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 ABSTRACT: This paper presents the bootstrap percentile interval and the Bayesian credible interval 

as alternatives to the classical frequentist confidence interval for analysis of zero-inflated data. The 

indicated methods were applied to soybean downy mildew severity data obtained by stratified 

sampling in two municipalities in the state of São Paulo: Estiva Gerbi and Piracicaba. The 

amplitudes of the frequentist and bootstrap percentile confidence intervals were similar. For the 

Bayesian approach, the credible intervals of the posterior predictive distribution were considered 

using the zero-inflated beta distribution as likelihood. The credible intervals showed a wider range 

and included values in the upper bounds of the intervals greater than those observed in the data. 

We conclude that Bayesian inference is more complex, but allows incorporation of prior 

information regarding regional and seasonal aspects, contributing to better disease management in 

the field. When this information is not known, nonparametric bootstrap resampling is a simple 

alternative to construct intervals for zero-inflated data without assuming the distribution function. 
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1 Introduction 

Brazil is one of the main producers and exporters of agricultural commodities in the 

world, standing out for its soy production. According to USDA (2020), world soybean 

production is led by Brazil (131 million tons), followed by the United States (112.2 million 

tons) and Argentina (53.5 million tons). These countries together account for about 80% of 

the world soybean production. It is estimated that the average productivity of the crop in 

Brazil is 3,542 kg ℎ𝑎−1 (CONAB, 2020), with variability between regions. 
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Fungal diseases occur in several soybean producing regions in Brazil (SILVA et al., 

2011) and worldwide (DUNLEAVY, 1987; LIM, 1989), leading to a reduction in 

productivity of up to 8% (PHILLIPS, 1999). Downy mildew is a fungal disease considered 

secondary in soybeans, caused by the pathogen Perenospora manshurica, which infects the 

unifoliate and trifoliate leaves. The favorable environmental conditions for the development 

of the pathogen in soybeans are air temperature ranging between 20 ºC and 22 ºC and a leaf 

wetness period of 12 hours (PICININI and FERNANDES, 2003). 

The evolution of pathogen infection in the plant is determined preferentially by 

severity, which refers to the percentage of stunting or damage caused to the plant organ 

(leaf, stem, fruit). This determination factor, despite being more laborious compared to the 

evaluation of incidence, provides a better characterization of the evolution of the disease or 

the level of resistance of the plant to the pathogen, expressing more accurately the damage 

caused to the plant.  

Disease severity can be measured visually, and for different assessors to follow the 

same rigor, diagrammatic scales and descriptive scales have been developed that contain a 

sequence of scores to be assigned according to the amount of damage to the plant organ. A 

challenge in modeling of severity data is zero inflation, occurring when there is no 

observation of the disease in the sampling unit. In this case, the data do not follow a normal 

distribution and usual methods can cause inaccurate parameter estimation and misleading 

inferences (MALDONADO et al., 2016; MARTIN et al., 2005). 

        The accuracy of estimating crop disease severity is dependent on the number of 

samples and the sampling scheme. Different sampling methods have been used in studies 

to assess foliar disease severity and incidence, including cluster sampling (MORALEJO et 

al., 2019), systematic sampling (MICHEREFF et al., 2008; ERTÜRK et al., 2018; 

SONGTAO et al., 2019), and stratified sampling (HARDWICK et al., 2001; MANGENI et 

al., 2020). 

The goal of stratified sampling schemes is to reduce the overall sample size by 

controlling for sources of variability in the data (ABBOTT, 2010). It generally provides 

more accurate estimates of population characteristics from a small number of samples than 

simple random sampling (LIEB, 2020). 

Confidence intervals are used to assess the reliability of estimates obtained from a 

random sample (SEVERIANO et al., 2011; BRITO et al., 2019). Confidence intervals can 

be determined by frequentist or computationally intensive methods. Frequentist inference 

is based on the assumption of the existence of a probabilistic model from which the random 

sample was drawn. If this model is not known, the inference may be compromised 

(FERREIRA, 2014). 

Computationally intensive methods, such as nonparametric bootstrap resampling, 

empirically estimate the sampling distribution, and the only assumption required is that the 

sample be representative of the population (ZIENTEK and THOMPSON, 2007). Thus, they 

allow the construction of confidence intervals without having to assume a distribution 

function (SEVERIANO et al., 2011) and can be an alternative to constructing confidence 

intervals for zero-inflated data, for which the distributional assumptions of classical models 

are generally not validated. 

Bayesian inference can also be used as an alternative to interval estimation in the case 

of zero-inflated data, because it provides greater flexibility in modeling the data. Thus, 

Bayesian credible intervals can be considered as an alternative procedure for assessing the 

reliability of the mean severity estimation. 
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In this context, the present work focuses on the problem of constructing confidence 

and credible  intervals for leaf fungal disease severity, presenting alternative methods for 

zero-inflated data and verifying the reliability of the estimated parameter of downy mildew 

severity in soybean crops in studies applying the stratified sampling scheme. 

2 Methodology 

2.1 Survey and sample collection 

The study was conducted with soybean cultivar NEO660 IPRO, considered 

susceptible to downy mildew, in two experimental fields: in the municipalities of Estiva 

Gerbi (-22.206 ; -46.969) and Piracicaba (-22.698; -47.642), both in the state of São Paulo. 

During the experiment, Piracicaba and Estiva Gerbi registered average temperatures of 25.2 

°C and 20.6 °C and accumulated precipitation of 900 mm and 1,114 mm between October 

and March. Soybeans were sown at a spacing of 0.5 m in 3×5 plots (6 rows, spaced at 0.5 

m with a length of 5 m), representing a population of 320 thousand plants ℎ𝑎−1 in both 

locations. 

The evaluations of downy mildew severity were performed at seven-day intervals 

from the first detection of the disease on the plant leaves (January 17, 2020) until the end 

of the crop cycle (February 21, 2020). Each evaluation was performed independently, with 

a new randomization performed weekly, so that although 6 weeks of evaluation were 

considered, the experimental units are independent in the evaluations. The severity of 

downy mildew was determined according to the diagrammatic scale described by Kowata 

et al. (2008), which was prepared according to logistic models so that severity levels 

compatible with human visual acuity were established. 

The diagrammatic scale proposed by Kowata et al. (2008) to evaluate the severity of 

downy mildew in soybean caused by Peronospora manshurica consists of eight severity 

levels, 0.08%; 0.3%; 1.10%; 3.39%; 12.85%; 34.92%; 66.13% and 87.65%, which help in 

leaf evaluation and in determining the percentage of leaf area covered with symptoms. 

Considering the difference in climate and altitude (60 m) between the municipalities, 

the severity evaluations were performed using the stratified sampling method in two strata 

(Estiva Gerbi and Piracicaba), and within each stratum the disease was evaluated by simple 

random sampling, with 60 samples per location, assuming values in percentage scale and 

admitting the non-observation of symptoms (0% severity), which occurred on average in 

21% of the sample units, reaching 71% in the first week of evaluation in Piracicaba and 

50% in the last week of evaluation in Estiva Gerbi. 

2.2 Frequentist approach 

The accuracy of the mean severity estimate can benefit from the construction of 

confidence intervals for the parameters. Since the estimate depends on a particular sample 

taken from the population, there is variability in the point estimates obtained from the 

samples relative to those obtained from the population (PINTO et al., 2008). 

Let 𝑦 be the observed value of downy mildew severity, given in percent, and ℎ be the 

stratum or location. In this notation, 𝑦𝑖ℎ refers to the i-th observation of the h-th stratum, 

with ℎ = 1, 2 and 𝑖 = 1,2, … , 𝑛ℎ, where 𝑛ℎ = 60 is the sample size of each stratum. 
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For the h-th stratum, a 100𝛾% confidence interval for the mean considering simple 

random sampling across strata is defined according to Abbott (2010): 

𝐶𝐼(𝜇ℎ , 100𝛾%) = (�̅�ℎ ∓ 𝑧𝛼
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represents the sample mean and variance of stratum ℎ. 

An analytical expression for a 100𝛾% confidence interval for the population mean in 

stratified sampling was described by Bolfarine and Bussab (2005): 
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represent the self-weighted point estimators of the population mean and variance, which are 

unbiased. In this classical approach, confidence intervals were based on asymptotic 

normality.  

Confidence intervals are often misinterpreted. A 95% confidence interval simply 

means that if the study is conducted multiple times (multiple sampling of the same 

population) and corresponding 95% confidence intervals have been constructed for the 

population mean, 95% of these intervals are expected to contain the true population mean 

(TAN and TAN, 2010). 
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2.3 Bootstrap Resampling 

The bootstrap method uses resampling of the selected sample from the population to 

estimate the sampling distribution of a statistical estimator and obtain inferences about 

unknown population parameters (HANLEY and MACGIBBON, 2006; BERRAR, 2019). 

In nonparametric bootstrap resampling, from a dataset containing 𝑛 observations a 

number 𝐵 of resampled datasets, called bootstrap samples, can be obtained. These 

resamples have size 𝑛, and the chosen estimator is applied to each one. Thus, let 

𝑦1, 𝑦2, … , 𝑦𝑛 be an observed random sample and �̂� be an estimate of 𝜃. Then 𝐵 resamples 

(or bootstrap samples) are selected and for each statistic of interest, denoted by �̂�𝑖
∗, 𝑖 =

1,2, …, and 𝐵 is calculated. The point estimate will be given by: 
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        A confidence interval by the percentile method, obtained from the empirical 

distribution of bootstrap estimates, was defined by Efron and Tibshirani (1993): 
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A direct extension of the usual bootstrap method for stratified samples is given below 

(RAO and WU, 1988): 
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2. Calculate �̂�∗ = 𝑔(�̅�∗). 

3. Independently repeat step 1 𝐵 times and calculate the corresponding 

estimates (step 2) �̂�∗1, �̂�∗2, … , �̂�∗𝐵. 
 

 

Thus, a 100𝛾 = 95% confidence interval by the percentile method will be given as 

described by Sitter (1992) and Cusi (2007): 
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[𝜃𝑙𝑜𝑤 , 𝜃𝑢𝑝𝑝] = [𝜃∗(𝛼), 𝜃∗(1−𝛼)] 
 

The bootstrap resampling method used in the previous procedures is independent of 

the distribution, and is called the nonparametric bootstrap method. 

2.4 Bayesian inference 

In classical inference, the sample data 𝑦 are considered random and the population 

parameters are considered fixed. In the Bayesian approach, the parameters are considered 

to follow a probability distribution, which expresses preliminary information about the 

process through an a prior distribution, called 𝜋(𝜽) (CONGDON, 2003). Thus, Bayesian 

analysis combines the information contained in the data with a prior information about the 

parameters (BOLSTAD, 2004). With the combination of the data distribution, 𝑓(𝒚|𝜽), and 

the prior distribution, 𝜋(𝜽), knowledge about the process is updated and summarized in a 

posterior distribution, 𝜋(𝜽|𝒚), given by: 

 

𝜋(𝜽|𝒚) ∝ 𝑓(𝒚|𝜽)𝜋(𝜽) 
 

In this context, considering the disease severity data, which assumes values on a 

percentage scale and may contain excess of zeros, it is necessary to use a probability 

distribution that incorporates the zero inflation and the range of variation. Models for zero-

inflated data are combinations of probability distributions that separately model the 

occurrence of zeros and the other values in the domain of the variable of interest (MARTIN 

et al., 2005). Thus, we considered in the model the zero-inflated beta distribution (BEZI), 

given by: 
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where 𝜈 is the mass probability of observing zeros (0 < 𝜈 < 1) and 𝑓(𝑦; 𝜇, 𝜙) is the 

probability density function of the beta distribution with parameters 𝜇 and 𝜙 (0 < 𝜇 < 1 

and 𝜙 > 0) proposed by Ferrari and Cribari-Neto (2004), which has probability density 

function given by:  
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where Γ(∙) is the gamma function. Thus, the likelihood 𝐿(𝜇, 𝜙, 𝜈) = 𝑓(𝒚|𝜇, 𝜙, 𝜈)  

considering a random sample with BEZI distribution will be given by:  
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According to Congdon (2003), sometimes the existing knowledge is too imprecise to 

obtain an informative prior and therefore non-informative priors are used. Thus, the priors 

considered for the parameters were:  

 

𝜇~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

𝜙~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, +∞) 

𝜈~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 
 
The iterative Monte Carlo class algorithm using Markov Chain Monte Carlo (MCMC) 

was used for inference about the parameters 𝜇, 𝜙 and 𝜈. The convergence of the Markov 

chains was checked using the Gelman and Rubin (1992) criterion, which uses multiple 

repetitions of sequences to check whether stationarity has been reached within the second 

half of each sample, assuming that these sequences were simulated in parallel, each starting 

from a different starting point (NOGUEIRA et al., 2004). 

An advantage of the Bayesian approach is the more natural interpretation of random 

intervals for the parameters, called credible intervals (CONGDON, 2003). Credible 

intervals are given by the quantiles of the a posterior distribution, setting a credibility level 

𝛾, and are interpreted as a probability (100𝛾%) of the true parameter belonging to the 

interval. 

 The predictive distribution of the mean severity was generated based on the a 

posterior estimates of the parameters given by the Bayesian approach for the posteriors by 

location/stratum. For analysis considering stratified sampling, the sample weight was 

considered similar to that considered for bootstrap stratified sampling. 

2.5 Simulation Study 

A simulation study has been conducted to compare the performance of confidence and 

credible intervals in simulated samples of the BEZI distribution, based on the posterior 

distribution of the parameters estimated in the Bayesian analysis. The simulation flowchart 

was as follows: 

 

1. Random samples were generated of the BEZI distribution with sample size 𝑛 =60 

and parameters: 

a. 𝜇 ranging from 0.01 to 0.04. 

b. 𝜙 assuming values 50, 100 and 400. 

c. 𝜈 ranging from 0.1 to 0.9. 

2. Frequentist and bootstrap confidence intervals and credible intervals were 

calculated for each sample and it was verified if the value of 𝜇 was covered in the 

estimation intervals. 

3. Steps 1 and 2 were repeated 1000 times and the coverage probability was 

calculated. 
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3 Application 

In Piracicaba, the disease severity was increasing until the fourth week of evaluation, 

in which the disease reached 10% damage to the leaves. However, from the fifth week on, 

there was a decrease in the severity of downy mildew until the end of the crop cycle. In 

Estiva Gerbi, the severity was relatively uniform throughout the crop cycle, with peaks of 

5% and 10% in the third and sixth week of evaluation, respectively. In both municipalities 

analyzed, the severity values were on average less than 3%. These results show that the 

disease was present in the plants (samples), but not in the entire population. In Estiva Gerbi, 

we observed values of mildew severity on soybean from 0.879±0.98 to 1.466±1.01, while 

in Piracicaba these values ranged from 0.315±0.82 to 4.035±2.53. 

 

 

Figure 1 - Mean and standard error of the average severity of downy mildew in soybean in the 

municipalities of Piracicaba and Estiva Gerbi in 2020. 

 

The average severity of downy mildew differed between Piracicaba and Estiva Gerbi 

throughout the evaluations. Only in the first week of evaluation did Estiva Gerbi show 

higher average severity than Piracicaba (Figure 1). After the second week of evaluation, the 

average severity of downy mildew was higher in Piracicaba than in Estiva Gerbi. 

The amplitudes of the confidence intervals were similar for the frequentist and 

bootstrap methods (Figure 2), but the assumption of normal or approximately normal 

distribution of the estimator of the parameter of interest was rejected by the Shapiro-Wilk 

normality test. The confidence intervals in Piracicaba for stratified sampling showed a 

similar trend, but in Estiva Gerbi this trend was not present. 
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Figure 2 - Frequentist and bootstrap confidence intervals for the average severity of downy 

mildew on soybean in the municipalities of Piracicaba and Estiva Gerbi in the stratified 
sampling in 2020. 

 

For the Bayesian approach (Table 1), the credible intervals of the posterior predictive 

distribution were considered. The Gelman and Rubin (1992) criterion was used to verify 

the convergence of the chains, which was achieved considering 11,000 iterations. The 

values of 𝜇, which represents the mean of the zero-inflated beta distribution, did not vary 

greatly, but the values of 𝜙, which is a precision parameter, varied between 59.53 and 

468.51 in Estiva Gerbi and between 39.05 and 99.58 in Piracicaba. 

 

 

Table 1 - Posterior estimates for the parameters of the BEZI distribution in the study of the average 

mildew severity in soybean in the municipalities of Piracicaba and Estiva Gerbi in 2020, 

with 𝜇 representing the mean of the distribution, 𝜙 the precision parameter and 𝜈 modeling 

the zero inflation 

 Estiva Gerbi  Piracicaba 

 𝜇 𝜙 𝜈  𝜇 𝜙 𝜈 

Week 1 0.01 468.51 0.29  0.01 68.88 0.71 

Week 2 0.01 263.09 0.19  0.03 39.05 0.14 

Week 3 0.02 137.88 0.03  0.03 58.12 0.07 

Week 4 0.01 184.06 0.19  0.04 57.17 0.02 

Week 5 0.01 147.34 0.37  0.04 99.58 0.05 

Week 6 0.02 59.53 0.50  0.03 88.13 0.06 
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The posterior mean of 𝜈, which models the zero inflation, represented approximately 

the proportion of zeros observed in the sample, being more accurate the higher the 

percentage of zeros. In the evaluations with the lowest proportions of zeros observed in the 

sample, the posterior mean of 𝜈 was slightly overestimated, but still belonged to the 95% 

credible interval (Figure 3). 

 

 

Figure 3 - Credible intervals for the parameter 𝜈 that models the zero inflation in the study of the 

average mildew severity in soybean in the municipalities of Piracicaba and Estiva Gerbi 
in 2020. The centerline is the proportion of zeros observed in the sample. 

 

 

The credible interval was wider in Piracicaba (Figure 4) than in Estiva Gerbi and in 

the stratified sampling interval. In Estiva Gerbi, the credible interval presented the greatest 

amplitude in the sixth week of evaluation, while in Piracicaba, the greatest amplitude 

occurred in the fourth week of evaluation (Figure 4).   
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Figure 4 - Credible intervals for the average severity of downy mildew in soybean in the 

municipalities of Piracicaba, Estiva Gerbi and in the stratified sampling in 2020. 

 

The credible intervals included the value zero in all evaluations with the exception of 

the fourth week of evaluation in the stratified sampling, and the upper limits of the intervals 

presented values higher than those observed in the data. However, the average severities 

presented values similar to those observed in the frequentist and bootstrap percentile 

intervals. 

Using the posterior estimates for the parameters of the BEZI distribution, a simulation 

study was conducted considering 𝑛 =60,  𝜇 ranging from 0.01 to 0.04, 𝜙 assuming values 

50, 100 and 400 and 𝜈 ranging from 0.1 to 0.9. It was observed that the coverage probability 

was similar for the frequentist and bootstrap confidence intervals, reaching the value zero 

around 𝜈 =0.5 in all scenarios. The credible intervals, on the contrary, maintained a 

coverage probability close to 100% until 𝜈 =0.8 in all scenarios (Figure 5). Our results 

demonstrate that the frequentist and bootstrap confidence intervals and the credible 

intervals differ in coverage probability, being mainly affected by the parameter 𝜈 that 

models the zero-inflation in the sample. 
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Figure 5 - Coverage probability of frequentist and bootstrap confidence intervals and credible 

intervals as a function of the 𝜈 parameter of the BEZI distribution with 𝜇 assuming 

values ranging from 0.01 to 0.04, 𝜙 assuming values 50, 100 and 400 and 𝜈 ranging 

from 0.1 to 0.9 for a sample size 𝑛 =60. 
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4 Discussion and concluding remarks 

In this study, we observed severity values of downy mildew in soybean ranging from 

0 to 10%, which are considered low compared to other studies, such as that of Kowata et 

al. (2008), who reported severity levels of downy mildew ranging from 0.08% to 87.65%, 

reaching 90% in the most advanced stage of the disease. 

The difference in mildew severity observed between the municipalities of Estiva Gerbi 

and Piracicaba in the cycle may be associated with the difference in environmental 

conditions between the municipalities. In the first week of evaluation, Estiva Gerbi 

exhibited higher severity of downy mildew than Piracicaba, probably due to higher rainfall, 

since the pathogen needs a leaf wetness period of 12 hours and a temperature between 20 

and 22 °C to infect the plant (PICININI and FERNANDES, 2003). However, the increase 

in downy mildew severity in soybean in Piracicaba may be associated with lower plant 

resistance caused due to greater water and nutrient limitation. Some nutrients, such as 

nitrate and sulfate, are present in the soil solution, being absorbed mostly by mass flow. 

Therefore, the lower rainfall may reduce nutrient uptake by soybean, which may 

consequently reduce plant resistance to the pathogen. 

In foliar diseases, the percentage of tissue area affected (severity) allows for a better 

evaluation of the impact of the disease on the plant than the incidence. Diagrammatic scales 

help in this quantification, although attention must be paid to the limitations of the acuity 

of human vision to observe the symptoms on the plant (AMORIM, 1995). However, Silva 

et al. (2009) found that even with the aid of a diagrammatic scale, experienced assessors 

did not accurately estimate the severity, casting doubt on the human ability to distinguish 

some types of leaf lesions when very small, and to condense all visual stimuli into a 

numerical estimate. This contrasts with the accuracy obtained by using software to quantify 

the actual severity, which possibly identifies injured tissue that is impractical within the 

range of human vision (SILVA et al., 2009). 

Thus, the reliability of the severity estimates obtained was evaluated using confidence 

intervals and credible intervals. From these intervals, it is possible to identify upper and 

lower limits and evaluate the accuracy of the estimate, which is necessary for appropriate 

decision making in disease control. 

 The ranges of the frequentist and bootstrap confidence intervals for downy mildew 

severity in soybean were similar. Other authors have also observed such similarities for the 

frequentist and bootstrap confidence intervals in simple random sampling (PEREIRA et al., 

2000) and stratified sampling (CUSI, 2007). 

Despite the similarity of the results, the frequentist confidence interval is only valid 

under the assumption of normal or approximately normal distribution of the parameter 

estimator of interest, which in this study was rejected by the Shapiro-Wilk normality test. 

Carpenter and Bithell (2000) suggest that bootstrap confidence intervals should be used 

whenever there is a reason to doubt the assumptions related to classical confidence intervals. 

Carrasco et al. (2012), who used the parametric and nonparametric bootstrap approach to 

obtain confidence intervals considering data with zero inflation, concluded that resampling 

is an alternative procedure that makes it possible to obtain adequate confidence intervals. 

Another alternative to analyze zero-inflated data is Bayesian inference, which allows 

incorporating in the analysis a prior information regarding regional and seasonal aspects 

(BRIGHENTI et al., 2011; GARTHWAITE et al., 1995). This is especially useful for leaf 
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fungal disease severity data, since disease development is associated with these aspects. 

Thus, obtaining Bayesian credible intervals can help improve the accuracy of estimating 

the disease severity in the plant when considering a prior information or information from 

previous experiments to update this information with new data, contributing to the better 

management of the disease in the field. 

In this study, severity values equal to zero were observed, so the zero-inflated beta 

distribution was considered in Bayesian inference for the data. The posterior parameters 

(Table 1) show mean severity close to zero, ranging from 1 to 4%. The value of 𝜙 (precision 

parameter), was higher in Estiva Gerbi, causing a smaller amplitude in its confidence 

interval (Figure 4). Regarding the parameter that models the zero inflation (𝜈), there was a 

decreasing pattern in Piracicaba throughout the evaluations, showing that the chance of 

observing leaves without the disease decreased throughout the crop cycle. Considering the 

possibility of observing the zero value is important for the management of the disease, since 

unnecessary treatment, especially in the case of chemical control, can lead to ecological and 

economic losses. 

This article is an introduction to the problems related to the construction of classical 

frequentist confidence intervals for disease severity data, especially for zero-inflated data. 

The measurement and quantification of this parameter is important to prevent the spread of 

disease and to make decisions about crop protection measures, considering the costs of 

disease control and the resulting economic and productive losses. 

It should be considered that bootstrap resampling and Bayesian inference use 

simulations, but they are more flexible for data modeling, and may be useful for obtaining 

intervals for zero-inflated data. We conclude that Bayesian inference is a more complex 

method, but allows incorporation of prior information regarding regional and seasonal 

aspects, contributing to better disease management in the field. When this information is 

not known, nonparametric bootstrap resampling is a simple alternative to construct intervals 

for zero-inflated data without the need to know the analytical expressions. 
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Alternativas ao intervalo de confiança clássico frequentista para descrição da severidade de doença 

foliar com inflação de zeros. Braz. J. Biom. Lavras, v.40, n.2, p.181-197, 2022. 

 RESUMO: Este trabalho apresenta o intervalo percentil bootstrap e o intervalo de credibilidade 

bayesiano como alternativas ao intervalo de confiança clássico frequentista para análise de dados 

com inflação de zero. As metodologias indicadas foram aplicadas a dados de severidade do míldio 

na soja, obtidas por amostragem estratificada em duas cidades do estado de São Paulo: Estiva 

Gerbi e Piracicaba. As amplitudes dos intervalos de confiança frequentista e percentil bootstrap 

foram aproximadamente iguais. Para a abordagem bayesiana foram considerados os intervalos 

de credibilidade da distribuição preditiva a posteriori utilizando a distribuição beta inflacionada 

de zeros como verossimilhança. Os intervalos de credibilidade apresentaram uma maior 

amplitude e incluíram nos limites superiores dos intervalos valores acima dos observados nos 

dados. Concluiu-se que a inferência bayesiana apresenta uma metodologia mais complexa, porém 

permite incorporar informação a priori referente a aspectos regionais e sazonais, contribuindo 
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para o melhor manejo da doença no campo. Quando não se conhece essas informações, a 

reamostragem bootstrap não paramétrica é uma alternativa simples para construção de intervalos 

para dados inflacionados de zeros sem que seja necessário assumir uma função de distribuição 

para a mesma. 

 PALAVRAS-CHAVE: Amostragem estratificada; Inferência bayesiana; Perenospora manshurica; 

Reamostragem Boostratap. 
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