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= ABSTRACT: Bernstein polynomials are suitable for performing shape-constrained regressions, in
particular, for unimodal convex regression. The Pickands function is convex and unimodal, being
a fundamental element in the theory of extreme value copulas. The purpose of this article is to
explain in details the use of Bernstein polynomials in the estimation of Pickands function and to
establish a new test of significance for extreme value copulas.
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1 Introduction

Bernstein polynomials are suitable for performing shape-constrained regressions,
particularly for unimodal convex regression. The Pickands function (PICKANDS, 1981), a
fundamental element in the theory of extreme value copulas, is convex and unimodal. The
purpose of this article is to explain in details the use of Bernstein polynomials (available:
https://www2.math.upenn.edu/~kadison/bernstein.pdf, accessed 10-13-2021) in the
estimation of the Pickands function and to establish a new test of significance for extreme
value copulas. The theoretical aspects regarding copulas theory are maintained at
elementary level. The reader can find other results in the texts by (NELSEN, 2013) and
(JOE, 1997). For purpose of completeness some nice properties of Bernstein polynomials
are presented.

2 Bernstein polynomials

N
Each term in the Newton's binomial expansion (X+ )" = Z(k} x¥ y”‘k, taken
k=0

in X+ Yy =1, with 0< x <1, defines the so-called Bernstein polynomials:
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bn,k(x):(ﬂ]xka—xw

It follows immediately that, for all X €| an «(X)=1and,as b, (x) >0,

the set {b, , (X), K =0,..., N} constitutes a partition of the unit.

These polynomials have a long history and they have a number of properties similar
to those of the binomial numbers:

- The elements of {b ,(X), kK=0,...,n} form a basis for the space of
polynomials of degree less than or equal to Nn.

- Bernstein's polynomials and the Beta probability distribution are related:

b, (X) :(EJxka—xyk

1 1
" n+1B(k+Ln—k+1)

X(k+1)—1 (1_ X)(n—k+1)—1

- Bernstein's polynomials can be defined recursively:

T e
S L
o

(1=x)by gy (%) +xby 544 (X)

- The derivatives of the Bernstein polynomials are given by:

000 =[]

[ oy
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n!

) ki(n— " —1)! A

e

-n(1- x)n_1 para k=0
= nbn—l,k—l(x)_bn—l,k(x) para k=1,2,..,n-1
nx"? para k=n
For the second derivative we must observe that:
k=1 = %bnvl(x) =n(l—x)n_l—n(n—l)x(l—x)n_2

= (;jTZZbM (x) =-2n(n-1)(1- x)n_2
wn(n-1)(n-2)x(1-x)"°
d

k=n-1 =X &bn'n_l(x) =n(n-1)x"?(1-x)-nx""*

d2

: ——
dx?

b, .. (x)=n(n-1)(n-2)x">(1-x)

~2n(n-1)x"?

1<k<n-1 :ib (X) =n ib (x)—ib (x)
dXZ nk - dx n-1,k—1 dx n-1,k

=n(n-1) [bn—z,k—z (¥) =D, 241 (%)

_(ban,k—l (X) ~brai (X))]

= n(n _1)[bn—2,k—2 (X) - 2bn—2,k—l + bn—2vk (X)] '
All together,
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(1—-x)n_2 for k=0
(n=2)x(1-x)"°—2(1-x)"*  for k=1

Vel by (¥) =n(n=1)1[b, ., (X) =2, s +b, 5, (x)] for 2<k<n-2
(n-2)x"3(1-x)-2x""? for k=n-1
-

2 for k=n

- One of the most important property of Bernstein's polynomials is to approximate
functions uniformly. For a function f (X) with domain at [O,l], defining

n

B,(f)(x) = Z f (k/n)bn'k(x) (0 <X Sl) as the Bernstein polynomial of f (X)
k=0

we have:

2.1 Bernstein-Weierstrass approximation theorem

Theorem 2.1.1: If f is a real-valued bounded function with domain in the interval [0,1],
then for each point x where f is continuous, B, (f)(X) = f(X) as n — . If fis

continuous on [0,1], then the Bernstein polynomial B, (f)(X) tends uniformly to f as

N — oo (available: https://wwwz2.math.upenn.edu/~kadison/bernstein.pdf, accessed 10-
13-2021).

The restriction of the domain to the interval [0,1] can easily be extended to [0, 7],
by redefining the Bernstein's polynomials as:

o

Actually, the property of interest here is the fact that Bernstein's polynomials
uniformly approximate continuous functions because it is easy to characterize increasing or
even unimodal polynomials when they are expressed by linear combinations of Bernstein's
polynomials.

Consider the polynomial given by a linear combination of Bernstein's polynomials

P.(x) = Z:akbn’k (x) with a=(a,,a,,...,a,) and X € [0,1] . Observe that:
=0

, $ d
P'(x) =) a —b , (x
a( ) g kdx n,k( )
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n—.

=n| —agh, 4o +Zak( n-tkt (X) =0y g (X ))+anbn -n 1(X)}

:n_—aobn_l,o(x)+a1bn_10( )= a1 (%) +.
] ...+an_1bn_1ln_2( ) a, 40, n 1(X)+anbn -1n 1(X)}
:n_[(ai_aO)bn—l,O( )t (8 =801 )Py g g (X )]

n-1

= nZ(ak+1 — 8 ) bn—l,k (X)

|:(a1 ao (1 x)" l"'nz_%, ak+1 nl,k(x)+(an_an—1)xn_1:|'

In a similar way
P"( X) _zak v b, (X)
:n(n-l){ao(l-x)”‘z+a1[(n_z)x(1-x)” P o2(1-x)"7]
+Za I:bn 2k2 2bn 2k1+bn 2k( ):I
+an_1[(n—2) x" 3(1—x)—2x”‘2]+anx”‘2}
=n(n _1){30 br_s0 (X)+a by (X) =281y, (%)
+a,b, ,0(X)—2a,b,,, (X)+ab,_,,(X)+...
ot anfzbn—z,n—4 (X) -2 anfzbn—z n-3 (X) +a,_ an—z,n—z (X)
+an—lbn—2,n—3(X)_zan—lbn—zn—z( )+anbn 2,n— Z(X)}
=n(n—1){(ay—2a8,+8,)b, , o (X)+(a, —2a,+85)b, 1 (X)+...
(8,328, ,+8, )b, 5, 5 (X) (8, 28, +8, )b 5, 5 (X)}

n-2

=n (n _l)Z(ak+2 - 2ak-¢-1 + ak ) bn—z,k (X) '
k=0
It follows from these two results:
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Proposition 2.1.1:

i If ag<a <..<a, then P, (X) >0, that is, the polynomial P,(X) is
monotonous non-decreasing.
i. Ifa—-a,<0 a8 -a_,>0anda,,+a >2a, (k=0,.,n—2),then

P'(0)<0, P/()>0 andP,"(x)>0, that is, the polynomial P,(x) is
unimodal convex; (derivatives at points 0 and 1 are lateral derivatives).

(CHANG et al., 2007)

As an application of this result, we obtain a polynomial regression with shape
constraint as:

Givenadataset (X, Y;) 1=1,...,m,aunimodal convex polynomial of degree n

n
, P.(X) = Z:akbmk (X), that best fits this data, in the sense of the minimum squares, is
k=0
obtained as follows.
The regression matrix is:

bn,O(Xl) bnl(xi) bn,Z(Xl) bnn(xl) ao
X — bn,O (XZ) bn,l(xz) bn,Z(XZ) bn,n(xz) a1
bn,O(Xm) bn,l(xm) bn,Z(Xm) bn,n(xm) an
Thatis, y=Xa+¢.

The restrictions, according to (ii) of Lemma 1, can be described by the vector:

a,—ay 1 -1 0 - 0 0 0)f a
a,—23 +a, 1 21 -0 0 0

A= : =l o T : |20
a_, — 28,4 +a, 0 0 0 -~ 1 =2 1|a,,
—a,_; +a, 0 0 0 - 0 -1 1)\ a,

Observe, then, that Bernstein Polynomials allowed us to reduce a polynomial
regression problem to a linear regression problem with constrains.

max||Xa — yl|?
restrito A = 0
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This optimization problem is a quadratic programming (BOYD, VANDENBERGHE,
2004, p.152), and is a basic problem in the area of optimization, with a bunch of efficient
algorithms to solve it.

3 Extreme value copulas and the Pickands function

Definition 3.1: The copula C(u, v) is said to be an extreme value copula if there is a copula
C. suchthat lim C, (u””,v”” )n =C(u,v) forall (u,v)e [0,1]2.

N—o0

Pickands Theorem: The bivariate copula C is of extreme value if, and only if, for all
(u,v) € (0,1]2 —{(1,1)} , it can be expressed in the form:

In(v)/I Infv
C(u,v)= (uv)A( nW/in(w) _ exp+ In[uv] A L
In[uv]

in which the so-called Pickands function A() is a convex function with domain in
[0,1] and image in []/2,1], and satisfies max {t,l—t} < A(t) <1 and
~1< A(t)<1.

The Pickands Theorem can also be stated as:

The bivariate copula C is of extreme value if, the transformation

Te :[0,1]2 —)[0,1]><[0, +oo), defined  for  all (u,v) € [0,1]2, as

In(v) In(C(u,v))

In(uv)" In(uv)
by z =1 and lower by Z = max(t,l—t).

(u,v) - (t, Z) = , results in a convex curve, bounded upper

3.1 Bernstein's polynomials in the estimation of the Pickands function

The fact that the Pickands function is convex and unimodal is a natural justification
for it to be estimated using Bernstein's polynomials (suggestion by Professor Dr. Yan of the
University of Connecticut in Storrs).

The estimation of the Pickands function is implemented using the TC transformation

shown below. Given a copula C (U,V) consider the transformation:

Tc :[0’1]2 —[0,1]x[0,40) , (u,v) > t= I:1n((uv\2) = |nErC]3(EJuV\)/))
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If the copula is of extreme value this transformation degenerates and the image of Tc

is no longer [0,1] X [0, +oo) and became the graph of the Pickands function. Indeed,

[ In(v) ]
C(u,v) =uv n(w)

and,

Ty =[t= ), _(LA().

3.1.1 Estimation procedure
If (ul,vl),(uz,vz),...,(uN,VN) is a sample of an extreme value copula
A In(v))
C(u,v)=uv ['”(”V) Cthen (t,2)=Te (U Vy )y (ty, 2 ) =T (Uy vy ) are

points on the graph (t, A(t)). If the function A(t) is unknown it can be estimated with

the points (t1' Zl),(tz, 22),...,(tN , ZN) by a linear regression using the Bernstein
polynomials with the degree n and constraints, obtaining a polynomial Isn (t) . According

to Bernstein-Weierstrass approximation theorem, ISn (t) approaches A(t) and the mean
2

134
of the sum of residues, T, = —Z( P (t)—z ) , is expected to be small. Otherwise, if
N 3
the copula is not an extreme value one this sum is expected to be greater. Appropriate degree
n of the polynomial can be obtained by model selection methods.

The Pickands function, besides being convex, satisfies A(O):A(l)zl and
-1< A'(t)Sl (Figure 1).
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Figura 1 - Graph of a typical Pickands Function.

Thus, the regression should be restricted to the unimodal and convex polynomials in
[0,1], according to (ii) of Proposition 1, with B, (O) =P, (1) =1 and satisfying the

inequalities —1< P, (0) e P,'(1)<1.

Zakbnk % (1-x)" +ayx +Zak@xk(1—x)“,
Pn(0)=1 = =1

R()=1 = a=1

Therefore, the problem of estimation of the Pickands function using Bernstein's
polynomials is a linear regression problem consisting of minimizing the sum of squares

m

2
E (Pn (ti ) - ) , with the set of constraints expressed in matrix form as:
i=1
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1 0 0 0a] | *
1 -1 0 oll a | |-%
1 2 1 0 0 0
01 210 0
. >l
0 01 —=2 1 0
0 .- 0 -1 1lla.| |_
| |-y
0 - 0 1)la || |

in which, the inequalities in the first and last lines are equalities (CHANG et al., 2007).

It is also considered the inequality that limits the size of the parameters:

n
> lad<M,.
k=0

This problem can be solved by using the "solve.QP" routine of the quadprog R
package.

3.1.2 Implementation of the Pickands function estimator
For the simulation process, the steps are:

Step 1) Take a sample (Xl,yl),(xz,yz),...,(XN,yN) from the random npair
(X,Y).

Step 2) For each pair (Xi , yi), consider (ni,mi), in which N, is the rank of X; and
M, is the rank of Y;, when sequences X, X,,...,Xy and Y;,Y,,..., Yy are sorted in
ascending order.

Step 3) Obtain the sample in the unit square (0,1) X (0,1) through the transformation

L,lj,..., n—N,ﬂ . The division by N +1 is used to avoid the point
N+1 N+1 N+1 N+1

(L1).

n n m
Step 4) Apply the transformation T in 1 m, pony| ——, —N 1
N+1 N+1 N+1 N+1
Step 5) The linear regression, using Bernstein polynomials and its respective
restrictions, are obtained via function “solve.QP” of the quadprog R package.
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4 A test of significance for extreme value copulas

The new method of estimation of the Pickands function using Bernstein polynomials
allows to create a test of significance that checks if a dataset might be appropriately
represented by an extreme value dependence model.

This test is based on the concept of A-plot, and follows the same procedures as in
(CORMIER et al., 2014). A briefly description of an A-plot follows:

Let {x;, x5, ...xy} and {y;,v,, ... yy} be realizations of the random pair (X,Y). The
marginal distribution functions of X and Y are estimated by their respective empirical
Versions:

N N
R@=7) 1S GO =1 ) 10 <0,

Let U; = Fy(X;), V; = Gy(Y;), be random variables and observe that, according to the
probability integral transformation, the variables U; and V; are close to the uniform(0,1)

A

distribution. The idea now is to use the empirical copula CN as the joint distribution of

(04, 7), ., (On, Vy). 1f (ug,vy), ..., (uy,vy) are realizations of the random pair (0;, 7),
then:

Cy(u,v) = #Hu,v), w <u,v; < vl

N+1

The division by N + 1 avoids that C takes the value 1.

The pairs (tq,z), ..., (ty, zy) are build:

_ In(v;) o ln(CN(ui; vi))
In(u;v;)” In(u;v;))

i

As described above, if C is an extreme value copula, the points (t;, z;) should be near
the graph of the Pickands function of the copula C. This procedure is denominated A-plot
(Figure 2).
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Figura 2 - A-plot for an extreme value copula.
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The null hypothesis H0 states that the observed pairs (u;, v;) are realizations of an

extreme value copula C . With the points (t;, z;), the Bernstein polynomial If’n (t) is fitted

as an estimative of the Pickands function.
The test statistic is the average of the sum of squares of deviations between the

observed points and the fitted points:
2

134
Ty :_Z(Pn(ti)_zi) :
N =

The test consists in rejecting H, for T, sufficiently large. The distribution of the
statistic T, under the null hypothesis is not known and is approximated via parametric
bootstrap method. The recipe is as follows:

1 - Using the data (uy,v,), ..., (uy,vy), obtain the Kendall’s tau which will be used
as an estimative of its population version.

2 — Choose a representative of the extreme value copulas family. In this work, the
Gumbel copula was selected.

3 — Define the copula’s parameter with the Kendall’s tau value obtained in step 1 and

use it to generate a sample (U,,V,),(0,,V,),..., (G, Vy).
4 — Using the Pickands function transformation, obtain the points (t;, z;), ..., (tn, Zy)-
5 — Fit a Bernstein polynomial Pn (t) to the points of the previous step.

6 — Calculate the test statistic:
13 A 2
TN = WZ{Zi - PN (ti)} .
i=1
7 — Steps 3, 4, 5 and 6 are repeated N,, times.
8 —With the N, values of Ty , build its empirical distribution.

9 — Reject HO if the p-value is less than the adopted significance level a. Do not

reject H, otherwise.

In order to verify type | error rates, 1000 samples of size 200 from the Gumbel copula
are generated (extreme value copula) using the values T = 0,25, 7 = 0,50, 7 = 0,75 for
Kendall’s tau. The test is carried out at a nominal level of 5%.

To verify type Il error rates, samples from non-extreme value copulas Clayton, Frank,
Gaussian and t, are generated, using the same configurations of repetitions, sample size
and Kendall’s tau values from the type I error case.

(Table 1) is used to compare the performance of the proposed test with type I and Il
error rates of several tests in extreme value copulas organized by (CORMIER et al., 2014,
p. 649).
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Table 1 - Rejection rates of the null hypothesis (in %) at a nominal level of 5% and sample

size of 200

T Modelo  proposed test KY DN BGN BDV KSY CGN
Gumbel 55 38 52 54 45 50 47

Clayton 925 984 967 98.0 874 946 0977

0.25 Frank 6.5 58.3 570 384 291 66.1 187
Gaussiana 125 365 403 373 168 387 255

ty 21.0 239 196 262 105 266 377

Gumbel 6.0 39 50 51 29 40 54

Clayton 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.50 Frank 63.0 957 848 594 730 965 878
Gaussiana 38.0 618 617 626 237 510 594

ty 39.5 50.1 453 560 158 527 58.6

Gumbel 5.0 32 53 49 25 23 62

Clayton 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.75 Frank 735 999 929 585 783 990 983
Gaussiana 135 665 711 752 84 467 565

Y 255 506 558 678 4.6 69.2 458

5 Results and discussion

The results obtained by the new test are comparable to those obtained by other tests.
However, the proposed test did not obtain a good control of the type Il error rate, except
when the data comes from Clayton family.

The runtime with Bernstein's polynomial method adjustment is substantially lower
than the others at Cobs bundle in free software R.

The use of Bernstein's polynomials is an efficient way of estimating the Pickands
function. With this estimation process it is possible to obtain a new test of significance for
extreme value copulas that presents performance compatible with other tests already
established in the literature.
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= RESUMO: Os polindmios de Bernstein sdo adequados para realizar regressdes com restricéo de
forma, em particular, regressdo convexa unimodal. A fungdo de Pickands é convexa e unimodal,
sendo um elemento fundamental na teoria das copulas de valores extremos. O objetivo deste artigo
é explicar em detalhes o uso de polindmios de Bernstein na estimagédo da funcdo de Pickand e
estabelecer um novo teste de significancia para cépulas de valores extremos.

= PALAVRAS-CHAVE: Polindmios de Bernstein. Fungéo de Pickands. Copulas de valor extremo.
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