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ABSTRACT: Risk and exposure factors are important features to be considered,

providing financial and actuarial information for the insurer. Pricing methods are

supported by the mutualism theory, ensuring a level of indemnity and expected cost,

making possible to constitute monetary reserves. The aim of our paper is to model and

analyze the distribution of vehicle insurance claims in the south of Minas Gerais/Brazil.

The data represents policies with a claim occurrence in the year of 2018. Under the

Bayesian approach, we consider the Gamma and Log-normal distributions that allow

asymmetric data modeling and they can be used in loss models. The Jeffreys’s prior

class was applied considering the data of the first semester of 2018. The information

level was updated to construct an informative prior to analyze the data of the second

semester. To compare models, we estimated the Bayes Factor and the logarithm of the

marginal likelihood, that showed the Log-normal more likely. After selecting a model, we

estimate metrics as the Conditional Tail Expectation (CTE) and the percentiles of the

adjusted distribution to evaluate extreme costs. The results showed the applicability

of Bayesian inference to fit insurance data, allowing to insert prior knowledge as the

portfolio experience and to use a wide class of probability distributions.
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1 Introduction

The development of statistical models in actuarial science has contributed
to the pricing process, evaluating of financial reserves and risk management
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(HABERMAN; RENSHAW, 1996; MAKOV; SMITH; LIU, 1996; Ravi, 2009;
LALLY; HARTMAN, 2018; SRIRAM; SHI, 2020; HUANG; MENG, 2020).
According to Klugman, Panjer and Willmot (2012) an important factor in the
actuarial context is related to construct models that can predict future costs,
allowing to estimate financial reserves and generating information for risk policies
and resource allocation.

In the non-life market, specifically in car insurance, regression models can be
applied to predict premiums and to segment portfolios according to risk levels such
as fire, theft and collision. Pala et al. (2020), for example, have explored insurance
data to predict the occurrence of a claim using algorithms of supervised learning as
random forest and logistic regression, and Teixeira and Scalon (2016) have analyzed
the spatial dependence of car insurance premiums in Minas Gerais, Brazil.

In the case of collisions, there is a segmentation in partial collisions and total
loss. Peres, Maldonado and Cândido (2019) have pointed the importance of the
insurance market for the Brazilian economy, analyzing conditions as demand and
competitive; as well as Teixeira and Scalon (2016), have indicated that the state of
Minas Gerais has contributed to the Brazilian insurance market.

An important topic is the modeling of loss distributions, frequently heavy-
tailed distributions, with the purpose of inferring about the risk level (AHMAD;
MAHMOUDI; HAMEDANI, 2019). In the literature, we found studies using the
Pareto, Gamma, Log-normal, Weibull and Burr distributions (GUILLEN; PRIETO,
2011; AHMAD; MAHMOUDI; HAMEDANI, 2019). Besides to the analysis of risk
measures, that are related to the distributions tails, it is possible to build confidence
intervals to the monetary reserves (MEYERS, 2007).

As seen in Klugman, Panjer and Willmot (2012), in several actuarial studies
the main interest is associated with the positive tail and the presence of extreme
values. The occurrence of extreme costs has a considerable impact on the total loss.
For this, stochastic models are used to estimate and construct metrics as the Value-
at-Risk (VaR), Conditional-Value-at-Risk (CVaR), Conditional Tail Expectation
(CTE), and the quantiles of the fitted distribution.

The CTE is a risk measure that quantify the expected loss of a random variable
Y, given that Y exceeds a specific limit, it is, CTEY (t) = E[Y |Y > F−1(t)] for
t ∈ (0, 1), associating the risk of (1 - t)100% of loss above of F−1(t) (BRAZAUSKAS
et al., 2008). In the insurance context, this metric allows to estimate the expected
value of extreme indemnities setting values for t, as 0.90, 0.95, and 0.99. In addition
to this measure, the Value-at-Risk is extensively used in the insurance market and
in financial industry, being defined as the t quantile of the distribution of Y (CHUN;
SHAPIRO; URYASEV, 2012).

Stochastic models have been applied in actuarial modeling for some time
(GAO, 2018), permitting solutions for the measurement of uncertain events
(SCOLLNIK, 2001). The Bayesian framework has enabled the estimation of
non-life reserves (GAO, 2018; HUANG; MENG, 2020), with the insertion of a prior
knowledge, such as the portfolio experience, risks and patterns. As an example of
applications, we found the study of Makov (2001), using Bayesian inference; Alba
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(2002), modeling the severity and frequency, Hunt and Blake (2020) estimating
the mortality rates and Huang and Meng (2020) using the Bayesian framework to
predict the loss.

In the Bayesian approach, the inferential process is carried out based on
a learning process, relating the data to the previously available information
(KODUVELY, 2015), resulting in a posterior distribution. In analyzes where there
is a low level of knowledge about the phenomenon, non-informative priors can be
used as the Jeffreys’s class, being invariant to transformations 1 to 1.

The posterior distribution is obtained by applying the Bayes Theorem, and the
inference is performed with the marginal posterior distribution of each parameter,
that is obtained using integration. However, in most cases, these integrals are
complex, and algorithms as Markov Chain Monte Carlo (MCMC) are run to get
moments of the marginal distributions (NASCIMENTO et al., 2011). Details of
these sampling algorithms are available in Casella and George (1992), Gamerman
and Lopes (2006).

In this study, we present aspects of the Bayesian inference for modeling
vehicle insurance claims related to collision with total loss, which occurred in the
south of Minas Gerais/Brazil. The aim is to fit and analyze the distributions
that are used by actuarial studies: Gamma and Log-normal. These distributions
are flexible and allow to fit insurance data, as seen in Marlin (1984), Zuanetti,
Diniz and Leite (2006), Gilenko and Mironova (2017) and they can be used in
loss models, see for instance the studies of Punzo, Bagnato and Maruotti (2017)
using compound unimodal distributions such as Gamma, Log-normal and Inverse
Gaussian; Punzo, Mazza and Maruotti (2018) fitting insurance and economic data
with contaminated Gamma distributions and Goffard and Laub (2021) comparing
insurance loss models.

2 Risk modeling and Inference procedure

We use the data provided by Superintendência de Seguros Privados (2020),
corresponding to indemnities in vehicle claims in the south of Minas Gerais/Brazil
for total loss. We consider the observations of 2018, totaling 806 observations in the
first semester and 881 in the second semester. Policies with no loss, that is, without
indemnities, were disregarded from the analysis and for policies with more than one
occurrence, the total amount of the indemnity was considered. Our interest is to
model the total cost and not the severity, which is the average cost per claim.

2.1 Models

In this section, we are going to describe the models and the prior distributions
that were considered in our study. The presented models have the total amount of
the indemnity as a response variable, namely y, and we do not consider explanatory
variables. We also present the algebraic aspects for obtaining these distributions in
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the attached section.
We performed the analysis of the first semester of 2018 adopting the Gamma

and Log-normal distributions for the response variable, presented in subsections
2.1.1 and 2.1.2, considering an approach with a non-informative prior.

2.1.1 Gamma model

The Gamma(α, β) is a flexible distribution, used to fit asymmetric and
survival data. The distribution is related to the exponential, normal and chi-
square distributions (CASELLA; BERGER, 2014), defined in the parametric space
ΦΦΦ = {α, β|α, β > 0}, being y > 0. The probability density function is given by 1.

p(y|α, β) = βα

Γ(α)
y(α−1)e(−βy). (1)

Considering the set of independent observations of y = {yi, i = 1, . . . , n}, the
likelihood function can be written as 2:

L(α, β|y) = βαn

[Γ(α)]n

(
n∏

i=1

yα−1
i e−β

∑n
i=1 yi

)
. (2)

The data analysis of the first semester of 2018 was performed considering a non-
informative distribution for θθθ = (α, β)⊤ with the Jeffreys’s method, that is a kind
of non-informative prior being invariant under one-to-one transformations, defined
from the Fisher information matrix, where p(θθθ) ∝ det[I(θθθ)]

1
2 . Hence, considering

the logarithm of L(α, β|y), we have the result presented by 3.

I(θθθ) ∝

[
Ψ

′
(α) −1

β
−1
β

α
β2

]
∴ p(θθθ) ∝

√
αΨ′(α)− 1

β
, (3)

being Ψ
′
(α) =

∑∞
n=0

1
(α+n)2 the trigamma function. In Figure 1(a) there is a

representation of p(θθθ) for pairs of α and β.
Therefore, the posterior distribution, p(θθθ|y), using the Bayes rule is given by

4:

p(θθθ|y) ∝ β(nα−1)e−β
∑n

i=1 yi

n∏
i=1

yiα−1
√

Ψ′(α)α− 1
1

[Γ(α)]n
. (4)

2.1.2 Log-normal model

The Log-normal(µ, σ) distribution is commonly used in applications of positive
asymmetric data as income and lifetime, see for instance Casella and Berger (2014),
the probability density function is given by 5.

p(y|µ, σ) = 1√
2πσy

e
−(log(y)−µ)2

2σ2 . (5)

Rev. Bras. Biom., Lavras, v.40, n.3, p.256-272, 2022 - doi: 10.28951/bjb.v40i3.555 259



a b

Figure 1: Behavior of the prior distributions obtained with the Jeffreys’s method,
considering the Gamma (a) and Log-normal (b) likelihoods.

It is defined in the parametric space ΦΦΦ = {µ, σ| − ∞ < µ < +∞, σ > 0}. So,
considering the set of observations y = {yi, i = 1, ..., n}, the likelihood function can
be written as showed in the equation 6.

L(µ, σ|y) =
(

1√
2πσ

)n(
1∏n

i=1 yi

)
e

−
∑n

i=1(log(yi)−µ)2

2σ2 . (6)

Specifying the p(θθθ) distribution to analyze the data of the first semester, being
θθθ = (µ, σ)⊤, with the Jeffreys’s method and considering the expected value of the
expressions: E

(∑n
i=1(log(yi)− µ)2

)
= nσ2 and E (

∑n
i=1 log(yi)) = nµ, we have

that p(θθθ) ∝ n
√
2

σ2 . In figure 1(b) we also have illustrated p(θθθ) considering n =
{30, 50, 100}. Then, using the Bayes rule, the posterior distribution is given by 7.

p(θθθ|y) ∝
(

1√
2πσ

)n(
1∏n

i=1 yi

)(
n
√
2

σ2

)(
e

−
∑n

i=1(log(yi)−µ)2

2σ2

)
. (7)

To analyze the data of the second semester and update the information level
of θθθ, we selected the better model (Gamma or Log-normal) according to the results
obtained in the analysis of the first semester and used it for the next. The Bayes
factor (BF) was applied to selected a model, through the ratio of the marginal
likelihoods, given by 8:

BFij =
p(y|Mi)

p(y|Mj)
, (8)

for the models i and j. The marginal likelihood was estimated using the average
and mode of the distributions. We also use the AICM selection criteria (RAFTERY
et al., 2007), which is estimate by AICM = 2(l̄− s2l ), being l̄ e s2l the average and
the variance of the marginal likelihood, respectively.
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After selecting a model, we verified the behavior of the marginal densities
of θθθ and used a normal kernel with parameters settled according to the results
obtained previously, resulting in an informative way and enabling to consider the
past information as source of information.

2.2 Inference and convergence

To estimate the unknown parameters of each considered model, we have used
the Metropolis-Hastings (MH) algorithm with a transition kernel, q(θθθ, β), bivariate
normal centered on θθθ and with a small standard deviation. For details and properties
about Markov Chain Monte Carlo (MCMC) methods, see Korn; Korn and Kroisandt
(2010). The inference was based on the joint posterior distribution and we consider
10,000 samples with a burn-in period of 5,000 samples and thin = 5, in a way to
decrease the autocorrelation.

The convergence analysis was performed using the Dependence Factor (ϕ)
proposed by Raftery and Lewis (1992) and the diagnostic of Heidelberger and
Welch (1983), i.e. (HW ). The Dependence Factor is understood as the proportional
increase in the number of iterations attributable to autocorrelation, where values
of ϕ > 5 can indicate convergence problems and values of ϕ ≫ 1 suggest a higher
dependence (RAFTERY; LEWIS, 1992). And the HW criteria is based on the
spectral density, constructing a confidence interval for the mean of θθθ and testing if
the sequence can be considered stationary.

2.3 Risk measures

To analyze and evaluate the risk of extreme events, we estimate the 0.95
and 0.99 quantiles of the fitted distribution, allowing to evaluate the tails and
construct exposure metrics for this portfolio. We also estimate the Conditional Tail
Expectation considering the 0.95 and 0.99 levels, making possible to evaluate the
average cost of extreme indemnities. For this, we use the CTE definition showed in
Brazauskas et al. (2008) available in 9:

CTEY (t) = E
[
Y | Y > F−1

Y (t)
]
, t ∈ (0, 1), (9)

being F−1
Y the quantile function, it is F−1

Y (t) = inf{y : FY (y) ≥ t}. According
to Necir, Rassoul and Zitikis (2010), since the cumulative distribution function is
continuous, we have the following result showed in 10:

CTEY (t) =
1

1− t

∫ 1

t

F−1
y (s)ds. (10)

Necir, Rassoul and Zitikis (2010) added that, in some cases, can be desirable to
construct confidence intervals for CTE. Additionally, we analyze the semivariance
under (ν1) and above (ν2) the mean and the ratio of them, as performed by Pla-
santamaria and Bravo (2013) in portfolio optimization. ν1 and ν2 can be estimated
as shown in 11:

Rev. Bras. Biom., Lavras, v.40, n.3, p.256-272, 2022 - doi: 10.28951/bjb.v40i3.555 261



ν1(Y ) =
∑
yi<ȳ

(yi − ȳ)2

n
, and ν2(Y ) =

∑
yi>ȳ

(yi − ȳ)2

n
. (11)

According to Francis and Kim (2013), the semivariance is a measure of dispersion
that can be comparable to the variance. The quantities ν1 and ν2 measure the
dispersion under and above the mean, respectively. The ratio of them, it is ν1

ν2
,

allows to quantify the risk in the tails and to compare portfolios according to the
risk. In this study, we use the R software, R Core Team (2021), with the package
Coda of Plummer et al. (2006).

3 Data analysis

In the first half of 2018 were reported 806 claims of total loss in the south of
Minas Gerais, Brazil. This fact generates an average indemnity of R$ 46,855.15.
As expected, the skewness and kurtosis metrics suggested an asymmetric positive
and the existence of a heavy tail, shown in Table 1. We found that there are several
amounts of indemnities around R$24,053.23, also displayed in Table 1.

Table 1: Descriptive statistics of the collision indemnities reported in the first half
of 2018, south of Minas Gerais, Brazil

Mean Mode Asymmetry Kurtosis SD
46,885.140 24,053.230 3.245 15.321 45,182.340

The indemnities are arranged in the interval between R$54 and R$386,900.00,
and approximately 55.30% of the claims came from male policyholders, 31.30% from
female and 13.40% from polices with no information about the gender. Looking
at the mean by group, the group with no information about gender had the
largest indemnity average, reaching R$69,333.19. For female and male groups, the
estimated averages were R$ 37,870.42 and R$46,784.96.

In the Figures 5(a) and 5(b) we present the chains of the marginal distributions
for the Gamma model. Similarly, in 5(c) and 5(d) are displayed the chains for
parameters µ and σ in the Log-normal model, respectively. Graphically, we can
verify a stationary behavior of the simulated chains, shown in Figure 5. In Table 2
are shown the statistics of the models, as the posterior means, credibility intervals
and the convergence criteria. In relation to the convergence, all simulated chains
have presented ϕ < 5 and the HW criteria also indicates a stationary distribution,
considering a α level of 5%.

According to the Table 2, the shape parameter, α, of the Gamma model
was estimated in 1.693 and the β parameter was estimated in 3.6e-5. Taking the
expected value of the distribution, we have a mean of R$46,912.13 in the range of
R$ 45,924.09 and R$ 47,419.84, according to the credibility interval. Additionally,
the Log-normal distribution was estimated with parameters µ = 10.432 and σ =
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Table 2: Summary of the Gamma and Log-normal models considering Jeffreys’s
priors, applied to the data of the first semester of 2018

Model Parameter Mean SD HPD(95%) ϕ HW
LL UL

Gamma α 1.693 0.077 1.541 1.841 3.180 0.148
β 3.6e-5 2e-6 3.2e-5 4.0e-5 1.870 0.258

Log-normal µ 10.432 0.031 10.374 10.493 1.340 0.996
σ 0.862 0.021 0.818 0.903 1.220 0.470

0.862, resulting in an average cost of R$49,244.02, varying in the interval between
R$44,588.88 and R$54,253.61, according to the credibility interval.

We also have estimated the mode of the fitted distributions. For the case of
the most frequent monetary amount, we obtained the following result: R$23,173.97
and R$21,030.96, for the Gamma and Log-normal models. Comparing with the
estimated mode, the Gamma model performed better when compared to the Log-
normal.

In Figure 2 (a) are shown the estimated densities of the distributions compared
with the indemnities. We noted that both models were close to the behavior of the
indemnities. However, the Log-normal seems to be closer to the mode of the values.

a b

Figure 2: Behavior of the fitted distributions compared to the real values of
indemnities (a) and marginal likelihood of the Gamma and Log-normal models
(b).

To compare them we use the Bayes Factor with the ratio of the logarithm of
the marginal likelihood function, graphically shown in the Figure 2 (b). Considering
the average of the marginal likelihood distributions, the BF = 0.998, indicating an
evidence to the Log-normal. The same decision is reported when we estimate the BF
using the mode of the distributions (BF = 0.998). In addition, the BF in both cases
→ 1, point in which there is no evidence of superiority in the models considered.
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Besides, the AICM criteria were estimated in -18,837.88 and -18,870.56 for Gamma
and Log-normal models.

Therefore, selecting the Log-normal model to fit the insurance indemnities, it is
possible to create metrics to analyze the portfolio risk, as the quantiles of the fitted
distribution. The quantile (95%) was estimated in R$140,388.00 demonstrating that
in the analyzed period there was a probability of 5% to an indemnity be greater than
R$140,388.00. For the quantile 99%, there was a probability of 1% to an indemnity
be greater than R$253,192.30. These amounts interest the insurer, to establish risk
and pricing policies for the portfolio.

We also calculated the CTE considering the Log-normal distribution,
estimated at R$ 214,271.30 for α1 = 0.95 and R$ 354,093.40 for α2 = 0.99. It
is, given that the indemnity value exceeds the quantile α1, the average indemnity
is expected to be R$ 214,271.30. For a extreme value, α2, the average indemnity is
expected to be R$354,093.40.

In addition to these measures, the ratio of the semivariance above the mean to
semivariance below the mean was estimated in 4.36, indicating that the dispersion
of the indemnities above the mean are 4.36 higher than the dispersion below the
mean. Regarding to the estimated median, it shows that 50% of the total cost with
indemnities are lower than R$ 33,948.79.

Considering the result obtained in the data analysis of the first semester, we
proceed with the analysis of the second semester. In the second half, were reported
881 claims of total loss, with an average cost of R$ 47,697.72. A brief summary
of the data is available in Table 3, where 55.05% of the claims came from male
policyholders, 31.78% from female and 13.17% from polices with no information
about gender.

Table 3: Descriptive statistics of the collision indemnities reported in the second
half of 2018, south of Minas Gerais, Brazil

Mean Mode Asymmetry Kurtosis SD
47,697.72 24,776.27 2.509 8.334 41,571.42

With the information level constructed previously for the Log-normal model,
available in Table 2, we updated θθθ = (µ, σ)⊤ considering normal priors centered on

the estimated values as hyperparameters. It is: µ ∝ exp
[
−1
2

(
µ−10.432

0.031

)2]
and σ ∝

exp
[
−1
2

(
σ−0.862
0.021

)2]
. Hence, the posterior distribution considering a Log-normal

likelihood is given by 12:

p(θθθ|y) ∝
(

1√
2πσ

)n(
1∏n

i=1 yi

)(
e

−
∑n

i=1(log(yi)−µ)2

2σ2 − 1
2

(
(µ−10.432)2

0.031 +
(σ−0.862)2

0.021

))
.

(12)
In the Table 4 we presented the estimated values considering the data of

the second semester, including the highest posterior density intervals and the
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convergence criteria. According to the values of ϕ and HW, a stationary distribution
is reached considering an α level of 5%. The trace of the simulated chains of each
parameter is shown in Figure 3. Comparing these results with the Log-normal model
fitted to the first semester (presented in Table 2), we noted an increase of 0.029 in
the average parameter (µ) and a reduction in the standard deviation parameter
(σ). Reductions of 48.75% and 8.10% were observed in the range of the credibility
intervals for µ and σ, respectively.

a b

Figure 3: Trace of the chains for the parameters µ (a), σ (b) of the model presented
in the Table 4.

Table 4: Summary of the Log-normal model with an informative prior, applied to
the data of the second semester of 2018

Model Parameter Mean SD HPD(95%) ϕ HW
LL UL

Log-normal µ 10.461 0.020 10.421 10.501 1.570 0.116
σ 0.793 0.019 0.757 0.831 1.280 0.510

In Figure 4 (a) are shown the fitted distribution and the real values of
indemnities. Additionally, in 4 (b) we constructed the Q-Q plot, that shows a
deviation in tails. Taking the expected value of the fitted distribution we have an
average cost of R$ 47,858.48, in an interval between [R$ 44,748.44; R$51,440.28].
Comparing with the real average of R$ 47,697.72, we obtained an error of 0.337%.

Regarding to the risk metrics, the quantile (95%) was estimated in R$
125,585.1, a reduction of 7.946% compared with the first semester of 2018. The
quantile (99%) also was reduced, estimated in R$ 218,742.5, a variation of -15.182%.
Consequently, the CTE has been reduced to R$182,781.00 considering α1 = 0.95
and R$ 286,208.90 for α2 = 0.99, indicating a reduction in the occurrence of extreme
values.
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The ratio of the semivariance above the mean to semivariance below the mean
was 3.76. It indicates that the dispersion above the mean is approximately 3.76
higher than the payments below the mean. Comparing this result with the estimated
ratio in the first semester, we noted a reduction in the ratio. However, the estimated
median was R$ 34,840.60, indicating an increase in the median value.

a b

Figure 4: (a): Behavior of the Log-normal distribution compared to the real data of
the second semester, and (b): Quantile-quantile plot of the residuals of the model
fitted in (a).

Conclusions

In this study, we have pointed aspects of stochastic modeling in insurance
claims, through the Bayesian approach, which provides the insertion of a prior
knowledge, such as the experience of portfolios that can contribute to the analysis
and enable the updating of the information.

Two distributions used for the modeling of positive asymmetric phenomena
were considered and applied to collision insurance data for total loss. However,
these models can be used in other regions of the country or periods, assuming the
posterior behavior presented in our study as a probable source of information.

In addition, new distributions can be applied and proposed in order to analyze
the adherence of the tails of the distribution, such as the Burr family, Generalized
Gamma and Weibull, allowing the comparison and analysis of the tails, associating
risk measures and expected levels of extreme events.
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RESUMO: Fatores de risco e exposiçao são pontos importantes a serem considerados,

oferecendo informações financeiras e atuariais para seguradoras. Métodos de precificação

são fundamentados na teoria do mutualismo, possibilitando ńıveis de indenização, custos

esperados e a constituição de reservas montetárias. O objetivo deste trabalho é modelar

e analisar a distribuição de indenizações de seguro de véıculos no sul de Minas Gerais,

Brasil. Os dados representam apólices com ocorrência de sinistros no ano de 2018. Sob o

enfoque Bayesiano, foram considerados os modelos Gama e Lognormal, que possibilitam

a modelagem de dados assimétricos e são comumente utilizados em modelos de perda.

Para o estabelecimento de distribuições a priori, recorreu-se a classe de prioris não

informativas de Jeffreys considerando os dados do primeiro semestre de 2018. O ńıvel

de informação foi atualizado, construindo informações a priori para analisar os dados

do segundo semestre. A comparação dos modelos foi realizada a partir do Fator de

Bayes e da razão entre o logaritmo das verossimilhanças marginais, que indicaram o

modelo Lognormal mais plauśıvel. Posteriormente, foram calculadas métricas como

a Conditional Tail Expectation (CTE) e os percentis da distribuição ajustada, que

permitem avaliar ńıveis de risco, custos extremos e medidas de gerenciamento de reservas

monetárias. Ademais, os resultados mostraram a aplicabilidade da inferência Bayesiana

na modelagem de dados de seguro, permitindo a inserção de informações a priori, como

o histórico de carteiras, e uso de diversas famı́lias de distribuições.

PALAVRAS-CHAVE: Inferência Bayesiana, reservas financeiras, ńıveis de risco.
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4 Appendices

4.1 p(θθθ) distribution in the Gamma model with non-informative prior

Considering the derivatives of the likelihood function, we have:

∂ logL(θ|y)
∂α

=n log(β)− n
∂

∂α
log(Γ(α)) +

n∑
i=1

log yi,

∂2 logL(θ|y)
∂α2

=− n
∂2

∂α2
log (Γ(α)) ,

∂ logL(θ|y)
∂β

=
nα

β
−

n∑
i=1

yi,

∂2 logL(θ|y)
∂β2

=
−nα

β2
,

∂2 logL(θ|y)
∂α∂β

=
n

β
.

Arranging the results in the Fisher information matrix to obtain the
distribution:

I(θ) ∝

[
Ψ

′
(α) −1

β
−1
β

α
β2

]
∴ p(θ) ∝

√
αΨ′(α)− 1

β
,
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4.2 p(θθθ) distribution in the Log-normal model with non-informative
prior

Considering the derivatives of the likelihood function and the expected value
of E

(∑n
i=1(log(yi)− µ)2

)
= nσ2 and E (

∑n
i=1 log(yi)) = nµ:

∂ logL(θ|y)
∂µ

=

∑n
i=1(log(yi)− µ)

σ2
,

∂2 logL(θ|y)
∂µ2

=
−n

σ2
,

∂ logL(θ|y)
∂σ

=
−n

σ
+

∑n
i=1(log(yi)− µ)2

σ3
,

∂2 logL(θ|y)
∂σ2

=
n

σ2
−

3
∑n

i=1(log(yi)− µ)2

σ4
,

∂2 logL(θ|y)
∂σ∂µ

=
−2
∑n

i=1(log(yi)− µ)

σ3
.

Similarly,

I(θ) ∝
[

n
σ2 0
0 2n

σ2

]
∴ p(θ) ∝ n

√
2

σ2
.
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4.3 Plots for Markov Chain Monte Carlo simulations

a b

c d

Figure 5: Trace of the chains for the parameters α (a), β (b), µ (c) and σ (d) of the
models presented in Table 2.
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