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 ABSTRACT: For exploratory analysis of the principal components (CPs), the assumption of 

multivariate normality of the variables is not required, nor necessarily that they are random. This 

means that variables that do not behave randomly can also be included in this analysis. Thus, in 

order to carry out the analysis of the PCs with random variables or not, a correction of the matrix 

based on the coefficients of variation was proposed (Campana et al., 2010) by applying the 

method of Lenth (1989), whose new array was named . To verify its feasibility, ten data sets of 

random variables Y1, Y2, Y3 and Y4 were simulated, with 10,000 values each and that followed 

multivariate normal distribution. After the simulation, 0%, 1%, 2%, 3% and 4% of the random 

values of Y4 were replaced by the same and respective percentages of outliers, in order to break 

its randomness. Subsequently, response surface analyzes were performed for eight different 

absolute mean percentage errors obtained in relation to eight parameters related to the 

performance of the CP analysis, as a function of the replacement percentages by Y4 outliers (0, 1, 

2, 3 and 4 ) and the matrices used in the analysis of the PCs (𝚺∗and 𝚺𝐂
∗). According to the results, 

it was concluded that, in the presence of only normal random variables, 𝚺∗ it is the best matrix. 

On the other hand, when there are outliers, 𝚺𝐂
∗   it is the most recommended. 

 KEYWORDS: Coefficient of variation; Relative importance; Correlation. 

1 Introduction 

Principal component analysis (CPs) consists of decomposing the covariance matrix 

() composed of n sample elements and p original variables, in order to generate p linear 

combinations of these, independent of each other and that maximize the total variance of 

this matrix. In general, it is preferable to work with standardized a variable, that is 

originais ().  However, the standardization of variables provides different estimates of 

the CPs, since they are not invariant to the change of scale (Johnson; Wichern, 2002; 

Mingoti, 2007; Ferreira, 2009). When using the  matrix, the scale of the original 

variables interferes in the analysis of the PCs, which, in most cases, is not good. And 

when using the  matrix, all the original variables become equally important, which also, 

most of the time, is not good for the analysis.  
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Thus, as the different variables present, most of the time, different relative 

variability, they should necessarily imply different relative importance in the PC analysis. 

This suggests that the estimates of the PCs more related to the respective relative 

importance of the variables are the most adequate. In this sense, Campana et al. (2010) 

presented a matrix based on coefficients of variation (𝚺∗), for the analysis of PCs, in 

order to take into account the different relative variability of the original variables. 

However, in this study, all original variables followed multivariate normal distribution. 
The analysis of CPs is also sensitive to the presence of outliers, that is, values that 

significantly distance themselves from the probability distribution of the others and, 

consequently, are capable of shifting the mean and increasing the variance. Therefore, as 

there is no requirement for the assumption of multivariate normality (Ferreira, 2009), 

different types of variables, that is, random variables that follow normal distribution or 

other probability distributions, as well as those that may not behave randomly due to the 

presence of outliers, can occur in the n  p matrix of individual observations obtained 

without considering experimental designs. This means that it is not possible to decompose 

the total variation of variable values into parts attributed to known (special) and unknown 

(random) causes. 
Thus, using Lenth's (1989) method, we sought to obtain a new matrix of covariance 

(𝚺𝐜
∗) due, as much as possible, to the actions of random causes, in order to correct the 

matrix 𝚺∗ proposed by Campana et al. (2010) and to use it in the analysis of PCs with 

the presence of outliers. 

 

2  Literature review 

2.1 Main components 

The analysis of the CPs, initially conceived by Karl Pearson in 1901 and, based in 

1933, by Hotelling (Hotelling, 1933), consists, in general, in obtaining the CPs through 

the decomposition of a matrix of covariance composed of n sample elements and p 

original variables. In fact, the CPs are linear combinations of the p original or 

standardized variables, independent of each other and estimated with the purpose of 

preserving, in order of estimation, the maximum amount of information in terms of the 

total variation. Thus, the information contained in the p variables can be replaced by the 

information contained in the k (k  p) CPs. 

Ideally, the p original variables should be random and that they have p-varied normal 

distribution. Consequently, the k CPs have k-varied normal distribution. However, to use 

the CPs it is not necessary that the set of variables is random and even with normal p-

varied distribution (Ferreira, 2009). However, the occurrence of random variables or not 

in the same set of data affects the estimates of the relationships of each variable with each 

PC, separately (Mingoti, 2007). 

Algebraically, CPs represent linear combinations of p original variables Y1, Y2, ..., 

Yp or p standardized variables Z1, Z2, ..., Zp. Geometrically, these linear combinations 

represent the choice of new axes coordinated in the directions of maximum variability, 

which are obtained by system rotations of the original axes. 
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Consider the p original variables Y1, Y2, ..., Yp with means vector μ (p × 1) and 

matrix  of covariance between Ys (p  p), being: 

𝛍 = [

μ1
μ2
⋯
μp

]; and 

𝚺 =

[
 
 
 
 
σ1

2 σ12 … σ1p

σ12 σ2
2 … σ2p

… … … …
σ1p σ2p … σp

2
]
 
 
 
 

. 

Denotes 1  2  ...  k as the eigenvalues of the matrix  and with the respective 

normalized eigenvectors e1, e2, ..., ek, whose k CPs are defined by: 

CP1  e11Y1  e12Y2  ...  e1pYp; 

CP2  e21Y1  e22Y2  ...  e2pYp; 

... 

CPk  ek1Y1  ek2Y2  ...  ekpYp. 

The method of obtaining the CPs through the  matrix is not useful when there are 

big differences in the scales of the original variables. One way out in this case is to 

standardize them, which provides means equal to zero and standard deviations equal to 

one, as follows: 

Zw = 
Yw− μw

√σw
2

, to w  1, 2, ..., p. 

In this second case, consider the p standardized variables Z1, Z2, ..., Zp with vector of 

means μZ (p × 1) and matrix  of covariance between Zs or of correlations between Ys (p 

 p), as follows: 

𝛍𝐙 = [

0
0
⋯
0

]; and 

𝛒 =

[
 
 
 

1 ρ12 … ρ1p

ρ12 1 … ρ2p

… … … …
ρ1p ρ2p … 1 ]

 
 
 
. 

Similarly, we denote 1  2  ...  k as the eigenvalues of the matrix  and with the 

corresponding normalized eigenvectors e1, e2, ..., ek. However, different from the previous 

ones. 

On the other hand, when there is interest in circumventing the differences of the 

scales when working with the matrix  or the equalities of the variances when working 

with the matrix , Campana et al. (2010) proposed the following transformation: 
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Por outro lado, quando há o interesse em contornar as diferenças das escalas quando 

se trabalha com a matriz  ou as igualdades das variâncias quando se trabalha com a 

matriz , Campana et al. (2010) propuseram a seguinte transformação: 

Zw
∗ = Zw × CVw =

Yw−μw

μw
, to w  1, 2, ..., p, where: 

CVw =
√σw

2

μw
. 

In this third case, all transformed variables Z*s will have mean equal to zero, but 

their standard deviations will be equal to the respective coefficients of variation of the 

original variables Ys. Therefore, the p transformed variables  Z1
∗, Z2

∗ , … , Zp
∗  have mean 

vector  𝛍∗ (p × 1) and matrix 𝚺∗  among the Z*s (p  p), as follows: 

𝛍∗ = [

0
0
⋯
0

]; and 

𝚺∗ =

[
 
 
 
 

CV1
2 ρ12CV1CV2 … ρ1pCV1CVp

ρ12CV1CV2 CV2
2 … ρ2pCV2CVp

… … … …
ρ1pCV1CVp ρ2pCV2CVp … CVp

2
]
 
 
 
 

. 

Similarly, we denote 1  2  ...  k as the eigenvalues of the matrix 𝚺∗ and with 

their respective normalized eigenvectors e1, e2, ..., ek. However and similarly different 

from the previous two cases. 

2.2 Lenth's Method 

For factorial experiments with two levels per factor and with individual observations 

per treatment, it is not possible to test the main effects and those of interactions of 

different orders using the F test of the analysis of variance, when all of them are 

considered in the model. In these cases, there are zero degrees of freedom for the residual, 

and therefore it is not possible to obtain the mean square of the residual (QMRes). 

In this sense, Lenth (1989) presented a relatively simple methodology to obtain the 

estimate of a random standard deviation (random), defined as pseudo standard error (PEP) 

and translated as the square root of QMRes. To do this, he considered the estimates of the 

effects as being values of a normal random variable. Thus, for m  n, one has: 

PEP  1,5  Md |𝐞̂𝐠| 

where |𝐞̂𝐠|  |𝐞̂𝐢|  2,5s0 = vector that contains only the absolute estimates of the effects to 

be used in the calculation of the PEP (g = 1, 2, ..., m); s0  1,5  Md |𝐞̂𝐢|; |𝐞̂𝐢|  vector 

containing all absolute estimates of the effects to be tested (i = 1, 2, ..., n); and Md = 

median. 

Thus, given the lack of knowledge of the random part of a given variable, it is, in 

most cases, inappropriate to use all of its observed values to estimate the random. As can 

be seen, the PEP is obtained based only on the absolute estimates of the effects that are 
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smaller than 2,5s0. According to Lenth (1989), the PEP is a consistent estimate of random 

only when there are no significant effects. Otherwise, she overestimates him. 

 Using PEP to standardize effect estimates, you have: 

êpi
=

êi

PEP
, to i  1, 2, ..., n. 

3 Methodology 

3.1 Data simulation 

To conduct the study, a data set with four random variables (Y1, Y2, Y3 and Y4) and 

with 10,000 values each was simulated, according to the multivariate normal distribution. 

Thus, we have: Y1, Y2, Y3 e Y4  N4 (; ). 

In this work, the vector  was defined by: 

𝛍 =  [

𝛍𝟏

𝛍𝟐

𝛍𝟑

𝛍𝟒

] = [

𝟏𝟎
𝟐𝟎
𝟑𝟎
𝟒𝟎

]. 

Furthermore, the simulation aimed to provide, for the random variables Y1, Y2, Y3 

and Y4, the same coefficient of variation, in non-percentage units, given by: 

CV1  CV2  CV3  CV4  0,10. 

Consequently, the matrix , for w  w (w, w  1, 2, 3 and 4), was obtained by: 

𝚺 =

[
 
 
 
 
𝛔𝟏

𝟐 𝛔𝟏𝟐 𝛔𝟏𝟑 𝛔𝟏𝟒

𝛔𝟏𝟐 𝛔𝟐
𝟐 𝛔𝟐𝟑 𝛔𝟐𝟒

𝛔𝟏𝟑 𝛔𝟐𝟑 𝛔𝟑
𝟐 𝛔𝟑𝟒

𝛔𝟏𝟒 𝛔𝟐𝟒 𝛔𝟑𝟒 𝛔𝟒
𝟐 ]
 
 
 
 

= [

𝟏 𝟐 𝟎 𝟎
𝟐 𝟒 𝟎 𝟎
𝟎 𝟎 𝟗 𝟏𝟐
𝟎 𝟎 𝟏𝟐 𝟏𝟔

] 

where 𝛔𝐰
𝟐 = (𝐂𝐕𝐰 × 𝛍𝐰)𝟐; 𝛔𝐰𝐰′ = 𝛒𝐰𝐰′√𝛔𝐰

𝟐 × 𝛔𝐰′
𝟐 ; 12  34  1; e 13  14  23  24 

 0. 

And according to the matrix , was obtained the matrix 𝚺∗ (Campana et al., 2010), 

as follows: 

𝚺∗ =

[
 
 
 
 

CV1
2 ρ12CV1CV2 ρ13CV1CV3 ρ14CV1CV4

ρ12CV1CV2 CV2
2 ρ23CV2CV3 ρ24CV2CV4

ρ13CV1CV3 ρ23CV2CV3 CV3
2 ρ34CV3CV4

ρ14CV1CV4 ρ24CV2CV4 ρ34CV3CV4 CV4
2 ]

 
 
 
 

= [

0,01 0,01 0 0
0,01 0,01 0 0
0 0 0,01 0,01
0 0 0,01 0,01

]. 

Similarly, the matrix 𝚺∗ (Campana et al., 2010) can be obtained by: 
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𝚺∗ =

[
 
 
 
 
 
 
 

σ1
2

μ1
2

σ12

μ1μ2

σ13

μ1μ3

σ14

μ1μ4

σ12

μ1μ2

σ2
2

μ2
2

σ23

μ2μ3

σ24

μ2μ4

σ13

μ1μ3

σ23

μ2μ3

σ3
2

μ3
2

σ34

μ3μ4

σ14

μ1μ4

σ24

μ2μ4

σ34

μ3μ4

σ4
2

μ4
2 ]

 
 
 
 
 
 
 

. 

This meant in the same relative importance of the random variables Y1, Y2, Y3 and 

Y4, according to the same magnitude of the relative variability defined by the CV. 

Thus, the following estimate of 𝚺∗ (Campana et al., 2010), for w  w (w, w  1, 2, 

3 and 4): 

𝐒∗ = 

[
 
 
 
 
 
 
 

s1
2

y̅1
2

s12

y̅1y̅2

s13

y̅1y̅3

s14

y̅1y̅4

s12

y̅1y̅2

s2
2

y̅2
2

s23

y̅2y̅3

s24

y̅2y̅4

s13

y̅1y̅3

s23

y̅2y̅3

s3
2

y̅3
2

s34

y̅3y̅4

s14

y̅1y̅4

s24

y̅2y̅4

s34

y̅3y̅4

s4
2

y̅4
2 ]

 
 
 
 
 
 
 

, where: 

y̅w =
∑ ywi

10.000
i=1

10.000
; 

sw
2 =

∑ (ywi−y̅w)
210.000

i=1

10.000−1
; and 

sww =
∑ (ywi−y̅w)(ywi−y̅w)

10.000
i=1

10.000−1
. 

3.2 Substitution for outliers 

After simulating the 10,000 random values Y1, Y2. Y3 and Y4, have been replaced 

100 (1%), 200 (2%), 300 (3%) and 400 (4%) values of the random variable Y4 were 

replaced by outliers in order to break its randomness. The outliers of Y4 were added one-

sidedly to the right, considering them as all those greater than: 

q3  1,5aiq 

where: q3  quartil 3; and aiq  interquartile range. 

For this, four other simulations of 100, 200, 300, and 400 random values were 

performed according to a new multivariate normal distribution, that is, Y1, Y2, Y3 and Y4 

 N4 (out; out), being: 

𝛍𝐨𝐮𝐭 = [

𝟏𝟎
𝟐𝟎
𝟑𝟎
𝟔𝟒

]; e 
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𝚺𝐨𝐮𝐭 = [

𝟏 𝟐 𝟎 𝟎
𝟐 𝟒 𝟎 𝟎
𝟎 𝟎 𝟗 𝟏𝟐
𝟎 𝟎 𝟏𝟐 𝟏𝟔

]. 

Therefore, five data sets were generated, one without outliers and four with random 

values of Y4 replaced by outliers. In the present work, each simulation was repeated ten 

times, and thus 50 data sets were obtained with 0%, 1%, 2%, 3% and 4% of the random 

values of Y4 replaced by outliers. 

Consequently, the first multivariate normal distribution in which Y1, Y2, Y3 and Y4  

N4 (; ) was slightly modified by the second one in which Y1, Y2, Y3 and Y4  N4 (out; 

out). Therefore, in data sets with the presence of outliers of Y4, Therefore, in data sets 

with the presence of. 

For an approximate verification of multivariate normality, the Kolmogorov-Smirnov 

test was applied separately to each variable Yw, at 5% significance level, as recommended 

by Ferreira (2009). In this case, the objective was to confirm the normal randomness of 

Y1, Y2, Y3 and Y4 in the data sets without outliers, and the normal randomness of 

variables Y1, Y2 and Y3 and the non-randomness of variable Y4, in those with 1%, 2%, 3% 

and 4% replacement of the random values of Y4 by outliers. The choice of the 

Kolmogorov-Smirnov test was due to the data set containing an excessive number of 

10,000 values for each variable separately. 

3.3 Lenth Method 

For this study, the Yw  w variances were considered to be the values of a normal 

random variable with zero mean. Thus, we have: 

êwi
= ywi

− y̅w, to w  1, 2, 3 e 4, where: 

 y̅w =
∑ ywi

10.000
i=1

10.000
. 

Therefore, the random standard deviation of Yw was estimated by: 

PEPw  1,5  Md |êwg
|, to w  1, 2, 3 and 4 and g  1, 2, ..., m (m  10.000) 

where: |êwg
 |  |êwi

 |  2,5s0w
 (i  1, 2, ..., 10.000); and s0w

  1,5  Md |êwi
|. 

The random covariance between Yw and Yw was estimated only based on the 

respective values of the estimates êwg
and êw′g

 , as follows: 

PEPww′ =
∑ (ywg−y̅w

∗ )(yw′g−y̅w′
∗ )m

g=1

m−1
, to w  w (w, w  1, 2, 3 and 4) and m  10.000. 

y̅w
∗ =

∑ ywg
m
g=1

m
 

Thus, the matrix 𝚺𝐜
∗  replacing matrix 𝚺∗ (Campana et al., 2010) was proposed for 

the analysis of CPs in the presence of outliers, whose estimate was obtained by: 
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𝐒𝐜
∗ = 

[
 
 
 
 
 
 
 
 
 
PEP1

2

y̅1
∗2

PEP12

y̅1
∗y̅2

∗

PEP13

y̅1
∗y̅3

∗

PEP14

y̅1
∗y̅4

∗

PEP12

y̅1
∗y̅2

∗

PEP2
2

y̅2
∗2

PEP23

y̅2
∗y̅3

∗

PEP24

y̅2
∗y̅4

∗

PEP13

y̅1
∗y̅3

∗

PEP23

y̅2
∗y̅3

∗

PEP3
2

y̅3
∗2

PEP34

y̅3
∗y̅4

∗

PEP14

y̅1
∗y̅4

∗

PEP24

y̅2
∗y̅4

∗

PEP34

y̅3
∗y̅4

∗

PEP4
2

y̅4
∗2 ]

 
 
 
 
 
 
 
 
 

 

3.4 Main components 

After generating the 50 data sets, two analyzes of the CPs, were performed, 

according to the estimates of the matrices 𝚺∗ (Campana et al., 2010) and 𝚺𝐜
∗,, respectively: 

|𝐒∗ − λ̂j𝐈| = 0 and [𝐒∗ − λ̂j𝐈]𝐚̂𝐣 = 𝟎, to j  1 e 2; and 

|𝐒𝐜
∗ − λ̂j𝐈| = 0 and [𝐒𝐜

∗ − λ̂j𝐈]𝐚̂𝐣 = 𝟎, to j  1 and 2, where: 

𝐞̂𝐣 =
1

‖𝐚̂𝐣‖
𝐚̂𝐣; 

𝐞̂𝟏
′ = [ê11 ê12 ê13 ê14] (estimation of the normalized eigenvector of the CP1); and 

𝐞̂𝟐
′ = [ê21 ê22 ê23 ê24] (estimation of the normalized eigenvector of the CP2). 

In the analysis of the CPs, only the first two were estimated. And as a reference CP1 

was related to Y3 and Y4 (34  1) and, CP2, to Y1 and Y2 (12  1). Thus, in parametric 

terms, we have: 

CP1  e13Z3
∗  e14Z4

∗;  

CP2  e21Z1
∗  e22Z2

∗; 

Z1
∗ =

Y1−μ1

μ1
=

Y1−10

10
; 

Z2
∗ =

Y2−μ2

μ2
=

Y2−20

20
; 

Z3
∗ =

Y3−μ3

μ3
=

Y3−30

30
; 

Z4
∗ =

Y4−μ4

μ4
=

Y4−40

40
; 

e13  e14  e21  e22  0,7071; and 

e11  e12  e23  e24  0. 

Therefore, the parameters of eigenvalues, relative importance and correlations in the 

analysis of the CPs, were defined by: 

1  2  0,02 and 3  4  0; 
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IRCP1(%)  IRCP2(%)  50 and IRCP3(%)  IRCP4(%)  0; and 

CP1Y3  CP1Y4  CP2Y1  CP2Y2  1 and CP1Y1
  CP1Y2

  CP2Y3
  CP2Y4

  0. 

On the other hand, it could have adopted CP1 related to Y1 and Y2 and, CP2, to Y3 

and Y4, given the same relative importance of the four random variables and the 

correlations of Y1 with Y2 and Y3 with Y4, to be equal to one . However, it was preferred 

to adopt CP1 with Y3 and Y4 and CP2 with Y1 and Y2, because in data sets with Y4 

outliers, this variable, with increased relative variability, will increase the CP variance 

with the highest eigenvalue. In this case, the CP1. 

3.5 Statistical Analysis 

To evaluate the estimation quality of the CPs based on the matrices 𝐒∗ and 𝐒𝐜
∗ and 

the five percent substitution of the random values of Y4 for outliers, the following mean 

absolute percentage errors (EPMAs) were estimated: 

EPMACV123
= 100 ×

1

10
∑ ar

10
r=1 , to ar =

1

3
∑ |

CVw−CV̂w

CVw
|3

w=1 =
1

3
∑ |

0,10−CV̂w

0,10
|3

w=1 ; 

EPMACV4
= 100 ×

1

10
∑ br,

10
r=1 to br = |

CV4−CV̂4

CV4
| = |

0,10−CV̂4

0,10
|; 

EPMAλ1
= 100 ×

1

10
∑ dr,

10
r=1 to dr = |

λ1−λ̂1

λ1
| = |

0,02−λ̂1

0,02
|; 

EPMAλ2
= 100 ×

1

10
∑ er,

10
r=1 to er = |

λ2−λ̂2

λ2
| = |

0,02−λ̂2

0,02
|; 

EPMAe13
= 100 ×

1

10
∑ fr,

10
r=1 to fr = |

e13−ê13

e13
| = |

0,7071−ê13

0,7071
|; 

EPMAe14
= 100 ×

1

10
∑ gr,

10
r=1 to gr = |

e14−ê14

e14
| = |

0,7071−ê14

0,7071
|; 

EPMAe21
= 100 ×

1

10
∑ hr,

10
r=1 to hr = |

e21−ê21

e21
| = |

0,7071−ê21

0,7071
|; and 

EPMAe22
= 100 ×

1

10
∑ ir,

10
r=1 to ir = |

e22−ê22

e22
| = |

0,7071−ê22

0,7071
|. 

The EPMAs show the absolute differences between the parameters and the estimates 

obtained from the two matrices. Therefore, for a good analysis of the CPs, it is expected 

that all eight differences are equal to zero. 

Subsequently, for each EPMA evaluated, a response surface analysis was performed 

as a function of the matrices and the percentages of substitution of the random values of 

Y4 for outliers, whose regression coefficients were tested by Student's t-test at 5% 

significance and whose largest response surface model adopted was given by: 

epst = β0 + β1ps + β2ps
2 + β3mt + β4psmt + εst 

where epst  observed value of EPMA in the combination between levels s (0, 1, 2, 3 and 

4) e t (0 and 1); ps  percentage of replacement of random values of Y4 by outliers at level 

s (0, 1, 2, 3 and 4); mt  matrix used in the analysis of CPs at level t (𝐒∗  0 and 𝐒𝐜
∗  1); 
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0  regression constant; 1, 2, 3 and 4  regression coefficients; and st  regression 

error associated with the observed value epst, where   N (0; σε
2). 

R version 4.0.2 (R CORE TEAM, 2020) was used for the statistical analyses. 

4 Results and Discussion 

As expected, the original variables Y1, Y2 e Y3 were confirmed to be normally 

distributed (P > 0.05) in all 50 data sets. Variable Y4 on the other hand, was randomly 

normal (P > 0.05) only in the 10 data sets without outliers. In the remaining sets with 1%, 

2%, 3%, and 4% replacement of the random values of Y4 with outliers, it was concluded 

that it did not (P < 0.05) behave normally. This suggested that in these 40 data sets with 

outliers of Y4, its standard deviation was not exclusively constituted by random causes. 

The   increased (P < 0.05) as a function of increasing percent substitution of random 

values of Y4 for outliers and was higher (P < 0.05) according to the matrix, as shown in 

the following fitted response surface: 

ep̂st = 0,4671 + 0,0602∗ps + 0,4013∗mt (R
2 = 0,92) 

where ep̂s = 0,4671 + 0,0602ps, for the matrix 𝐒∗;ep̂t = 0,8684 + 0,0602ps, for the 

matrix 𝐒𝐜
∗; and *: significance by t-test of Student (P  0,05). 

According to the matrices 𝐒∗ and 𝐒𝐜
∗, the largest estimates of   the largest estimates of 

EPMACV123
 (0.71% and 1.11%) occurred for the data set with 4% outliers of Y4, 

respectively. Thus, it was concluded that the increase in the percentage of substitution of 

the random values of Y4 by outliers and the matrix 𝐒𝐜
∗, impaired the estimates of the 

coefficients of variation of the normal random variables Y1, Y2 and Y3. This means that in 

an analysis of CPs with variables without or with outliers, the relative variabilities of 

those variables that are free of outliers will also be inflated, even if in small proportions. 

On the other hand, EPMACV4 increased (P < 0.05) as a function of increasing 

percentage of substitution of random values of Y4 for outliers, but much more 

pronouncedly, and showed higher (P < 0.05) according to the matrix 𝐒∗, as per the 

following fitted response surface: 

ep̂st = 2,8111 + 12,5421∗ps − 2,2695mt − 11,9751∗psmt (R
2 = 1,00) 

where ep̂s = 2,8111 + 12,5421ps, for the matrix 𝐒∗;  

ep̂s = 0,5416 + 0,5670ps, for the matrix 𝐒𝐜
∗; and *: significance by t-test of Student (P 

 0,05). 

The highest EPMACV4 estimates (52.98% and 2.81%) also occurred for the dataset 

with 4% estimates (52.98% and 2.81%) also occurred for the dataset with 4% Y4 outliers, 

according to the and matrices 𝐒∗ and 𝐒𝐜
∗ , respectively. However, only the second estimate 

of the EPMACV4 was considered low. This means that in an analysis of the CPs with 

variables without or with outliers the relative variability of those that present them will be 

better estimated when the matrix 𝐒𝐜
∗ is used. Consequently, the matrix 𝐒∗ was not able to 

avoid the effect of non-randomness, here represented by the presence of outliers, on the 

estimate of the coefficient of random variation. 
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Likewise, EPMA1 and the EPMA2 increased (P < 0.05) as a function of the 

increase in the percentage of replacement of random Y4 values by outliers, but only 

according to the matrix 𝐒∗, as the response surfaces adjusted shown in Table 1. 

 

Table 1 - Adjusted response surfaces for EPMA1 and the EPMA2 
EPMA Response Surface R2 

λ1 1,1688 + 9,9928∗ps + 1,8306∗mt − 10,2671∗psmt 

1,1688 + 9,9928ps, to the matrix 𝐒∗ 

2,9994 − 0,2743ps, to the matrix 𝐒𝐜
∗ 

1,00 

λ2 0,5974 + 0,1055∗ps + 1,8021∗mt − 0,2793∗psmt 

0,5974 + 0,1055ps to the matrix 𝐒∗ 

2,3995 − 0,1738∗ps, to the matrix 𝐒𝐜
∗  

0,99 

*: significant by Student's t-test (P < 0.05). 

 

The highest estimates of EPMA1 (41.14% and 3.00%) occurred for datasets with 

4% and 0% of Y4, outliers, according to the and matrices 𝐒∗ and 𝐒𝐜
∗, respectively. 

However, only the first estimate of EPMA1 was considered high. According to the matrix 

𝐒∗, the increase in the estimate of EPMA1 was probably due to the increase λ1  in as a 

function of the increase in CV4 which, in this way, implied a greater relative importance 

of Y4 in CP1. In this case, incorrectly. Thus, when using the matrix 𝐒∗, the estimation of 

relative variability interferes with the estimation of the eigenvalue (CAMPANA et al., 
2010). 

Consequently, in an analysis of the CPs with variables without and with outliers, the 

estimate of the will be overestimated λ1 mainly due to the relative variability, also 

overestimated, of the variables with outliers. Therefore, the variables with outliers will 

probably have a much higher relative importance than those that do not, which will harm 

the quality of the analysis performed with the matrix 𝐒∗. 

On the other hand, the EPMA2 estimates (1.02% and 2.40%) that occurred for the 

data sets with 4% and 0% outliers of Y4, proved to be very low for both matrices 𝐒∗ and 

 𝐒𝐜
∗, respectively. 

The EPMAe13
 and the EPMAe14

 increased (P < 0,05) as a function of the increase in 

the percentage of replacement of random Y4 values by outliers and were smaller (P < 

0,05) according to the matrix 𝐒𝐜
∗, according to the adjusted response surfaces presented in 

Table 2. 

 

Table 2 - Response surfaces fitted for the EPMAe13
 and the EPMAe14

  

EPMA Superfície de resposta R2 

e13 5,5714 + 5,7735∗ps − 6,9286∗mt 

5,5714 + 5,7735∗ps to the matrix 𝐒∗ 

−1,3572 + 5,7735∗ps to the matrix 𝐒𝐜
∗ 

0,88 

e14 4,9054 + 4,4676∗ps − 4,6345∗mt 

4,9054 + 4,4676∗ps to the matrix 𝐒∗ 

0,2709 + 4,4676∗ps to the matrix 𝐒𝐜
∗ 

0,87 

*: significant by Student's t-test (P < 0,05). 
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The highest estimates of EPMAe13
 (28,67% and 21,74%) and of EPMAe14

 (22,78% 

and 18,14%) occurred for the dataset with 4% of Y4, outliers, according to the matrices 

𝐒∗and
 
𝐒𝐜

∗ , respectively. Although both matrices failed to avoid the effect of outliers on the 

coefficient estimates of the two normalized eigenvectors, especially for the higher 

percentages of substitution of random values of Y4 by outliers, the matrix 𝐒𝐜
∗ was more 

efficient because it provided lower error estimates. Again, it was noticed the greatest 

increase in the estimation error due to the variable Y4 with outliers, when the matrix 𝐒∗   

was used. 

The EPMAe21
and EPMAe22

  suffered (P < 0,05) only the influence of the interaction 

of the percentages of substitution of the random values of Y4 for outliers with the 

matrices, according to the fitted response surfaces presented in Table 3. 

 

Table 3 - Response surfaces fitted for the EPMAe21
 and the EPMAe22

 

EPMA Superfície de resposta R2 

e21 1,7664 − 0,5861ps + 0,3161mt + 4,3893∗psmt 

1,7664 − 0,5861ps, to the matrix𝐒∗ 

2,0825 + 3,8032ps to the matrix 𝐒𝐜
∗ 

0,88 

e22 1,7664 − 0,5860ps + 0,3373mt + 4,3857∗psmt 

1,7652 − 0,5860ps, to the matrix 𝐒∗ 

2,1025 + 3,7997ps to the matrix 𝐒𝐜
∗ 

0,88 

*: significant by Student's t-test (P < 0,05). 

 

For EPMAe21
 and EPMAe22

, the matrix 𝐒∗ provided the best results. Furthermore, 

the highest estimates of EPMAe21
 and of EPMAe22

 (1.77% and 17.30%) occurred for the 

dataset with 4% of Y4 outliers, according to the and matrices 𝐒∗ and 𝐒𝐜
∗, respectively. 

Again, it was noticed that the matrix 𝐒∗ does not provide estimation errors arising from 

the random variables Y1, Y2 and Y3. 

According to Lawson (2008), outliers can be the main impediment to validating the 

interpretation of experimental results. Thus, the use of a matrix that minimizes their effect 

on the data set will provide an estimate of the CPs more correctly. 

As observed in the results of EPMA1, of EPMAe13
 and of EPMAe14

, the matrix 𝐒∗  

was greatly affected by the direct or indirect (ρ13 = 1) presence of the Y4 variable with 

outliers. This clearly showed that it should be avoided when there are outliers in the CPs 

analysis. On the other hand, as it was not harmed by the direct and indirect presence of 

random variables Y1, Y2 and Y3, as observed in the results of EPMAλ2
, of EPMAe21

 and of 

EPMAe22
, it is concluded that it should be used when only random variables occur in the 

analysis of the CPs. This conclusion was due to the damage suffered by the matrix 𝐒𝐜
∗, 

with the presence of variable Y4 with outliers on the estimates of the parameters 

associated with the random variables Y1, Y2 and Y3. 

However, as the results associated with the matrix 𝐒𝐜
∗ were, in general, better when 

there is the presence of the Y4 variable with outliers, it recommends it for the analysis of 

the CPs when these outliers are present. 

According to the construction of the scatter diagrams of the scores from CP2 by 

those from CP1, the matrices 𝐒∗ (Figure 1a) and 𝐒𝐜
∗ (Figure 1c) provided the same results 
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only when considering 0% of outliers. On the other hand, when 4% of Y4, outliers were 

considered, the dispersion provided by the matrix 𝐒𝐜
∗ (Figure 1d) was better, given that in 

this case, the Y4 outliers were less prominent than in the dispersion provided by the matrix  

𝐒∗ (Figure 1c). According to the matrix 𝐒𝐜
∗, the configurations provided with 0% and 4% 

of Y4 outliers were more similar to each other (Figure 1c, d). By the matrix 𝐒∗, these 

configurations were more different from each other (Figure 1a, b). According to the last 

two, CP1 showed greater variance and Y4 outliers occurred, with great emphasis, along its 

direction (Figure 1b). 

 

 

Figure 1 - Scatter diagrams of CP2 by CP1 according to the scores obtained based on matrices 𝐒∗ 

with 0% outliers Y4 (a), 𝐒∗ with 4% outliers Y4 (b), 𝐒𝐜
∗ with 0%  outliers Y4 ( c) and 𝐒𝐜

∗ 

with 4% outliers of Y4 (d). 

5 Conclusions 

When only variables without outliers occur in the analysis of the principal 

components, it is recommended to use the matrix based on coefficients of variation. 

When there is at least one variable with outliers in the analysis of the principal 

components, it is recommended to correct the matrix based on the coefficients of variation 

by applying the method of Lenth (1989). 

 

GOMES, J. V., JÚNIOR, J. I. R., DIAS, C. R. G. uma proposta para análise de componentes 

principais na presença de outliers.  Braz. J. Biom. Lavras, v.40, n.3, p.242-255, 2022. 
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 RESUMO: Para análise exploratória dos componentes principais (CPs), não é exigida a 

pressuposição de normalidade multivariada das variáveis e, nem necessariamente, que elas 

sejam aleatórias. Isso significa que variáveis que não se comportam aleatoriamente também 

podem ser incluídas nessa análise. Desse modo, a fim de realizar a análise dos CPs com 

variáveis aleatórias ou não, foi proposta uma correção da matriz 𝜮∗ baseada nos coeficientes de 

variação (Campana et al., 2010) por meio da aplicação do método de Lenth (1989), cuja nova 

matriz foi denominada 𝜮𝒄
∗. Para verificar a sua viabilidade, foram simulados dez conjuntos de 

dados das variáveis aleatórias Y1, Y2, Y3 e Y4, com 10.000 valores cada e que seguiram 

distribuição normal multivariada. Após a simulação, foram substituídos 0%, 1%, 2%, 3% e 4% 

dos valores aleatórios de Y4 pelos mesmos e respectivos percentuais de outliers, com o objetivo 

de quebrar a aleatoriedade da mesma. Posteriormente, foram realizadas análises de superfícies 

de respostas para oito diferentes erros percentuais médios absolutos obtidos em relação a oito 

parâmetros relacionados ao desempenho da análise dos CPs, em função dos percentuais de 

substituição por outliers de Y4 (0, 1, 2, 3 e 4) e das matrizes utilizadas na análise dos CPs 

(𝜮∗  0 𝑒 𝜮𝒄
∗  1). De acordo com os resultados, concluiu-se que, na presença de apenas 

variáveis aleatórias normais, 𝜮∗ é a melhor matriz. Por outro lado, quando há a presença de 

outliers, 𝜮𝒄
∗ é a mais recomendada. 

 PALAVRAS-CHAVE: Coeficiente de variação; Importância relativa; Correlação. 
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