained from INCA
(Instituto Nacional de Câncer José Alencar Gomes da Silva), which is the body
of the Ministry of Health responsible for the development and coordination of
integrated actions in the prevention and control of cancer in Brazil. Those actions
include hospital care provided directly and free of charge to cancer patients within
Brazil’s Unified Public Health System (SUS), and interventions in other strategic
areas, such as prevention and early detection, training, research and epidemiological
information (INCA, 2019).

The data set reports population-based information of female patients
diagnosed with breast cancer in a reference hospital in the Parana State, Brazil,
from 2004 to 2008, and observed in treatment until 2016. This year choice is
mainly aimed at ensuring sufficient information to validate cure fraction models.
So, this cross-sectional retrospective study involves 2, 234 patients for whom some
demographic, clinical and pathological variables were collected. However, due to
presence of missing observations of some variables and the occurrence of death dates
equal to diagnosis dates, the total number of patients under study was reduced to
2, 092 patients.

Some of these variables, which are already known as risk factors for patients
with breast cancer, were unfortunately not disclosed in the data set such as
treatment type and disease stage. On the other hand, this has become a challenge
for us as we invest in the search for risk factors not completely studied in the breast
cancer literature, e.g., marital status and race. Note that we exclude male patients
since the simultaneous study of male and female is controversial in this sort of cancer
and, in addition, their number of cases is small.

Taking into account our initial objectives, we defined our response variable
hereinafter called survival time. That is, the time between the date of diagnosis
and the date of death due to breast cancer. For patients who did not die of breast
cancer by the end of 2016, their survival times were calculated replacing the date of
death by the date of the last hospital contact or of death due to another disease. For
convenience, survival times were represented in years, whereas covariate Age was
categorized into three Age group: less than forty years, between 40 and 50 years,
and more than 50 years (MCGUIRE et al., 2015), being the latter also associated
with the menopause period (RODRIGUES et al., 2015). In Section 3.1, we come
back this matter doing a preliminary data analysis for all these variables.

2.2 Models with long-term survivors

Survival analysis deals with survival times of individuals observed during a
given period, e.g., the elapsed time between the study entry (cancer diagnosis) and
the occurrence of the event of interest (breast cancer death) for each patient. One
of the main characteristics of survival data is the presence of censoring i.e. the event
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does not occur for some individuals under study. That can be frequent in cohort
studies and clinical cancer trials (YAKOVLEV and TSODIKOV, 1996).

Survival data set with n patients is usually represented by the pair (ti, δi),
where ti is the survival time of the patient i and δi its death indicator, i.e. δi = 1,
if patient i has the event of interest, or δi = 0, otherwise (censoring), i= 1, . . . , n.
A probabilistic distribution is often adopted for modeling survival times (T ) that
are characterized by its survival function, S(t) or hazard function h(t), t ≥ 0. The
former is the probability that the patient survives at least until the moment t, while
the latter is the rate of occurrence of death at the moment t. In fact, if one knows
the form of S(t), one can derive the corresponding h(t), and vice versa, by the
relationship between the two ones, i.e.,

S(t) ≡ P (T ≥ t) =
f(t)

h(t)
, (1)

where f(t) is the probability density function of the observable survival times that
are here considered absolutely continuous random variables. For further details on
survival analysis, see e.g. Lawless (2003), Lee and Wang (2003), and Colosimo and
Giolo (2006).

Survival models have been employed under parametric, non-parametric and
semi-parametric approaches considering the data specificity. For example, the
observation of individuals who are not susceptible to the occurrence of the event of
interest during the study period. In this case, parametric survival models can
be a good choice for modeling both the survival times and the proportion of
long-term survivors or fraction of cure. Survival models with cure fraction were
initially proposed by Boag (1949), and later the methodology of cure proportion was
introduced by Berkson and Gage (1952). These used the survival function in the
form of mixture, where the population is divided into two parts: one that represents
survival time for ‘uncured’ individuals and the other involving a distribution for
survival time for ‘cured’ individuals.

According to Ibrahim et al. (2001), the cure (rate) model has been used to
analyze survival data for various types of cancer such as breast cancer, leukemia,
prostate cancer, head and neck cancer, where a significant proportion of patients
are ‘cured’ after sufficient follow-up. In this model, a certain fraction p is considered
for the cured population, whereas the remaining fraction 1 − p is for the uncured
population. Therefore, the survival function for the entire population is given by

S(t) = p+ (1− p)S0(t) =
(1− p) f0(t)

h(t)
(2)

where S0(t) and f0(t) are respectively the (proper) survival and density functions
for individuals who are at death risk (non-cured group), and h(t) is the hazard
function for the entire population, t > 0, 0 < p < 1. Note that limt→∞ S(t) = p in
(2) and since p 6= 0, S(t) is not a proper survival function, where p is the proportion
of long-term survivors i.e. the fraction of individuals not susceptible to the event of
interest (see details in MALLER and ZHOU, 1996; IBRAHIM et al. 2001).
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Consequently, for n individuals who constitute a (cancer) data set, denoted
here by D = {(ti, δi,xi), i = 1, . . . , n}, one can assume a probability model indexed
by a parameter θ and therefore the corresponding likelihood function is expressed
as

L(θ|D) =

n∏
i=1

[(1− p)f0(ti|θ)]δi [p+ (1− p)S0(ti|θ)]1−δi , (3)

where ti is the survival time, δi is the death indicator, and xi is the observed
covariates vector for the individual i. Assuming the Weibull model W(γ, λ), with
shape parameter γ and scale parameter λ, the survival and density functions in (3)
are equal to S0(t|γ, λ) = exp(−λtγ) and f0(t|γ, λ) = γλtγ−1 exp(−λtγ), respectively.
Note that the covariates may be introduced into the Weibull model using the
parameter λ ≡ exp(xTβ), where β is the regression coefficient vector associated
with a generic covariate vector x.

Under a Bayesian perspective, inference on the parameters of the Weibull cure
survival model, denoted here as θ = (γ,β, p), will be made from the joint posterior
distribution that is represented in a more simplified way as

Posterior distribution ∝ Likelihood function× Prior distribution, (4)

where the likelihood function is the equation (3) related to Weibull model mentioned
above, and prior distribution refers to the prior information of the model parameters.
For further details about the construction of posterior distributions (4), see e.g.
Paulino et al. (2018) or Amaral-Turkman et al. (2019).

Even considering well-known probability distributions for composing the
likelihood and prior distributions, the posterior distribution (4) may not be simple
to work with. In this sense, Markov chain Monte Carlo (MCMC) methods are
widely used for making inference from a Bayesian perspective, whereas integrated
nested Laplace approximations (INLA) have became more efficient in last years.
Our choice fell on the latter due to the fact that the proposed cure survival model
is more easily implemented under INLA approach. In fact, the package R-INLA
(RUE et al., 2009) was employed as a result of its better performance in executing
such survival models. In addition, the software R (2020) was also used to obtain
other calculations and plots presented here.

Finally, an important part in any statistical analysis is the evaluation,
selection and comparison of models. So, we need to define criteria that allow
e.g. the selection of a parsimonious model. In other words, a model capable
of satisfactorily and simply explaining survival times in relation to explanatory
variables. In the Bayesian context, several measures have already been proposed
such as predictive performance measures or predictive Bayesian leave-one-out
residuals. For instance, Conditional Predictive Ordinate (CPO) that is based on
leave-one-out cross validation idea. The most suitable model is the one that has
the largest sum of the logarithms of the individual conditional predictive ordinates,
i.e. CPO =

∑n
i=1 logCPOi, i = 1, . . . , n (see PAULINO et al, 2018). Other

predictive performance measures are Deviance Information Criterion (DIC) and
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Watanabe-Akaike Information Criterion (WAIC), proposed by Spiegelhalter et al.
(2002) and Watanabe (2010), respectively. Small values of these two measures
indicate the best fitted model. For some details of diagnostic measures and adequacy
of Bayesian models, see e.g. Paulino et al. (2018) and Wang et al. (2018).

3 Results

3.1 Preliminary analysis

The data set here refers to patients observed with breast cancer in Parana
State, Brazil, from 2004 to 2016. In a preliminary phase, the covariates ‘patient’s
residence city’ and ‘disease code/description’ were excluded as result of the presence
of too many missing values and consequently this would bring little information to
the study. During the study, 11 male patients were also excluded from the study as
long as the objective here is to study female patients with breast cancer. Thus, the
final data set has 2, 092 patients and several explanatory variables.

Table 1 shows the descriptive statistics of the categorized variables, as well
as the definition of their categories, thus describing the characteristics of breast
cancer patients. It can be noted that most patients are over 50 years (62.86%),
and 73.42% and 46.27% of them are white and married, respectively. Regarding
to morphology, ductal Lobular has 65.58% of patients, while ductal carcinoma has
9.85%, corroborating with the breast cancer literature. One intriguing result is
to have 1, 468 patients who were alive at the end of the study, considered a high
percentage of long-term survivors (70.17%). Censoring was defined here for patients
who were alive or died of other causes excluding breast cancer (96 patients).

A potential relevant covariate for cancer is topography, represented by the
ICD codes that are responsible for classifying the type of cancer, allowing for
more information on the pathologies, cataloged by WHO. ICD is termed by the
following codes: C500 - Malignant neoplasm of nipple and areola of the breast; C501
- Malignant neoplasm of central portion of the breast; C502 - Malignant neoplasm
of upper-inner quadrant of the breast; C503 - Malignant neoplasm of lower-inner
quadrant of the breast; C504 - Malignant neoplasm of upper-outer quadrant of the
breast; C505 - Malignant neoplasm of lower-outer quadrant of the breast; C506 -
Malignant neoplasm of the axillary tail of the breast; C508 - Malignant neoplasm of
overlapping sites of the breast; C509 - Malignant neoplasm of unspecified site of the
breast. By reason of low frequency of some ICD categories, we opted for grouping
ICD as follows: C504, C509 and the other ICD (C500, C501, C502, C503, C505,
C506, and C508).

From Table 1, we also note that 57.79% and 23.57% of the patients were
diagnosed with unspecified malignant breast neoplasia and malignant neoplasm
of upper-outer quadrant of the breast, respectively. The excess of C509 cases in
topography (first percentage) is still a subject that deserves further study, especially
with the potential difficulty of physicians in filling this information in the patient’s
record.
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Table 1 - Characteristics of breast cancer patients in Parana State, Brazil, observed
from 2004 to 2016

Variable Description Total % Censoring(%) Death(%)
Age group < 40 226 10.80 7.84 2.96

40− 50 551 26.34 21.46 4.88
> 50 1,315 62.86 45.46 17.40

Race White 1,536 73.42 51.00 22.42
Other 556 26.58 23.76 2.82

Marital status Married 968 46.27 36.42 9.85
Other 1,124 53.73 38.34 15.39

Topography C509 1,209 57.79 42.45 15.34
(ICD) C504 493 23.57 18.26 5.31

Other 390 18.64 14.05 4.59
Morphology Ductal Lobular 1,372 65.58 48.61 16.97

Ductal Carcinoma 206 9.85 7.41 2.44
Other 514 24.57 18.74 5.83

Status Breast cancer death 528 25.24 - 25.24
Alive & other deaths 1,564 74.76 74.76 -
Total 2,092

The Figure 1 presents Kaplan-Meier curves for the survival times, including
their 95% confidence intervals, for all breast cancer patients (Figure 1-A) and for
each categorized covariate in study. Graphically, there is a stabilization of the
empirical survival function for all patients, reaching a plateau around 0.75. Women
with malignant neoplasm of upper-outer quadrant of the breast (C504) tend to
survive more than women with other ICD (Figure 1-B), and note that the C509
and other ICD survival curves intersect a few times over time. Patients who claim
to be white have lower breast cancer survival than non-white patients (Figure 1-C).
There are no difference between the survival curves of patients who have different
categories of morphology (Figure 1-D). Married patients survive more than those
who are unmarried (Figure 1-E), while patients between 40 and 50 years old are
more likely to survive breast cancer than patients with 40 years old and over 50
years old (Figure 1-F).

We also note from Figure 1 that the survival functions estimated by the
Kaplan-Meier estimator do not tend to zero as survival time tends to infinity. This
indicates that breast cancer patients in study may have a relevant proportion of
long-term survivors and consequently, for the patients not susceptible to the event
of interest (death due to breast cancer), the survival model with cure fraction (2)
may be more appropriate.

To conclude the preliminary analysis, some survival distributions were
informally fitted to the survival times of breast cancer data, and the results pointed
out empirical evidence that the Weibull distribution was the best fitted distribution
related to these survival data.
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Figure 1 - Kaplan-Meier survival curves: (A) All patients, with 95% confidence
intervals, (B) ICD (2: C509, 1: C504, 0: Others), (C) Race (1: White, 0:
Others), (D) Morphology (2: Ductal Carcinoma, 1: Lobular Carcinoma,
0: Others), (E) Marital status (1: Married, 0: Others) and (F) Age
group of women diagnosed with breast cancer in Parana State from 2004
to 2016.

3.2 Analysis with long-term survivors

The Weibull cure survival model (2) under a Bayesian perspective was
employed here for the data analysis of breast cancer patients from Parana State,
observed from 2004 to 2016. In order to find some risk factors that have influence
in the death risk of breast cancer, we fitted the proposed models in (2) with several
available covariates such as Age group (A), Morphology (M), Topography code
(ICD), Marital status (MS), and Race (R). The corresponding Weibull regression
with these covariates is here represented by the following structure for its scale
parameter

λ ≡ eη = exp

[
β0+

2∑
j=1

(
βjAj+βj+2Mj+βj+4ICDj

)
+ β7MS + β8R

]
, (5)

Rev. Bras. Biom., Lavras, v.39, n.2, p.293-310, 2021 - doi: 10.28951/rbb.v39i2.469 301



where the corresponding dummy variables are defined by A1 = 1 (40 − 50 years),
A2 = 1 (> 50 years), M1 = 1 (lobular carcinoma), M2 = 1 (ductal carcinoma),
ICD1 = 1 (C504), ICD2 = 1 (C509), MS = 1 (married patient), and R = 1 (white
race).

For defining the posterior distribution (4), the prior information considered
was non-informative prior distributions since it was not possible to obtain prior
information on the model parameters from past studies or from the opinion of
experts on this topic. In this sense, the vague but proper prior distributions
were standard Normal N (0, 1) for all regression parameters βj , j = 0, 1, . . . , 8 and
Gamma G(1, 1) for the shape parameter γ. For the convenience of computational
implementation only, some parameters were transformed, that is, θ1 = log γ and

θ2 = log
[

p
(1−p)

]
.

In order to compare the cure survival models, the DIC, CPO and WAIC
measures were used. DIC, CPO and WAIC values of the models, with and without
a cure fraction and selected covariates, are in Table 2. These values indicate that in
fact some covariates are influential in the survival times of the patients with breast
cancer, as well as that cure models are better fit than models without cure fraction.
This will be discussed further ahead. Among these models, the selected model is
the proposed Weibull survival model with long-term survivors and some covariates.

Table 2 - DIC, CPO and WAIC values of breast cancer survival models with and
without long-term survivors and some covariates

Model DIC CPO WAIC
No long-term survivors No covariates 4,667.74 1,184.32 4,667.57

With covariates 4,532.92 1,202.32 4,533.07
With long-term survivors No covariates 4,646.37 1,187.34 4,646.70

With covariates 4,521.26 1,214.38 4,522.51

Inferences on the parameters of both survival models with and without long-
term survivors were also obtained through the package R-INLA (RUE et al., 2009)
using the families of Weibull and Weibull-cure distributions, respectively. Some
inferential results of the selected model are in Table 3 such as posterior mean,
standard deviation, and 95% HPD (High Posterior Density) credible intervals. It is
noted that there is evidence of influence of Age group, Marital status and Race in
the survival times of breast cancer patients (see further comments below).

Table 3 also shows that the proportion of long-term survivors (p) in the
population of women with breast cancer was estimated at approximately 58%, based
on the Weibull model with Age group, Race, Marital status, Topography code and
Disease morphology. In the selected model, white race has a positive effect on the
variable response i.e. white women with breast cancer have a higher risk of disease
death than women of other races. Patients diagnosed with breast cancer between
40 and 50 years have a lower risk of death than women over 50 years, while married
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Table 3 - Posterior quantities: mean, standard deviation (SD) and 95% HPD
credible intervals (CI) for the selected cure model parameters

Parameter Mean SD 95% HPD IC
β0 (intercept) -8.525 0.405 (-9.322, -7.739)
β1 (40− 50 years) -0.604 0.231 (-1.050, -0.145)
β2 (> 50 years) -0.157 0.198 (-0.537, 0.239)
β3 (lobular carcinoma) -0.041 0.222 (-0.481, 0.389)
β4 (ductal carcinoma) 0.081 0.142 (-0.196, 0.360))
β5 (C504) -0.131 0.202 (-0.528, 0.266)
β6 (C509) 0.124 0.171 (-0.212, 0.460)
β7 (married) -0.722 0.130 (-0.977, -0.468)
β5 (white) 1.650 0.167 (1.329, 1.983)
γ (shape parameter) 0.932 0.045 (0.844, 1.020)
p (cure fraction) 0.576 0.028 (0.519, 0.629)

patients have a lower risk of death than women who are not married. Another
important factor is that patients with ICD C504 and C509 are not significant in
the selected model, but patients with C504 have a negative ‘residual’ effect on the
survival times, unlike the positive effect of patients with C509. This was confirmed
in informal contact with a local oncologist who stated that ICD did not indicate a
difference in the location of breast cancer.

Figure 2 presents the survival functions of breast cancer patients, estimated
by Kaplan-Meier curve (1) and Weibull regression models with (2) and without (3)
long-term survivors. Once the ‘best’ survival model (2) has long-term survivors, we
concluded that the non-cure fraction survival model (3) is overestimating the breast
cancer survival function, as well as the Kaplan-Meier curve. So, the cure fraction is
below the level previously thought based on both the non-cure Weibull model and
empirical survival function.

Figure 3 shows the residual plots of the selected model from a Bayesian
perspective (see definitions in Wang et al., 2018). Bayesian Cox-Snell, deviance
and Martingale residual plots suggest that fitting the Weibull cure survival model is
essentially good. Cox-Snell residuals are around the 45o line, except from the middle
to the tail, where the variability of the cumulative hazard function estimate is large.
In addition, there is the presence of two groups of residual values in martingale and
deviance residual plots. However, this question should be researched in the future
because the definition of residual itself should vary between ‘cured’ and ‘uncured’
patients. Concerning these residual plots for all models in Table (2), they did not
bring news beyond the distinction between these models depicted in the model
comparison measures in this table. So, we chose to keep only the residuals plots of
the selected model in current figure.
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Figure 2 - Breast cancer survival functions, estimated by Kaplan-Meier curve (1)
and Weibull models with (2) and without (3) long-term survivors.

Figure 3 - Residual plots for diagnosing the selected Weibull cure model.

4 Conclusion

The proposed survival analysis for breast cancer data involving female patients
of the Parana State, Brazil, from 2004 to 2016 was shown to be more appropriate
because it includes a proportion of long-term survivors in the Weibull survival model
in order to capture the presence of long-term survivors among the patients in the
study population. This ‘cure’ fraction was estimated by approximately 58%. Based
on the results obtained, the covariates Race, Age group and Marital status also had
‘significant’ effects on the risk of death from breast cancer.

Patients diagnosed with breast cancer between 40 and 50 years stand out from
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other age groups in a positive way i.e. they have less death risk from breast cancer.
Indeed a younger age at diagnosis is linked to increased mortality, according to
McGuire et al. (2015) who also point out digital mammography is the superior
method for detecting breast cancer, except in young patients. This is reflected in
practice that method is the most commonly used diagnostic tool for older patients
(> 50 years old). In addition, Chen et al. (2016) indicate that younger breast cancer
patients exhibit more aggressive disease than older patients, whereas middle-aged
patients exhibit better survival than young and elderly patients.

Married patients have a positive effect in the breast cancer survival curve.
Although there are no many studies about that issue, Hinyard et al. (2017)
said marital status is strongly associated with improved health and longevity, and
unmarried women were 1.2 times more likely to be diagnosed at a larger stage than
married women. Perhaps this is linked to endocrine factors i.e. married women
usually breastfeed their children. Based on a meta-analysis of observational studies,
Li et al. (2020) corroborate this result by stating that insufficient exploration of
confounding effects or inadequate ascertainment of marital status may limit the
quality of that evidence.

White women with breast cancer have a higher risk of death than women
of other races. This is the least studied issue so far, with more information on
the population of the USA. Curtis et al. (2008) revealed that African American
women had worse survival than white women, although controlling for predictor
variables reduced this difference among all stage breast cancer. However, they also
proposed further investigate the role of biology, demographics, and disparities in
quality of care. Chatterjee et al. (2013) stated that black women are more often
diagnosed with advanced-stage disease than are White women, concluding that in
the mammography era, racial disparities is stage at breast cancer diagnosis in the
USA.

We share some of the concerns and conclusions above, especially wishing there
is more research on breast cancer risk factors in future. Nevertheless, in studies
based on population oncological records in Brazil and not only, the results of cancer
data analysis should be looked at with some care since there is a need to check the
quality of collected data and the excess of missing observation, being impossible to
control this during the data analysis process.

Although MCMC methods are widely used in Bayesian analysis, it was also
more convenient to employ INLA approach for obtaining inferential results, since
INLA has already implemented the Weibull-cure distribution and a faster execution
of computational codes (here executed in R-INLA). On the other hand, INLA has
not yet implemented important issues for a thorough analysis of data with cure
fraction, for instance, including covariates into the fraction of long-term survivors,
predicting new survival times based on the current distributions, and varying the
values fixed for the parameters of the prior distributions. These are certainly topics
for extensions of this work in future.

Recent studies involving more innovative methodology in the processing of
survival data by using cure models are stimuli for future work of cure survival
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models for the breast cancer data analysis. For example, Fernandes et al.
(2018) came up with a survival model with a cure rate in a scenario with M
risk factors, considering the discrete Lindley distribution for M and the Weibull
distribution for the activation time of each factor. Wei and Wu (2019) proposed
a cure model with proportional risks by parts to incorporate the effect of delayed
treatment and cure fraction in clinical trials of cancer immunotherapy. Seppä et al.
(2019) used overmortality models with random effects to estimate the variation in
relative survival or net survival of patients with cancer. This study evaluated the
performance of INLA in monitoring regional variation for cancer registration data.
Lastly, caution on the general use of these results is nevertheless advised, since we
have analyzed population-based breast cancer data without proper monitoring by
a health professional.
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RESUMO: O câncer de mama é uma das doenças mais comuns entre as mulheres em

todo o mundo, com cerca de 25% de novos casos a cada ano. No Brasil, eram esperados

59,7 mil novos casos de câncer de mama em 2019, segundo o Instituto Nacional do

Câncer (INCA). A análise de sobrevivência tem sido uma ferramenta útil para identificar

os fatores de risco e prognóstico para pacientes com câncer. Este trabalho tem como

objetivo caracterizar o valor prognóstico de variáveis demográficas, cĺınicas e patológicas

em relação ao tempo de sobrevivência de 2092 pacientes com diagnóstico de câncer de

mama no Estado do Paraná, Brasil, de 2004 a 2016. Nesse sentido, propomos uma análise

bayesiana de dados de sobrevdvência com sobreviventes a longo prazo usando modelos de

regressão Weibull por meio de aproximações de Laplace encaixadas e integradas (INLA).

Os resultados apontam para uma proporção de sobreviventes a longo prazo em torno de

57, 6% na população em estudo. Em relação aos potenciais fatores de risco, conclúımos

nomeadamente que a faixa etária de 40-50 anos tem sobrevivência superior aos grupos

etários mais jovens e mais velhas, as mulheres brancas têm maior risco de câncer de

mama do que outras raças e o estado civil diminui esse risco. No entanto, recomenda-se

cautela no uso geral desses resultados, uma vez que analisamos dados de câncer de mama

de base populacional sem o devido monitoramento de um profissional de saúde.

PALAVRAS-CHAVE: Regressão Weibull; Fração de cura; INLA; Estat́ıstica bayesianas;

Análise de sobrevivência.
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Appendix

A R-INLA code for the selected model in Table 2

data1 = read.csv(’cancer4years.csv’, sep = ’,’, header = T,

na.strings = "NA")

require(INLA)

formula1 = inla.surv(time, censoring) ~ age.group + topography +

morphology + marital.status

model1 = inla(formula1, family="weibullcure", data=dados1,

control.compute=list(dic=TRUE, waic=TRUE, cpo=TRUE))

summary(model1)

310 Rev. Bras. Biom., Lavras, v.39, n.2, p.293-310, 2021 - doi: 10.28951/rbb.v39i2.469


