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José Luiz Padilha da SILVA1

Priscilla Regina TAMIOSO2

Carla Forte Maiolino MOLENTO2

ABSTRACT: Animal behavior studies usually produce large amounts of data and a

wide variety of data structures, including nonlinear relationships, interaction effects,

nonconstant variance, correlated measures, overdispersion, and zero inflation, among

others. We aimed to explore here the potential of generalized additive models for

location, scale and shape (GAMLSS) in analyzing data from animal behavior studies.

Data from 20 Romane ewes from two genetic lineages submitted to brushing by a familiar

observer were analyzed. Behavioral responses through ear posture changes, a count

random variable, and the proportion of time to perform the horizontal ear posture, a

continuous random variable on the interval (0,1), with non-null probabilities in zero

and one, were analyzed. The Poisson, negative binomial, and their zero-inflated and

zero-adjusted extensions models were considered for the count data, whereas the beta

distribution and its inflated versions were evaluated for the proportions. Random effects

were also included to consider the multilevel structure of the experiment. The zero

adjusted negative binomial model has better fitted the count data, whereas the inflated

beta distribution performed the best for the proportions. Both models allowed us to

properly assess the effects of social separation, brushing, and genetic lineages on sheep

behavioral. We may conclude that GAMLSS is a flexible framework to analyze animal

behavior data.
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1Universidade Federal do Paraná - UFPR, Departamento de Estat́ıstica, CEP: 81531-990, Curitiba,
PR, Brasil. E-mail: lineuacf@gmail.com; taconeli@ufpr.br; jlpadilha@ufpr.br
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1 Introduction

Animal behavior studies have supplied useful information on animal welfare
in a wide range of situations that elicit different emotional states and are currently
entwined in animal welfare understanding (BROOM and FRASER, 2015). Scientific
sources of evidence of rich emotional capacities in animals have contributed to
increasing concern and recognition that they are sentient beings (BROOM, 2014).
Several approaches can be used to assess emotional states in animals. Recent studies
have focused on behavioral responses, which are commonly used as inferences of
emotional states in animals (BOISSY et al., 2007; BOISSY and ERHARD, 2014).

Such studies usually produce complex and unstructured data, recorded from
audios, images and videos, among others. These data sources can yield a multiplicity
of information, registered through a wide variety of random variables. For the sake
of illustration, let us consider a specific animal behavior, such as a head movement or
some eye reaction to some human stimulus. Based on records provided throughout
the experiment, we may simply verify if each animal have presented or not some
specific behavior, configuring a binary outcome; we may be interested in the number
of times that such behavior was repeated, yielding a count variable; or yet in the
proportion of time that it was expressed, given rise to a continuous rate; or in the
amount of time before such behavior can be observed, a continuous variable subject
to censoring, among several other possibilities.

In addition to the huge amount of variables of interest, animal behavior
studies usually present several other factors that should be taken into account
in the statistical analysis. For example, these studies are often designed such
that the individuals (animals) are nested in groups, as litters or herds, yielding
multilevel data (STEVENS et al., 2017; GRAHAM et al., 2018). Moreover, the
case of longitudinal studies is common, where each animal is assessed in different
time points (GÓRECKA-BRUZDA et al., 2017; VENTER et al., 2019), or spatial
studies, where spatial coordinates are relevant for analyzing how the animals behave
(PATTERSON et al., 2017; VILLEGAS-RIOS et al., 2017). It is well known
that grouped, longitudinal and spatial data produce correlated observations, which
should be properly analyzed in order to obtain valid inferences, as pointed out, for
example, by Fitzmaurice et al. (2012). Other common constraints that may be
verified in animal behavior data are, for example, nonlinear relationships; varying
levels of dispersion, skewness and/or kurtosis; over (or under) dispersion; zero
inflation (deflation); and missing or censored data. Therefore, the statistical analysis
of animal behavior requires flexible models, able to deal with the aforementioned
data features. For additional information on the constraints that frequently emerge
in animal behavior studies we refer to Garamszegi (2016) and Valletta et al. (2017).

Generalized additive models for location, scale and shape (GAMLSS) configure
a general framework for univariate regression models, known to be widely flexible
due to the large number of available probability distributions, allowing to analyze
data with different levels of skewness and kurtosis, zero inflation, mixed (continuous
and discrete) behavior, among others. In GAMLSS we can model each distribution
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parameter by including covariates, random effects and smoothers, unlike other
regression methodologies usually considered in animal behavior as, for example,
linear and generalized linear models; linear and generalized linear mixed models; and
generalized additive models, that only allow modeling a location (mean) parameter.
By this way, several of the related constraints present in animal behavior data
may be properly addressed. GAMLSS also allows the use of nonparametric as
well as normal random effects models. Random effects are a suitable tool to deal
with multilevel data and allow to properly accommodate the correlation structure
resulting from repeated measure designs. Smoothers, on the other hand, are
useful in modeling nonlinear relationships between the distribution parameters and
continuous covariates. Some important smoothing additive term functions available
in GAMLSS are based on P-splines, cubic splines, and local regression. For details
regarding smoothing terms in GAMLSS, see Stasinopoulos et al. (2017).

There are several recent studies dealing with new developments and
applications of GAMLSS. Debele et al. (2017) consider the implementation of
GAMLSS to non-stationary flood frequency analysis, while De Bastiani et al. (2018)
describe Gaussian Markov random fields within a GAMLSS framework, and its
application for spatial data analysis. Furthermore, the World Health Organization
recommended GAMLSS for obtaining reference levels and centile curves for human
populations in clinical research (see WHO, 2006 and WHO, 2007). Additional works
on the GAMLSS methodology can be seen, for example, in Flatley et al.(2019);
Nakamura et al. (2019); Smith et al. (2019). We strongly recommend the GAMLSS
seminal book by Stasinopoulos et al. (2017), and the compendium of distributions
currently available in GAMLSS (RIGBY et al., 2019).

This study aimed to explore the potential of GAMLSS methodology in animal
behavior analysis. Therefore, based on data from a study on sheep behavior we seek
to investigate whether social context, through the use of physical grids, influences
behavioral responses of sheep submitted to brushing. We have also investigated
whether social separation effects are influenced by emotional reactivity, by assessing
genetically selected sheep for low versus high social motivation. Thus, 20 sheep
belonging to two different genetic lineages were used. Amongst the main information
resulting from this experiment we may point out two types of variables: the number
of posture changes and the proportion (or percentage) of time that each posture
was expressed. A variety of different postures were recorded, such as ear postures
(raised-up, horizontal, and asymmetric); eyes posture (closed, half-closed and open);
and feeding behavior (eating, ruminating, not eating or ruminating), among others.

For the sake of illustration, we have considered here one variable of each type:
the number of ear posture changes and the proportion of time performing the
horizontal ear posture. Amongst the behavioral indicators used to assess emotions in
animals, ear behavior and ear posture changes have provided valuable data on how
animal welfare can be improved (REEFMANN et al., 2009; BOISSY et al., 2011;
TAMIOSO et al., 2017). Sheep submitted to positive events show high proportions
of horizontal ear postures and fewer ear posture changes than sheep in negative
situations. Therefore, through this research, it is expected to better understand
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sheep perception toward a presumed positive event, such as brushing, using ear
postures as a behavioral indicator. A number of constraints we have pointed out in
the analysis of behavioral data can be found in these data, such that they were used
here as motivations of the usefulness of the GAMLSS framework in this context.
It is worth noting that the proposed models can be easily extended to the other
behavioral variables, such that analogous procedures can be adopted, for example,
for the number of head posture changes, or the proportion of time that a particular
body posture is expressed.

The remaining of this work is organized as follows. Section 2 describes the case
study. Section 3 introduces the GAMLSS methodology. The analysis of count data,
referring to the number of posture changes, is explained and the corresponding
results are presented in Section 4, while Section 5 presents the analysis of the
variable based on a proportion of time. Finally, Section 6 ends this work with our
concluding remarks.

2 Case study

In this work we consider data from an experiment carried out at INRA
experimental farm of La Fage, Roquefort, in the South of France (TAMIOSO et al.,
2018). Twenty 15-month-old Romane female sheep of two different genetic lineages,
selected according to their contrasted behavioral reactivity towards temporary social
separation, low and high reactivity, were exposed to brushing by a familiar human
(for more details, see Tamioso et al. (2020)). Ewes were also assessed pre-brushing,
during brushing and post-brushing for a fixed period of time. In addition, testing
was organized in three consecutive sessions: in sessions 1 and 3 one metal grid
was used to separate the brushed animal from group members. In session 2, two
identical metal grids 1.70 m apart was used to separate the brushed animal from
group members. There was not any specific adaptation period for session 2.

In summary, there are three categorical covariates which are specified next.
Lineage: a two-level factor that classifies animals as reactive (R+) or not reactive
(R-) to temporary social isolation; Session: a three-level factor that defines the
experimental session (session 1, session 2 or session 3); Moment : a three-level factor
that defines whether or not the animal was under human intervention (pre, during
or post brushing). The number of ear posture changes and the time performing the
horizontal ear posture were registered in each moment and in each session. By this
way, each animal contributed for the final data set with nine records, such that we
have repeated measures from the same sheep.

The main goals of our study were to investigate the effect of temporary
separation, by comparing the results across sessions; effect of phase related to
the brushing procedure, by comparing the results in different moments across
sessions; and effect of genetic lineages. Additionally, possible interaction effects
were also of practical interest. The data sets used in this study, as well as the R

scripts developed for the data analysis, are available online and can be assessed in
http://www.leg.ufpr.br/doku.php/publications:papercompanions:gamlss.
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3 Generalized additive models for location, scale and shape

To investigate animal behavior outcomes we have used generalized additive
models for location, scale and shape (GAMLSS) implemented in the gamlss package
(STASINOPOULOS et al., 2007) in R (R CORE TEAM (2017)). GAMLSS is a
distributional regression approach that extends the well-known generalized linear
models (GLMs) and generalized additive models (GAMs) such that all model
parameters (e.g. location, scale and shape parameters) can be modeled as linear,
nonlinear or smooth functions of covariates. A parametric (continuous, discrete or
mixed) distribution is assumed for the response variable which may be heavy or
light-tailed, and positively or negatively skewed.

3.1 GAMLSS framework

For the general definition of GAMLSS, consider independent observations
Yi, i = 1, 2, . . . , n, that follow a probability (density) function fY (yi|θ) parametrized
by θ = (θ1, ..., θp)

T , a vector of p up to four distribution parameters, denoted by
(µ, σ, ν, τ)T when p = 4. Usually, but not necessarily, µ and σ are the location and
scale parameters while ν and τ refer to shape parameters. The GAMLSS is defined
as

gk(θk) = ηk = Xkβk +

Jk
∑

j=1

Zjkγjk, k = 1, 2, 3, 4, (1)

where gk(·) is a known monotonic link function that relates the k-th distribution
parameter to the predictor ηk, βk = (β1k, β2k, . . . , βJ

′

K
k)

T is a parameter vector

of dimension J
′

K , Xk and Zjk are design matrices of order n × J
′

k and n × qjk,
respectively. γjk is a random variable of dimension qjk for which it is assumed
γjk ∼ Nqjk (0, G

−1
jk ), G

−1
jk is the generalized inverse of the symmetric matrix Gjk =

Gjk(λjk) of order qjk × qjk and λjk is a vector of hyperparameters.

3.2 Parameter estimation

The regression parameters (βk) and random effects (γjk) are usually estimated
based on the maximization of the penalized log-likelihood (lp), given by

lp = l −
1

2

p
∑

k=1

Jk
∑

j=1

λjkγ
′

jkGjkγjk, (2)

where l =
∑n

i=1 log(f(yi|θ)) is the log-likelihood function. The penalized log-
likelihood reduces to the usual log-likelihood when there are not any random effects
or smoothing terms in the model. The R package gamlss allows three options to
maximize the log-likelihood presented in (2): (i) CG algorithm, (ii) RS algorithm
and (iii) a combination of both methods denoted by mixed. The CG algorithm uses
the first, second and cross-derivatives of the penalized log-likelihood with respect to
the distribution parameters and performs better for distributions with potentially
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highly correlated parameters. The RS algorithm does not use cross-derivatives, is
computationally less expensive, and is suitable for distributions with orthogonal
parameters. In this paper we used the RS algorithm. For more information on the
estimation process we refer to Stasinopoulos et al. (2017).

3.3 Specifying the probability distribution

For each response variable we have initially fitted different candidate
probabilistic distributions. We compared the fitted models based on the Akaike
Information Criterion (AIC) and considering the residual analysis, using the
normalized (randomized) quantile residuals (DUNN and SMYTH, 1996), as
suggested by Stasinopoulos et al. (2017). Other common measures available for
comparing fitted models include the Generalized (Pseudo) R2 and Generalized AIC
(GAIC), which generalizes the AIC and BIC (Bayesian Information Criterion). See
Stasinopoulos et al. (2017) for more details.

Quantile residuals are based on the idea of inverting the estimated distribution
function for each observation to obtain random variables with uniform distribution,
and next, normally distributed residuals. The main advantage of these type of
residuals is that, whatever the distribution of the response variable, they always
have a standard normal distribution when the assumed model is correct.

The normalized (randomized) quantile residuals are given by r̂i = Φ−1(ûi),
where Φ(·) is the cumulative distribution function of the standard normal
distribution. The ûi’s are defined differently for continuous and discrete response
variables. For continuous random variables we have ûi = F (yi|θ̂), that is, the
fitted cumulative distribution function evaluated at yi, i = 1, 2, . . . , n. For discrete
random variables, F (y|θ) is a step function with jumps at a set of integers y ∈ RY

and in this case ûi is defined as a random observation from a uniform distribution

on [ûi1, ûi2] =
[

F (yi − 1|θ̂), F (yi|θ̂)
]

, for i = 1, 2, . . . , n.

3.4 Specifying the linear predictors

After we have selected a probabilistic distribution using the goodness-of-fit
measures and graphical analysis of normalized (randomized) quantile residuals, we
proceeded with the specification of the linear predictors. This step was based
on the results of successive likelihood ratio tests (LRT), as we seek to compare
nested models. Details on the specification of the linear predictors and the selection
strategies are given in Sections 4 and 5.

4 Analysis of the ear posture changes

In this section we analyze the count ear posture changes. Posture changes
configure an important animal behavior component, since a greater number of
posture changes reflects a more agitated animal. Hence, higher counts are associated
with less positive states (TAMIOSO et al. 2018, 2020). According to Figure 1 we
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can observe that there is a remarkable strong right asymmetry noted in (a), which
is an indication that there is overdispersion in the data and so the usual Poisson
distribution may not be an adequate choice to model this data. Overdispersion, if
not taken into account, can lead to underestimated standard errors and unreliable
hypothesis tests (COX, 1983). The negative binomial distribution is usually
considered to model overdispersion uncaptured by the Poisson distribution. We
can see in (b) that the counts are usually lower for non-reactive animals and (c)
shows that in session 1 there is a greater variability in response when compared
to the other experimental sessions. Furthermore, we can observe in (d) that there
is indication of differences in the frequency of changes in ear posture at different
experimental moments. It may be noted, for example, that the counts are usually
lower during brushing.
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Figure 1 - Distribution of the number of posture changes.

We have also considered models able to accommodate a possible excess of zero
counts in the response variable: the zero inflated Poisson, the zero inflated negative
binomial, the zero adjusted Poisson and the zero adjusted negative binomial
distributions. For zero inflated distributions, a discrete probability distribution, as
the Poisson or negative binomial, has its probability at zero inflated, by adding a non
null probability provided by a degenerate random variable at zero. Zero adjusted
distributions, on the other hand, are mixed distributions that can be used when the
non-zero part of the distribution is well fitted by some count model truncated at
zero, whereas for the zero values, another probability distribution is assumed. Next
we provide details on the probability distributions we have considered in this work.

• Poisson distribution

The probability function of the Poisson distribution, denoted by PO(µ), is given by

P (Y = y | µ) =
e−µµy

y!
, y = 0, 1, 2, 3, . . . ,

where µ > 0. For the Poisson distribution we have E(Y ) = Var(Y ) = µ
(equidispersion), which may be a very restrictive assumption when analyzing count
data.
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• Negative binomial distribution

The probability function of the negative binomial distribution, denoted by
NBI(µ, σ), is given by

P (Y = y | µ, σ) =
Γ
(

y + 1
σ

)

Γ
(

1
σ

)

Γ(y + 1)

(

σµ

1 + σµ

)y (
1

1 + σµ

)
1

σ

, y = 0, 1, 2, 3, . . .

where µ > 0, σ > 0 and Γ(a) =
∫

∞

0
xa−1e−xdx is the gamma function. For the

negative binomial distribution we have E(Y ) = µ and Var(Y ) = µ+ σµ2.

• Zero inflated Poisson distribution

Let Y = 0 with probability ν and Y = Y1 with probability (1 − ν), where Y1 ∼
PO(µ). Then Y has a zero inflated Poisson distribution, denoted by ZIP(µ, ν),
given by

P (Y = y | µ, ν) =

{

ν + (1 − ν)e−µ, if y = 0
(1 − ν)e−µµy/y!, if y = 1, 2, 3, ...

for µ > 0 and 0 < ν < 1. In this case, the parameter µ is the mean of the Poisson
component while ν is the extra probability that Y = 0. Hence, the marginal
mean of the ZIP distribution is E(Y ) = (1 − ν)µ and its marginal variance is
Var(Y ) = µ(1− ν)(1 + µν).

• Zero inflated negative binomial distribution

Let Y = 0 with probability ν and Y = Y1 with probability (1 − ν), where Y1 ∼
NBI(µ, σ). Then Y has a zero inflated negative binomial distribution, denoted by
ZINBI(µ, σ, ν), with probability function given by

P (Y = y | µ, σ, ν) =

{

ν + (1− ν)P (Y1 = 0|µ, σ), if y = 0
(1− ν)P (Y1 = y|µ, σ), if y = 1, 2, 3, ...

for µ > 0, σ > 0 and 0 < ν < 1. The parameters µ and σ are the parameters
of the negative binomial component, respectively, while ν is the extra probability
that Y = 0. Hence, the marginal mean and variance of the ZINBI distribution are
E(Y ) = (1− ν)µ and Var(Y ) = µ(1− ν) + µ2(1− ν)(σ + ν).

• Zero adjusted Poisson distribution

Let Y = 0 with probability ν and Y = Y0 where Y0 ∼ POtr(µ) with probability
(1 − ν), where POtr(µ) is a Poisson distribution truncated at zero. Then Y has a
zero adjusted Poisson distribution, denoted by ZAP(µ, ν), with probability function
given by

P (Y = y | µ, ν) =

{

ν, if y = 0
(ce−µµy)/y!, if y = 1, 2, 3, ...
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for µ > 0, 0 < ν < 1 where c = (1 − ν)/(1 − e−µ). The parameter µ is the mean
of the Poisson component before truncation at zero and ν is the exact probability
that Y = 0. The resulting marginal mean is E(Y ) = cµ while the marginal variance
is Var(Y ) = cµ+ cµ2 − c2µ2.

• Zero adjusted negative binomial distribution

Let Y = 0 with probability ν and Y = Y0 with probability (1 − ν), where Y0 ∼
NBItr(µ, σ) and NBItr(µ, σ) is a negative binomial truncated at zero. Then Y has
a zero adjusted negative binomial distribution, denoted by ZANBI(µ, σ, ν), with
probability function given by

P (Y = y | µ, σ, ν) =

{

ν, if y = 0
cP (Y1 = y|µ, σ), if y = 1, 2, 3, ...

where µ > 0, σ > 0 and 0 < ν < 1, where Y1 ∼ NBI(µ, σ). The parameters µ and
σ represent the parameters of the negative binomial component before truncation
at zero, respectively, while ν is the exact probability that Y = 0. By this way, the
marginal mean is E(Y ) = cµ where c = (1− ν)/[1− (1+µσ)−1/σ] and the marginal
variance is Var(Y ) = cµ+ cµ2(1 + σ − c).

For each of the aforementioned distributions, the regression model was
specified with the fixed effects of session, moment and lineage, and all two-way
interactions involving these three factors. Additionally, two random effects were
included in the model: one at the animal level and another for animal within the
sessions. These random effects are justified by the need to incorporate the non
null correlations due to the repeated measures resulting from the multilevel design
structure, such that each of the 20 animals contributes with 9 measures to the data
set.

Let Yijkl be the response variable for which i (i = 1, 2, . . . , 20) represents
the animal, measured in session j (j = 1, 2, 3), at moment k (k = 1, 2, 3) and l
corresponds to the lineage (l = 1, 2). The following general model specification was
considered

Yijkl |uj, vjk ∼ f(µijkl, σ, νikl), (3)

where µijkl is the location parameter of the conditional distribution of y, σ is a
scale parameter and νikl is related to the excess of zeros. For all distributions, the
initial regression structure for the location parameter was specified as

log(µijkl) = α(1) + β
(1)
j + γ

(1)
k + θ

(1)
l + (βγ)

(1)
jk + (βθ)

(1)
jl + (γθ)

(1)
kl + ui + vik, (4)

where the parameters α(1), β
(1)
j , γ

(1)
k and θ

(1)
l refer to intercept, session, moment

and lineage effects, respectively, whereas (βγ)
(1)
jk , (βθ)

(1)
jl and (γθ)

(1)
kl represent the

corresponding two-way interaction effects. Further, ui is the animal random effect
and vik is the random effect for the animal nested within experimental session, for
which we assume ui ∼ N(0, σ2

U ) and vik ∼ N(0, σ2
V ), respectively. Additionally,
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for the zero inflated and zero adjusted distributions we have specified the following
regression structure for the parameter corresponding to the zero portion

logit(νjkl) = α(2) + β
(2)
j + γ

(2)
k + θ

(2)
l . (5)

We have additionally considered σ as a nuisance parameter. Special attention
was devoted to the location and zero-excess parameters, due to their practical
interpretations. It is possible that we could get a better fitted model if the covariates
effects were also considered for σ. However, we have also took into account the risk
of overfitting in our decision of considering σ constant.

Table 1 shows the log-likelihood, degrees of freedom and AIC measures for the
six fitted models. We may notice a poor performance for the Poisson distribution
and its derived models that accommodate excess of zeros, which can be justified due
to the presence of overdispersion in the data, which was not properly modeled by
the Poisson distribution. On the other hand, the negative binomial distribution and
its extensions presented better measures with the best performance observed for the
ZINBI and ZANBI models. Although the ZINBI model has produced lower AIC
than ZANBI, this model presented convergence problems and unreliable estimates
and standard errors. For this reason, the ZANBI model was chosen.

Table 1 - Goodness-of-fit measures for the fitted models with different probability
distributions

Model Likelihood Degrees of Freedom AIC
PO -547.34 48.17 1191.03
NBI -479.78 47.59 1054.74
ZIP -496.69 63.70 1120.78
ZINBI -462.66 54.37 1034.06
ZAP -498.24 63.34 1123.16
ZANBI -463.16 55.02 1036.36

After we have selected the probability distribution, three nested models
provided by two variations of the linear predictors were proposed and these were
compared via LRT. The first model, denoted by Fit 1, is that specified by (4) and
(5). In the second (Fit 2) we removed all two-way interactions from the linear
predictor for µ, such that:

log(µijkl) = α(1) + β
(1)
j + γ

(1)
k + θ

(1)
l + ui + vik, (6)

and retained the predictor for ν as presented in (5). Finally, in the third model (Fit
3), besides the removal of the interaction effects in µ, as described in (6), we have
also omitted all covariates in the linear predictor for ν:

logit(νjkl) = α(2).

The results are given in Table 2, and we may verify that the second fit does not
differ significantly from the original full model. However, a significant poorer fit is
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verified when the experimental effects were removed from the linear predictor of ν,
in such a way that we chose the second fit as the final model.

Table 2 - Goodness-of-fit measures and LRTs for the nested ZANBI models
Model Likelihood Degrees of Freedom AIC P-value
Fit 1 -463.16 55.02 1036.36 -
Fit 2 -463.86 47.48 1022.67 0.991
Fit 3 -476.15 42.48 1037.25 0.014

Figure 2 shows the residual analysis for the chosen fit model. We may observe
that the residuals present constant variance and no systematic pattern. In addition
the QQ-plot and kernel plot of residuals do not exhibit any evident deviations from
the standard normal distribution.
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Figure 2 - Residual analysis for the final ZANBI model.

Table 3 presents the parameter estimates for the final model. Relative rates
(RR) and odds ratios (OR) were obtained as exponentiated estimates for µ and
ν parameters, respectively. Confidence intervals and Wald type hypothesis tests,
based on the asymptotic normality of maximum likelihood estimators, were also
provided. The results show that there was a significant effect of all variables under
study considering a significance level of 5%, that is, the variations in ear posture
change when the animals undergo intervention and social isolation, in addition to
being different for animals of different lineages.

The results also indicate that the animals presented a lower rate of posture
changes in sessions 2 and 3 than in session 1. It was still found a lower rate of
changes in ear posture during or after brushing than before it. Note that the rate
of ear posture changes is 0.35 times that observed before brushing, that is, we can
expect about 3 times less changes in posture when the animals undergo intervention.
It is also observed that the frequency of ear posture changes after the intervention
is 0.65 times that observed before brushing. In addition, it was found that animals
of reactive lineage moved 1.33 times more than non-reactive animals.
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Table 3 - Relative rates, odds ratios, confidence intervals and p-values for the final
ZANBI model. Session 1, moment before brushing and lineage R− are
taken as reference categories

µ ν
Parm. RR CI(95%) P-value OR CI(95%) P-value
α 15.77 (13.12; 18.95) <0.001 0.004 (0.00; 0.06) <0.001
βse2 0.69 (0.56; 0.84) <0.001 5.83 (0.64; 53.54) 0.121
βse3 0.66 (0.53; 0.81) <0.001 14.31 (1.69; 121.49) 0.016
γdur 0.35 (0.28; 0.43) <0.001 15.80 (1.89; 131.99) 0.012
γpost 0.65 (0.54; 0.79) <0.001 4.43 (0.47; 42.12) 0.197
θR+ 1.33 (1.12; 1.57) 0.001 0.33 (0.09; 1.14) 0.081

The estimates referring to the inflation parameter can be interpreted as the
propensity of the animal do not move its ears. It was found that animals have a
higher chance of not moving their ears during brushing, a situation where animals
are 15.8 times more likely to not move their ears when compared before brushing.
A similar effect was found for experimental session for which there is a significant
14-fold increased chance of animals not moving their ears in session 3 as compared to
session 1. In addition, the results indicate that animals belonging to the non-reactive
lineage are more likely to remain with immobile ears than those considered reactive
to temporary social isolation. The estimates for σU and σV are, respectively, 0.38
and 0.56. Finally, the LRT for comparison with a model including only fixed effects
returned p < 0.001 reinforcing the need to take clustering into account in the
analysis.

5 Analysis of the time expressing horizontal ear posture

Following, in this section we analyze the proportion of time that the animals
remained with their ears in horizontal position. Horizontal ear posture is a sensitive
indicator of positive states, such that a higher proportion of time expressing such
posture evidences a more relaxed animal (TAMIOSO et al., 2020). Figure 3 shows
in (a) that this response is considerably inflated at 0, such that in 72 occasions the
animals did not remain with their ears in horizontal position at any time, which
is equivalent to 40% of the collected measures, whereas there was only one case of
proportion equals to 1. It is worth noting in (b) the greater variability in response
for reactive animals and the same can be seen in (c) for measurements collected in
session 1 when compared to the other experimental sessions. In addition, there are
evidences of differences between the experimental moments (d).
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Figure 3 - Distribution of the proportion of time expressing a horizontal ear posture.

In order to model the proportion of time that the animals remained with their
ears in horizontal position, the beta and inflated beta distributions were considered
(see Ferrari and Cribari-Neto (2004), Ospina and Ferrari (2010) and Ospina and
Ferrari (2012) for additional information on these models).

• Beta distribution

The beta distribution, denoted by BE(µ, σ), is a two-parameter distribution for a
continuous random variable defined in the open interval (0, 1), and it is usually
applied in modeling rates and proportions. The probability density function of the
beta distribution is

fY (y|µ, σ) =
Γ(α+ β)

Γ(α)Γ(β)
yα−1(1− y)β−1, 0 < y < 1,

where α = µ(1 − σ2)/σ2 and β = (1 − µ)(1 − σ2)/σ2, α > 0, β > 0 and hence
0 < µ < 1 and 0 < σ < 1. For the beta distribution we have E(Y ) = µ and
Var(Y ) = σ2µ(1 − µ). Although the beta distribution is very flexible it has a
drawback that it is not defined at 0 and 1. In order to use it in the presence of
zeros and ones, we consider the following transformation suggested by Smithson and
Verkuilen (2006): yc = [y(n− 1) + 0.5] /n where y is the observed response and n
is the sample size.

• Inflated beta distribution

The inflated beta distribution, denoted by BEINF(µ, σ, ν, τ), is a four-parameter
distribution for a continuous random variable defined in the interval [0, 1]. This
distribution involves a mixture of three components: a mass probability p0 at y =
0, a mass probability p1 at y = 1 and a beta distribution defined in (0, 1) with
probability (1 − p0 − p1). The probability density function of the inflated beta
distribution is

fY (y|µ, σ, ν, τ) =







p0, if y = 0
(1− p0 − p1)fW (y|µ, σ), if 0 < y < 1

p1, if y = 1
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whereW ∼ BE(µ, σ), p0 = ν(1+ν+τ), p1 = τ/(1+ν+τ) and p2 = 1−p0−p1. Hence
ν = p0/p2 and τ = p1/p2. For the BEINF distribution we have E(Y ) = τ+µ

1+ν+τ and

Var(Y ) = σ2µ(1−µ)+µ2+τ+(µ+τ)2(1+ν+τ)−1

1+ν+τ .

The full regression model to analyze the proportion of time expressing
horizontal ear posture for both the BE and BEINF distributions was specified as

logit(µijkl) = α(1) + β
(1)
j + γ

(1)
k + θ

(1)
l + (βγ)

(1)
jk + (βθ)

(1)
jl + (γθ)

(1)
kl + ui + vik,

(7)

where the parameters α(1), β
(1)
j , γ

(1)
k and θ

(1)
l refer to the intercept and the session,

moment and lineage fixed effects, respectively; (βγ)
(1)
jk , (βθ)

(1)
jl and (γθ)

(1)
kl represent

the two-way interaction effects; ui is an animal specific random effect, and vik is a
random effect for the animal within the experimental session, for which we assume
ui ∼ N(0, σ2

U ) and vik ∼ N(0, σ2
V ), respectively. The regression structure for the

parameter referring to the zero inflation for the BEINF distribution was specified
as

logit(νjkl) = α(2) + β
(2)
j + γ

(2)
k + θ

(2)
l . (8)

The parameter τ , referring to the one inflation, was not modeled through
covariates effects since there was only one sample observation with Y = 1. The
choice between the two distributions may be supported by the graphic analysis of
the quantile residuals. The results presented in Figure 4 clearly show a poor fit of
the beta distribution, for which the residuals exhibits a non normal, highly skewed
distribution. On the other hand, residuals from the inflated beta distribution display
satisfactory adherence to the normal distribution.

After we have chosen the inflated beta distribution we proceed by evaluating
three nested regression models aiming to select the terms for the linear predictors.
The first model, denoted by Fit 1, is defined by the regression structures in (7) and
(8). In the second model (Fit 2) the interaction effects in the predictor for µ were
removed, such that:

logit(µijkl) = α(1) + β
(1)
j + γ

(1)
k + θ

(1)
l + ui + vik, (9)

and retained the predictor for ν as presented in (8). In the third model we have
included no interaction terms for µ, as described in (9) nor covariates for ν, so that:

logit(νjkl) = α(2).

Table 4 presents the comparison of the models fitted with different linear predictors.
From the LRTs we conclude that removing interactions in the first model for the
mean leads to a worse fit.
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Figure 4 - Residual analysis for the BE and BEINF models.

Table 4 - Goodness-of-fit measures and LRTs for the nested BEINF models
Model Likelihood Degrees of Freedom AIC P-value
Fit 1 9.54 58.90 98.72 -
Fit 2 -1.91 47.26 98.34 0.024
Fit 3 -27.61 42.26 139.74 <0.001

Based on the results presented in Table 4, we selected the original full model
and proceeded with the interpretation of parameter estimates. Since we have used
the logit link function in both linear predictors, we can interpret the exponentiated
estimates as odds ratios. Once again, asymptotic CIs and hypothesis tests are
given. Results are shown in Table 5. Additionally, Figure 5 shows the predicted
mean values for each combination of factors for a better interpretation of the results.
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Table 5 - Odds ratios, confidence intervals and p-values for the final BEINF model
µ ν

Parm. OR CI(95%) P-value OR CI(95%) P-value
α 0.22 (0.13; 0.36) <0.001 0.11 (0.04; 0.30) <0.001
βse2 0.40 (0.17; 0.91) 0.031 6.52 (2.46; 17.27) <0.001
βse3 1.02 (0.38; 2.70) 0.969 17.16 (6.31; 46.72) <0.001
γdur 3.29 (1.68; 6.44) <0.001 2.76 (1.16; 6.56) 0.023
γpost 1.55 (0.73; 3.27) 0.257 1.46 (0.62; 3.44) 0.388
θR+ 1.93 (1.00; 3.72) 0.053 0.40 (0.20; 0.81) 0.012
βγse2:dur 0.19 (0.07; 0.54) 0.002
βγse3:dur 0.48 (0.16; 1.47) 0.201
βγse2:post 0.84 (0.34; 2.09) 0.705
βγse3:post 0.47 (0.14; 1.59) 0.226
βθse2:R+ 1.04 (0.46; 2.36) 0.924
βθse3:R+ 0.31 (0.12; 0.84) 0.022
γθdur:R+ 4.06 (1.72; 9.58) 0.002
γθpost:R+ 1.68 (0.72; 3.89) 0.231

Session 1 Session 2 Session 3
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Figure 5 - Predicted mean values for each combination of factors for the BEINF
model

We can notice that the proportion of the time the animals spent with the
ears in a horizontal position are higher in session 1 than in the others, especially
during brushing and in reactive animals. It was also noted that the lowest average
proportions are observed in session 2, that is, in the one in which social isolation
was imposed. The significant effect of the interaction between the second session
and the moment indicates that in this section the brushing effect was less mild
than in the other sessions, which can be seen in Figure 5. In addition, animals
of reactive lineage remain longer with their ears in horizontal position than those
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belonging to the non-reactive lineage, mainly during human intervention and in the
first experimental session.

Referring to the zero inflation, i.e., to the animals keeping their ears in
some position other than horizontal, we can verify that it is higher under human
intervention (during brushing), being approximately 3 times more likely than in
the pre-brushing phase. We can also notice that in sessions 2 and 3 the animals
are more likely to keep their ears in non horizontal postures than in session 1. The
estimates obtained for σU and σV are, respectively, 0.0002 and 0.88, with p < 0.001.

6 Concluding remarks

In this paper we aimed to explore the flexibility of generalized additive models
for location, scale and shape (GAMLSS) in modeling animal behavior data. Two
types of random variables typically found in animal behavior research were analyzed,
the first corresponding to a count variable (number of ear posture changes), and
the other configuring a continuous proportion with inflation at zero and one (the
proportion of time performing the horizontal ear posture). The main goals of this
study were to investigate the effects of temporary separation, phase, and genetic
lineage. The available data exhibited multilevel structure, overdispersion, zero
and/or one inflation, and covariates effects in more than one model parameters.
GAMLSS allowed us to properly analyze both data sets, considering all data
properties and experimental settings, and providing reliable statistical results and
consistent biological findings. The results of this study might help in devising
strategies to promote positive welfare.

It is worth emphasizing that GAMLSS, the R package gamlss and its
extensions offer several other possibilities for analyzing animal behavior data.
They may be useful, for example, in fitting censored (interval) response variables
(see the gamlss.cens package, by Stasinopoulos et al. (2018)), spatial data
(gamlss.spatial package, by De Bastiani et al. (2018)), besides Bayesian (BAMLSS
package, by Umlauf et al. (2018)) and boosting methods (gamboostLSS package,
by Thomas et al. (2018)), among others.

Moreover, it is well known that animal behavior variables are usually
correlated, and these correlations cannot be taken into account through univariate
regression models. Thus, multivariate GAMLSS and related methodologies, such
as the multivariate covariance generalized linear models (BONAT, 2018), configure
potential future research topics for animal behavior analysis. Alternative regression
models for count and rate behavior variables could be also considered based on other
distributions already implemented in the gamlss framework, as the double Poisson
and Poisson inverse Gaussian (for counts) or simplex, logit normal or generalized
beta type I (for continuous or mixed rates).

We hope that this paper, combined with all the unexplored potential of
GAMLSS, encourage researchers such as statisticians, veterinarians, and animal
scientists to consider GAMLSS as a powerful tool for statistical analysis of animal
behavior data.
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MOLENTO, C. F. M. Um estudo de caso em análise de comportamento animal
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RESUMO: Estudos de comportamento animal geralmente produzem grandes quanti-

dades de dados com uma ampla variedade de estruturas, incluindo relações não lineares,

efeitos de interação, variância não constante, medidas correlacionadas, superdispersão

e inflação de zeros, entre outros. Nosso objetivo foi explorar o potencial de modelos

aditivos generalizados para locação, escala e forma (GAMLSS) na análise de dados de

estudos de comportamento animal. Foram analisados dados de 20 ovelhas Romane

de duas linhagens genéticas que foram submetidas à escovação por um observador

familiar. Foram analisadas as respostas comportamentais mudança da postura de

orelha, variável aleatória do tipo contagem, e a proporção de tempo com a orelha na

posição horizontal, variável aleatória cont́ınua no intervalo (0,1), com probabilidades

não nulas em zero e um. Os modelos Poisson, binomial negativo e suas extensões zero

inflacionadas e zero ajustadas foram considerados para os dados de contagem, enquanto

a distribuição beta e suas versões inflacionadas foram avaliadas para as proporções.

Efeitos aleatórios também foram inclúıdos para acomodar a estrutura multińıvel do

experimento. O modelo binomial negativo zero ajustado obteve o melhor desempenho

para os dados de contagem, enquanto a distribuição beta inflacionada ajustou-se melhor

para as proporções. Ambos os modelos nos permitiram avaliar adequadamente os

efeitos da separação social, escovação e linhagens genéticas no comportamento das

ovelhas. Podemos concluir que GAMLSS é uma estrutura flex́ıvel para analisar dados

de comportamento animal.

PALAVRAS-CHAVE: Comportamento de ovelhas; delineamento multińıvel; inflação de

zeros; superdispersão; efeitos aleatórios.
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GÓRECKA-BRUZDA, A.; JAWORSKI, Z.; SUWALA, M.; BORÉ, M.;
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DELVAL, É.; TACONELI, C.; HAZARD, D. and MOLENTO, C. Spatial distance
and reactivity traits alter the positive perception of brushing by ewes. animal, v.
14, n. 1, p. 150-160, 2020.

TAMIOSO, P. R.; MOLENTO, C. F. M.; BOIVIN, X.; CHANDÈZE, H.;
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