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ABSTRACT: In this paper, we propose the zero, one and zero-and-one-inflated New
unit-Lindley distributions as natural extensions of the New unit-Lindley distribution to
model continuous responses measured at the following intervals [0, 1), (0, 1] and [0, 1].
They were constructed based on convex combinations between the New unit-Lindley
distribution and the distributions degenerate at zero, one, and Bernoulli distribution.
They also have a number of interesting properties, such as being members of the
exponential family. Besides, they have closed forms for the cumulative distribution
functions, quantiles, and moments. Inferential aspects and regression structures are
discussed in this work as well as a Monte Carlo simulation study to evaluate the
performance of the regressors. Finally, we bring an application to real data on the
suicide rate in the year 2016.
Keywords: Inflated Models, Maximum Likelihood Estimation, Monte Carlo Simulation
Study, Regression Models.

1 Introduction

In several areas of knowledge, data in the form of rates, ratios or proportions
are continuously measured or observed within the unit range zero to one. In these
cases, given the continuous and restricted nature of the data, parametric analysis
demands probability distributions that have the same characteristics. The beta
distribution is widely used in this type of analysis because of the different forms its
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density takes, on the other hand, in many everyday situations it may not present a
satisfactory fit, which leads to searches for new distributions with unit support.

Among the unit models recently proposed, we have the unit family
distributions: unit-Weibull, unit-Gompertz and unit-Inverse Gaussian proposed
from the transformation Y = e−X in which X follows, respectively, a variable
Weibull, Gompertz and Inverse Gaussian (MAZUCHELI; MENEZES; GHITANY,
2018; MAZUCHELI; MENEZES; DEY, 2019; GHITANY et al., 2019) and the
unit-lindley and New unit-lindley distributions proposed respectively from the
transformations Y = X (1 +X)−1 and Y = (1 +X)−1 where X follows a Lindley
variable (MAZUCHELI; MENEZES; CHAKRABORTY, 2019; MAZUCHELI;
BAPAT; MENEZES, 2020) among others.

Although the unit family distributions are solutions to several practical
problems, the presence of zeros and/or ones are generally not captured by these
models, which consequently makes their use unfeasible. In this case, a viable
alternative from the literature is the adoption of mixing models with the Degenerate
at Zero, One and Bernoulli distributions to assign mass points at the extremes as
needed. Constructed from convex sums, these mixed models have both continuous
and discrete natures, have the support defined in the intervals [0, 1), (0, 1] and
[0, 1] accordingly with the distributions adopted in the mix and can also deal
with problems of excess zeros and/or ones, see (XIE; HE; GOH, 2001; OSPINA;
FERRARI, 2010; CRIBARI-NETO; SANTOS, 2019; TOMARCHIO; PUNZO,
2019; LIU et al., 2020; RIVAS; CAMPOS, 2021; BAPAT; BHARDWAJ, 2021)
for more details on mixed models.

Within the regression structure, mixed nature models allow evaluating the
influence of covariates on the continuous and discrete components as distinct events
and also directly on the marginal mean of the model. Ospina e Ferrari (2012)
for example, treats the proportion of fatal accidents in Brazilian municipalities
considering a mixed nature model in which the discrete component describes
the probability of occurrence (or not) of fatalities in traffic accidents in these
municipalities while, the continuous component deals with the proportion of fatal
traffic accidents considering that deaths were registered. Chai et al. (2018) present
in their work a detailed discussion comparing the regression models reparametrized
on the marginal mean and the conditional mean (continuous component). For more
details on regression structure involving mixed models see (SANTOS; BOLFARINE,
2015, 2018; CHAI et al., 2018; MENEZES; MAZUCHELI; BOURGUIGNON, 2021;
QUEIROZ; LEMONTE, 2021; SILVA et al., 2021).

In view of this, we propose in this work versions inflated by zero, one and
zero and one for the New unit-Lindley distribution, as well as a brief study of their
respective regression structures. The rest of this article is organized as follows:
in Sections 2 and 3, we present the construction of zero or one-inflated New unit-
Lindley distributions, as well as important properties and inferential aspects related
to the models. Section 4 addresses the regression structure for these distributions,
modeling the conditional mean and probability mass parameters of these models
through a set of predictor variables. Sections 5 and 6 present the construction, some
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important properties and inferential aspects concerning the zero-and-one inflated
New unit-Lindley distribution. A regression structure for this distribution along
the same lines as the previous models is proposed in Section 7. In Section 8,
we evaluate all these regression models based on a Monte Carlo simulation study.
Finally, Section 9 brings the application of the models to real data in order to
illustrate their applicability.

2 The Zero or One-inflated New unit-Lindley distribution

The New unit-Lindley (NUL) distribution was proposed by Mazucheli, Bapat e
Menezes (2020), based on the transformation X = (1+Y )−1, where Y ∼ Lindley(θ)
(LINDLEY, 1958). Therefore, since Y ∈ ( 0, +∞), the X variable is restricted to
the open interval (0, 1), and their cumulative distribution (c.d.f.) and probability
density (p.d.f.) functions are given, respectively, by

F(x | θ) = (θ + x)

x (1 + θ)
exp

(
−θ (1− x)

x

)
, (1)

and

f(x | θ) = θ2

(1 + θ)x3
exp

(
−θ (1− x)

x

)
(2)

where θ > 0. On the other hand, since E(X) = µ = θ(1 + θ)−1, Equations 1 and 2
can be rewritten as follows

F(x | µ) = x (1− µ) + µ

x
exp

(
−µ (1− x)

(1− µ)x

)
, (3)

and

f(x | µ) = µ2

(1− µ)x3
exp

(
−µ (1− x)

(1− µ)x

)
, (4)

where 0 < µ < 1. The NUL density describes unimodal asymmetric
forms having a density-reflexive behavior of the unit-Lindley (UL) distribution
proposed by Mazucheli, Menezes e Chakraborty (2019) through the transformation
X ′ = Y (1 + Y )−1, where Y ∼ Lindley(θ). Thus, X = 1−X ′, and, for that reason,
inflated versions of the UL distribution can be obtained directly through the same
transformation over the inflated versions of the NUL distribution, and vice versa.

To inflate the NUL distribution to zero or one, in which the term inflation
comes from the high probability at these points, we adopted the methodology
proposed by OSPINA, which consists of a convex combination with a degenerate
distribution at c, where c is equal to zero or one, depending on the case. Thus, the
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c.d.f. and p.d.f. of these models are given, respectively, by

FCINUL(y | µ, σ) = σ∆c(y) + (1− σ)F(y | µ),

and

fcinul(y | µ, σ) = σ δc(y) + (1− σ) f(y | µ), (5)

where y ∈ (0, 1) ∪ {c}, 0 < σ < 1 corresponds to the probability mass in y = c,
δc(y) is an indicator function given by δc(y) = 1 if y = c, and δc(y) = 0, otherwise,
∆c(y) is the cumulative function δc(y) given by ∆c(y) = 1, if y ≥ c and ∆c(y) = 0 if
y < c, and terms F( · | µ) and f( · | µ) are, respectively, the cumulative distribution
and NUL probability density functions, given by Equations 3 and 4.

Definition 2.1. Let Y be a random variable whose density is given by Equation
5, then

• If c = 0, Y is said to be a Zero-inflated New unit-Lindley distribution (ZINUL),
and we denote by Y ∼ ZINUL(µ, σ), where σ = P (Y = 0).

• If c = 1, Y is said to be a One-inflated New unit-Lindley distribution (OINUL),
and we denote by Y ∼ OINUL(µ, σ), where σ = P (Y = 1).

Note that one of the disadvantages of this mixing model, and consequently of
the ZINUL and OINUL distributions, is a discontinuity in the mass point at x = c.
Although the support of the NUL distribution has been extended at c, at this point,
the variable has a discrete nature, while, for the rest of the observations, its nature
is continuous. Thus, our model has both a continuous and discrete nature and,
therefore, when the maximum densities of the continuous and discrete components
are equal, the model takes on a bimodal form. That said, the ZINUL distribution
is

- bimodal with mode at y = 0 and y = µ (3(1 − µ))−1 if µ < 3/4 and σ =
b(µ)/(b(µ) + µ)

- bimodal with mode at y = 0 and y = 1 if µ ≥ 3/4 and σ = µ2 (µ2 − µ+ 1)−1

- unimodal with mode at y = 0 if µ ≥ 3/4 and σ > µ2 (µ2 − µ + 1)−1 or if
µ < 3/4 and σ > b(µ)/(b(µ) + µ)

- unimodal with mode at y = µ (3(1−µ))−1 if µ < 3/4 and σ < b(µ)/(b(µ)+µ)

- unimodal with mode at y = 1 if µ ≥ 3/4 and σ < µ2 (µ2 − µ+ 1)−1

whereas the OINUL distribution is

- bimodal with mode at y = (3(1 − µ))−1 and y = 1 if µ < 3/4 and σ =
b(µ)/(b(µ) + µ)
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- unimodal with mode at y = µ (3(1−µ))−1 if µ < 3/4 and σ < b(µ)/(b(µ)+µ)

- unimodal with mode at y = 1 if µ ≥ 3/4 or if µ < 3/4 and σ > b(µ)/(b(µ)+µ)

where b(µ) = 27 exp
[
(4µ− 3)(1− µ)−1

]
(µ− 1)2.

Note that, if Y is a random variable whose p.d.f. is given by Equation 5, then
E[Y r] = µ

′

r = E[(1 − σ)Xr + σ Zr] = (1 − σ)E[Xr] + σ E[Zr] = (1 − σ)µr + σc,
where r is an integer greater than zero; X is a NUL random variable with moment
of order r equal to µr, and Z is a degenerate random variable at c. In particular,
for r = 1, 2 the mean and variance are respectively given by

µ
′

1 = (1− σ)µ + σc

µ
′

2 = (1− σ)
[
µ2 d(µ)(1− µ)−1

]
+ σc

where d(µ) = Ei[1, µ(1− µ)−1] exp
(
µ(1− µ)−1

)
and Ei[a, z] =

∫∞
1

z−ae−yz

dz is the exponential integral function (ABRAMOWITZ; STEGUN, 1974). That
said, depending on the type of inflation, the marginal mean of the model, E[Y ],
moves left or right. In Figures 1 and 2, we present the graphic behavior of ZINUL
and OINUL densities for different values of µ and σ. The blue and red dotted lines
mark the respective means of the NUL distribution and the mixing model.

Proposition 2.2. The ZINUL and OINUL distributions belong to a bi-parametric
exponential family.

Proof. In fact, since η = (η1, η2), with η1 = log(σ)− log(1− σ)− log

(
µ2

1− µ

)
and

η2 = − µ

1− µ
; and T (y) = (t1(y), t2(y)), with t1(y) = δc(y) and t2(y) =

1− y

y
if

y ∈ (0, 1) and 0 if y = c, we obtain Equation 5 as follows

fcinul(y | µ, σ) = exp{η⊤ T (y)− ζ(η) }h(y) ,

where ζ(η) = η1 − log(σ) and h(y) = y−3 if y ∈ (0, 1) and 1 if y = c.

Note that, considering Propositions 2.2 and 5.2, the zero, one, and zero-and-
one-inflated versions of the NUL distribution can be used in the regression structure
as an object of the Generalized Linear Models family (NELDER; WEDDERBURN,
1972).
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Figure 1 - Behavior of the ZINUL density assuming different values for the
parameters vector (black dotted line: proportion of zeros; blue dotted
line: mean of the New unit-Lindley distribution; red dotted line:
marginal mean of the mixing model).
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Figure 2 - Behavior of the OINUL density assuming different values for the
parameters vector (black dotted line: proportion of ones; blue dotted line:
mean of the New unit-Lindley distribution; red dotted line: marginal
mean of the mixing model).
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The ZINUL and OINUL distributions have closed forms for the quantiles
respectively given by

µ(
W−1

[
− (p− σ) e(µ)

(1− σ)

]
+ 1

)
(−1 + µ)

if σ < p < 1

0 if 0 < p ≤ σ

and 
µ(

W−1

[
− p e(µ)

(1− σ)

]
+ 1

)
(−1 + µ)

if 0 < p ≤ 1− σ

1 if 1− σ < p < 1

where e(µ) = (1 − µ)−1 exp(−(1 − µ)−1) and W−1 denote the negative branch of
the Lambert W function (CORLESS et al., 1996; JODRÁ, 2010).

3 Inferential Aspects of the Zero or One-inflated New unit-
Lindley distributions

This section brings general expressions of the estimator and the Fisher’s
expected information matrix for the parameter vector Ψ = (µ, σ) of the NUL
distribution inflated at c. The expressions relating to the ZINUL and OINUL
distributions are obtained by considering, respectively, c equal to zero and one.

Let Y = Y1, Y2. . . . , Yn be a random sample taken from a population with
p.d.f. given by Equation 5. Without loss of generality, the density of the Y variable
can be expressed as follows

fcinul(y | µ, σ) = {(1− σ)1−δc(y)σδc(y)}{f(y | µ)}1−δc(y),

where fcinul( · | µ, σ), as a function of the parameters, can be factored into two
independent terms. In such conditions, for y = (y1, y2, . . . , yn), the likelihood
function of Ψ = (µ, σ) is given by

L(Ψ | y) = L1(σ | y)× L2(µ | y), (6)

where

L1(σ | y) =
n∏

i=1

σδc(yi)(1− σ)1−δc(yi) (7)
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and

L2(µ | y) =
n∏

i=1

{
µ2

(1− µ) y3i
exp

(
−µ (1− yi)

(1− µ) yi

)}1−δc(yi)

. (8)

Regarding Equations 6, 7 and 8, the logarithm of the likelihood function is given
by

ℓ(Ψ | y) = ℓ1(σ | y) + ℓ2(µ | y),

in which

ℓ1(σ | y) = (n− s(y)) log(1− σ) + s(y) log(σ) (9)

and

ℓ2(µ | y) = (n− s(y)) log

(
µ2

(1− µ)

)
+ r(y)− µ

(1− µ)
t(y), (10)

where s(y) =
n∑

i=1

δc(yi), r(y) = −3
∑
i=1

yi∈(0,1)

log(yi) e t(y) =
∑
i=1

yi∈(0,1)

(
(1− yi)

yi

)
.

From a frequentist point of view, the maximum likelihood estimator (MLE)
Ψ̂ = (µ̂, σ̂) of Ψ can be obtained by maximizing ℓ(Ψ | y) in relation to σ and µ.
The first order partial derivatives of ℓ(Ψ | y) are given by

∂

∂σ
ℓ(Ψ | y) = s(y)

σ
− n− s(y)

1− σ

and

∂

∂µ
ℓ(Ψ | y) = (n− s(y))µ2 + (−3n+ 3s(y)− t(y))µ+ 2(n− s(y))

µ(1− µ)2
,

which leads MLE Ψ̂ to be given by the following components

σ̂ =
s(y)

n
(11)

and

µ̂ =
3(n− s(y)) + t(y)−

√
u(y)

n− s(y)
, (12)

where u(y) = n2 − 2n s(y) + 6n t(y) + s2(y)− 6 s(y) t(y) + t2(y).
The MLE of the Ψ parameters vector of the ZINUL and OINUL distributions

are obtained by replacing c by zero and one, respectively, in Equations 11 and 12.
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It is worth mentioning that the µ̂ estimator of the NUL distribution inflated at c
can be obtained directly by expressing the µ MLE of the NUL distribution for a
sub-sample of Y with the exclusion of the extremes (zero and one).

The second order partial derivatives of ℓ(Ψ | y) regarding σ and µ are given,
respectively, by

∂2

∂σ2
ℓ(Ψ | y) = −s(y)

σ2
− n− s(y)

(1− σ)2

and

∂2

∂µ2
ℓ(Ψ | y) = (−n+ s(y))µ3 + (5[n− s(y)] + 2t(y))µ2 + 6(n− s(y))µ

µ2(−1 + µ)3

+
2(n− s(y))

µ2(−1 + µ)3
,

which causes the Fisher’s expected information matrix to be given by

K(Ψ) =

[
kµµ 0
0 kσ σ

]
where kµµ = n (2 − µ2) (1 − σ)µ−2 (1 − µ)−2 and kσ σ = nσ−1 (1 − σ)−1. Thus,
confidence intervals and hypothesis testing of Ψ = (µ, σ) can be constructed based
on the assumption of asymptotic normality of the maximum likelihood estimators
(CASELLA; BERGER, 2002).

4 Zero or One-inflated New unit-Lindley Regression Model

In this section, we establish a regression structure for the ZINUL and OINUL
distributions based on a more general term given by Equation 5. Although these
models can be incorporated into generalized linear models, since they belong to the
exponential family, we chose to define the zero-inflated New unit-Lindley Regression
Model (ZINUL-RM) and the one-inflated New unit-Lindley Regression Model
(OINUL-RM) as members of a more general family known as Generalized Additive
Models for Location Scale and Shape (GAMLSS) (RIGBY; STASINOPOULOS,
2005). That being considered, and once being aware of the continuous-discrete
nature of these distributions, we chose the parameterization Ψ = (µ, σ), which
allows to model the continuous and discrete components of these models separately.

Let Y1, Y2, . . . , Yn be independent random variables such that, for every i =
1, . . . , n, Yi follows a NUL distribution inflated at c with conditional mean µi and
probability mass σi. In those conditions, the NUL regression model inflated at c is
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defined by the systematic components

h1(µi) =

n1∑
j=1

u⊺
ijβj e h2(σi) =

n2∑
j=1

v⊺ijγj ,

where ui = (ui1, ui2, . . . , uin1
) and v − i = (vi1, vi2, . . . , vin2

) are the set of fixed
covariates (n1+n2 < n), vectors β = (β1, ..., βn1

) and γ = (γ1, ..., γn2
) are unknown

regression coefficients, and h1 : (0, 1) 7→ (−∞,∞) and h2 : (0, 1) 7→ (−∞,∞)
are continuous link functions, strictly monotonic and twice differentiable at µ and
σ. Some of the potential specifications of h1(·) and h2(·) are logit, probit, log-log
and complementary log-log functions, which are the most usual. From the classical
perspective, β and γ coefficient estimators are, respectively, the solutions for the
following equations

0 =
∂

∂σi
ℓ̇1(γ | y) ∂

∂γj
σi

and

0 =
∂

∂µi
ℓ̇2(β | y) ∂

∂βj
µi

where

ℓ̇1(γ | y) =
n∑

i=1

(1− δc(yi)) log (1− σi) + δc(yi) log(σi)

and

ℓ̇2(β | y) =
∑
i=1

yi∈(0,1)

2 log(µi)− log(1− µi)−
(1− yi)

yi
µi(1− µi)

−1.

5 The Zero-and-One inflated New unit-Lindley distribution

To add zeros and ones to the NUL distribution, we used the Bernoulli
distribution mixing model, thus, assigning positive probabilities to the extremes
of the interval. Thus, the cumulative distribution and probability density functions
of this mixing are given, respectively, by

FZOINUL(y | µ, σ, ρ) = σBer(y | ρ) + (1− σ)F(y | µ), (13)
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and

fzoinul(y | µ, σ, ρ) = σ ber(y | ρ) + (1− σ)f(y | µ) (14)

where Ber( · | ρ) and ber( · | ρ) denote, respectively, the c.d.f. and p.d.f. of a
Bernoulli distribution with probability of success ρ, whereas F( · | µ) and f( · | µ)
are the NUL c.d.f. and p.d.f., which are respectively given by Equations 3 and 4.

Definition 5.1. A Y random variable is said to be a Zero-and-One-inflated New
unit-Lindley distribution, denoted by Y ∼ ZOINUL(µ, σ, ρ), if their c.d.f and p.d.f.
are expressed by Equations 13 and 14.

Alternatively to Equation 14, we can express the ZOINUL p.d.f as a function
defined by branches given by

fzoinul(y | µ, σ, ρ) =

 σ(1− ρ) if y = 0
(1− σ)f(y | µ) if 0 < y < 1 ,

σρ if y = 1
(15)

Where the σ(1 − ρ) and σρ values respectively correspond to the probabilities of
observing zeros and ones. Conversely, if Y ∼ ZOINUL(µ, σ, ρ), then, E[Y r] =
µ

′

r = E[(1 − σ)Xr + σW r] = (1 − σ)E[Xr] + σ E[W r] = (1 − σ)µr + σρ, where
r = 1, 2, 3, . . . corresponds to the order of the moment assessed, X corresponds to
a NUL random variable and W to a Bernoulli random variable. Particularly, for
r = 1, 2, the mean and variance of the ZOINUL model are given, respectively, by

µ
′

1 = (1− σ)µ + σρ

µ
′

2 = (1− σ)
[
µ2 d(µ)(1− µ)−1

]
+ σρ

where d(µ) = Ei[1, µ(1− µ)−1] exp
(
µ(1− µ)−1

)
and Ei[a, z] =

∫∞
1

z−ae−yz

dz is the exponential integral function (ABRAMOWITZ; STEGUN, 1974).
As with the ZINUL and OINUL distributions, the ZOINUL distribution is a

mixing model of a continuous and discrete nature, and it has points of discontinuity
in the probability masses at zero and one. Its density, with expanded support at
zero and one points, can take many forms, and it is multimodal when µ < 3/4, σ =
b(µ)/(b(µ) + µ/2) and ρ = 1/2, where b(µ) = 27 exp

[
(4µ− 3)(1− µ)−1

]
(µ− 1)2.

Proposition 5.2. The ZOINUL distribution belongs to the multiparametric
exponential family.

Proof. In fact, since η = (η1, η2, η3), with η1 = log(σ(1 − ρ)) − log(1 − σ) −

log

(
µ2

1− µ

)
, η2 = log(σρ) − log(1 − σ) − log

(
µ2

1− µ

)
and η3 = − µ

1− µ
; and

T (y) = (t1(y), t2(y), t3(y)), with t1(y) = δ0(y), t2(y) = δ1(y) and t3(y) =
1− y

y
if
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y ∈ (0, 1) and equal to 0 otherwise, we obtain Equation 15 , as follows

fzoinul(y | µ, σ, ρ) = exp{η⊤ T (y)− ζ(η) }h(y) ,

where ζ(η) = η2− log(σρ) and h(y) = y−3 if y ∈ (0, 1) and equal to 1 otherwise.
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Figure 3 - Behavior of the ZOINUL density assuming different values for the
parameters vector (black dotted line: proportion of zeros or ones; blue
dotted line: mean of the New unit-Lindley distribution; red dotted line:
marginal mean of the mixing model).

The ZOINUL distribution also has a closed expression for the quantile function.
Having said that, for 0 < p < 1, the respective quantiles are given by

0 if σ(1− ρ) ≥ p

1 if (1− σρ) ≤ p

µ(
W−1

[
− (p− σ(1− ρ)) e(µ)

(1− σ)

]
+ 1

)
(−1 + µ)

otherwise

where e(µ) = (1− µ)−1 exp(−(1− µ)−1) and W−1 denote a negative branch of the
Lambert W function (CORLESS et al., 1996; JODRÁ, 2010).
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6 Inferential Aspects of the Zero-and-one-inflated New unit-
Lindley distribution

Let Y = Y1, Y2. . . . , Yn be the random sample taken from a population with
p.d.f. given by Equation 15. Without loss of generality, the density of the Y variable
can be expressed as follows

fzoinul(y | µ, σ, ρ) = (σ(1− ρ))δ0(y) (σρ)δ1(y)(1− σ)1−δ{0,1}(y)f(y | µ)1−δ{0,1}(y),

where fzoinul(y | µ, σ, ρ), as a function of the parameters, can be factored into two
independent terms. The first one depends only on σ and ρ, and the second depends
only on µ. In such conditions, for y = (y1, y2, . . . , yn), the likelihood function of
Θ = (µ, σ, ρ) is given by

L(Θ | y) = L1(σ, ρ | y)× L2(µ | y), (16)

where

L1(σ, ρ | y) =
n∏

i=1

(σ(1− ρ))δ0(yi) (σρ)δ1(yi)(1− σ)1−δ{0,1}(yi)

and

L2(µ | y) =
n∏

i=1

{
µ2

(1− µ) y3i
exp

(
−µ (1− yi)

(1− µ) yi

)}1−δ{0,1}(yi)

.

The logarithm of Equation 16 is given by

ℓ(Θ | y) = ℓ1(σ, ρ | y) + ℓ2(µ | y), (17)

where

ℓ1(σ, ρ | y) = s0(y) log(σ(1− ρ)) + (n− s0(y)− s1(y)) log(1− σ) +

s1(y) log(σρ)

ℓ2(µ | y) = (n− s0(y)− s1(y)) log

(
µ2

(1− µ)

)
+ r(y)− µ

(1− µ)
t(y)

with s0(y) =
n∑

i=1

δ0(yi), s1(y) =
n∑

i=1

δ1(yi), r(y) = −3
∑
i=1

yi∈(0,1)

log(yi) and t(y) =

∑
i=1

yi∈(0,1)

(
1− yi
yi

)
.
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The MLE Θ̂ = (µ̂, σ̂, ρ̂) of Θ is given by

µ̂ =
1

2 ṡ(y)

(
3 ṡ(y) + t(y) +

√
v(y)

)
,

σ̂ =
s0(y) + s1(y)

n
,

ρ̂ =
s1(y)

s0(y) + s1(y)
,

where v(y) = n2 + 2n [3t(y)− s0(y)− s1(y)] + t(y)
2 − 6t(y) [s0(y) + s1(y)] +

[s0(y) + s1(y)]
2 and ṡ(y) = n− s0(y)− s1(y).

The second order derivatives of Equation 17 with respect to the Θ parameters
vector are given by

∂2

∂µ2
ℓ(Θ | y) = µ3 ṡ(y)− µ2 [5 ṡ(y) + 2 t(y)] + 6µ ṡ(y)− 2 ṡ(y)

µ2 (1− µ)3
,

∂2

∂σ2
ℓ(Θ | y) = −nσ2 + 2σ [s0(y) + s1(y)]− s0(y)− s1(y)

σ2 (1− σ)2
,

∂2

∂ρ2
ℓ(Θ | y) = − s0(y)

(1− ρ)2
− s1(y)

ρ2
,

∂2

∂µ ∂σ
ℓ(Θ | y) = 0,

∂2

∂µ ∂ρ
ℓ(Θ | y) = 0,

∂2

∂σ ∂ρ
ℓ(Θ | y) = 0.

Thus, the expected Fisher information matrix is given by

K(Θ) =

 kµµ 0 0
0 kσ σ 0
0 0 kρ ρ


where kµµ = n (2 − µ2) (1 − σ)µ−2 (1 − µ)−2, kσ σ = nσ−1 (1 − σ)−1 and kρ ρ =
nσ ρ−1 (1 − ρ)−1. Confidence intervals and hypothesis testing of Θ = (µ, σ, ρ) are
constructed based on the assumption of asymptotic normality of the maximum
likelihood estimators (CASELLA; BERGER, 2002).

7 Zero-and-One-inflated New unit-Lindley Regression Model

In this section, we establish a regression structure for the ZOINUL distribution.
Like ZINUL and OINUL, the ZOINUL distribution can be incorporated into
generalized linear models. Yet, in this section, we define the Zero-and-One-inflated
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New unit-Lindley Regression Model (ZOINUL-RM) as a member of the GAMLSS
family.

Let Y1, Y2, . . . , Yn be independent random variables such that, for every i =
1, . . . , n, Yi follows a ZOINUL distribution, with parameters µi, σi and ρi. In such
conditions, the ZOINUL-RM is defined by the systematic components

h1(µi) =

n1∑
j=1

uijβj , h2(σi) =

n2∑
j=1

vijγj and h3(ρi) =

n3∑
j=1

wijλj ,

where ui = (ui1, ui2, . . . , uin1), vi = (vi1, vi2, . . . , vin2) and wi = (wi1, wi2,
. . . , win3) are the set of fixed covariates (n1 + n2 + n3 < n), the vectors
β = (β1, ..., βn1

), γ = (γ1, ..., γn2
) and λ = (λ1, ..., λn3

) are unknown regression
coefficients, and h1 : (0, 1) 7→ (−∞,∞), h2 : (0, 1) 7→ (−∞,∞) and
h3 : (0, 1) 7→ (−∞,∞) are continuous link functions, strictly monotonic, twice
differentiable at µ, σ and ρ.

Again through a classic approach, the estimator of β is the solution for the
equation

0 =
∂

∂µi
ℓ̈2(β | y) ∂

∂βj
µi ,

While the estimators of γ and λ are solutions for the equations system

0 =
∂

∂σi
ℓ̈1(γ, λ | y) ∂

∂γj
σi

0 =
∂

∂ρi
ℓ̈1(γ, λ | y) ∂

∂λj
ρi

where

ℓ̈1(γ, λ | y) =
n∑

i=1

δ0(yi) log(σi(1− ρi)) + δ1(yi) log(σiρi) + (1− δ{0,1}(yi))

× log(1− σi)

and

ℓ̈2(β | y) =
∑
i=1

yi∈(0,1)

2 log(µi)− log(1− µi)−
(1− yi)

yi
µi(1− µi)

−1.
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8 Simulation Study

In this section, we conduct a Monte Carlo simulation study to evaluate the
performance of the regression coefficients of the zero, one and zero-and-one-inflated
NUL regression models. The experiment was carried out based on 10000 replicates
for the sample sizes n = 50, 100, . . . , 300. We assessed the bias and mean square
error (MSE), respectively given by

Bias (ξ̂) =
1

N

N∑
i=1

(ξ̂i − ξ) and MSE (ξ̂) =
1

N

N∑
i=1

(ξ̂

where ξ denotes the coefficient assessed in N = 10000 simulations.
We considered, as scenarios, the multiple regression models (with two

covariates) over all the distribution parameters and over the conditional mean
parameter, keeping the probabilities masses fixed. We chose the logit specification
for the link functions, so that we are left with the systematic components

logit(µi) = β0 + β1ui1 + β2ui2

logit(σi) = γ0 + γ1ui1 + γ2ui2

and

logit(ρi) = λ0 + λ1ui1 + λ2ui2

where ui1 and ui2 are elements of the vector of variables generated by a uniform
distribution, from -1 to 1, and the regression coefficients given by β = (β0, β1, β2) =
δ = (δ0, δ1, δ2) = λ = (λ0, λ1, λ2) = (1,−2, 3).

6 and 7 refer to the ZINUL-RM, Figures 8, 9, 10 and 11 refer to the OINUL-
RM, and Figures 12, 13, 14 and 15 relate to the ZOINUL-RM.

In a general context, the MSEs converge to zero for all models as the sample
size increases, as shown in Figures 5, 7, 9, 11, 13 and 15. 7, 11 and 15 show that
the MSE is influenced by the σ mixing parameter, since it decays along with the σ
value. This result can be directly explained by the property of maximum likelihood
estimators, since the decrease of σ implies a larger sub-sample resulting from the
NUL distribution and, consequently, a smaller MSE associated with the estimate of
µ.

10, 12 and 14 show an oscillation around zero with a tendency to zero as the
sample size increases. In all scenarios, β̂0 superestimates (is greater than) β0 and,
on average, has a bias value greater than those of β̂1 and β̂2.

The results of this study are presented as follows. The Figures 4, 5, 6 and 7
refer to the simulations performed in ZINUL- RM, the Figures 8, 9, 10 and 11 to
OINUL-RM and the Figures 12, 13, 14 and 15 refer to ZOINUL-RM.

In this study it is observed that
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• For all scenarios, the biases and MSE’s converge to zero as the n sample size
increases.

• In the regression models on the conditional mean parameter µ keeping the
others fixed, Figures 6, 7, 10, 11, 14 and 15, the bias and MSE of β̂ increases
as the blend parameter σ increases. This possibly occurs because increasing
σ implies smaller subsamples of elements that follow a NUL distribution.

• In regression models over all parameters, the intercept usually has the lowest
value for the MSE. See Figure 5, 9 and 13.

• The MSE of β̂ is generally smaller than γ̂ mainly for the smaller sample sizes
considered in this study. See Figures 5, 9 and 13.

• In ZOINUL-RM, with σ and ρ fixed, the parameter ρ did not have a great
influence on the bias and MSE of β̂. See Figures 14 and 15.
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Figure 4 - Bias of the β̂ and γ̂ estimates of the regressors coefficients of the
parameters vector in the ZINUL-RM (continuous line: j= 0, dashed lined:
j= 1 and dotted line: j= 2).

9 Application

In this section, we adopt the ZINUL-RM to describe the behavior of
the annual suicide rate in 2016 for countries in the African, Asian and
European continents, taking into account information regarding sex, age group
and socioeconomic indices of the respective countries, such as unemployment
rate, gross domestic product (GDP) and human development index (HDI).
The data used in this analysis are public domain data available on <https:
//www.who.int/>, <http://hdr.undp.org/en> and <https://databank.worldbank.
org/source/world-development-indicators>.

In Table 1, we provide a brief description of the variables of numerical nature,
and the GDP is presented through the logarithmic scale (neperian logarithm). Note
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Figure 5 - MSE of the β̂ and γ̂ estimates of the regressors coefficients of the
parameters vector in the ZINUL-RM (continuous line: j= 0, dashed lined:
j= 1 and dotted line: j= 2).
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Figure 6 - Bias of the regressors coefficients estimates of µ, β̂ = (β̂0, β̂1, β̂2), in
ZINUL-RM keeping σ fixed (continuous line: σ = 0.2, dashed line σ = 0.5
and dotted line: σ = 0.8).

that, compared to the other variables, the suicide rate is dimensionally much lower,
which led us to work on the GDP in the logarithmic scale. In total, there were 140
observations (being 22 zeros) on the suicide rate in groups of individuals aged 15 to
24 (age 0); 25 to 34 (age 1); 35 to 54 (age 2); 55 to 74 (age 3), disaggregated by sex
(female: 0 and male: 1). Mostly, Asian and European peoples constitute about 93%
of the observations available on this database. For comparison purposes, we also
consider the zero-inflated unit-Lindley (ZIUL-RM) and zero-inflated Beta (ZIBE-
RM) regression models. The adjustments and related calculations were performed
by using functions available on the gamlss (RIGBY; STASINOPOULOS, 2005) and
gamlss.inf (ENEA et al., 2019) libraries, with the R software (R Core Team, 2019).
We considered the logit specification for the binding functions. The regression
models for the µi, σi and ϕi parameters are respectively given by the following
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Figure 7 - MSE of the estimates of the regressors coefficients of µ, β̂ = (β̂0, β̂1, β̂2),
in the ZINUL-RM keeping σ fixed (continuous line: σ = 0.2, dashed line
σ = 0.5 and dotted line: σ = 0.8).
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Figure 8 - Bias of the β̂, and γ̂ estimates of the regression coefficients of the
parameters vector in the OINUL-RM (continuous line: j= 0, dashed
lined: j= 1 and dotted line: j= 2).

components

logit(µi) = β0 + β1 × sex 1i + β2 × age 1i + β3 × age 2i + β4 × age 3i
+ β5 × age 4i + β6 × unemploymenti + β7 × HDIi

and

logit(σi) = γ0 + γ1 × sex 1i + γ2 × log(GPDi) + γ3 × unemploymenti

Table 3 presents a detailed description with the estimates, standard errors
and confidence intervals of the adjusted parameters. Note that the set of
variables present in this analysis was not significant at the 5% level to explain the
conditional mean of the ZIBE-RM. On the other hand, the variables sex, age group,
unemployment rate, and HDI were significant at the 5% level for the ZINUL-RM and
ZIUL-RM. Conversely, with regard to the probability mass at zero, the estimates
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Figure 9 - MSE of the β̂ and γ̂ estimates of the regression coefficients of the
parameters vector in the OINUL-RM (continuous line: j= 0, dashed
lined: j= 1 and dotted line: j= 2).
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Figure 10 - Bias of the estimates of the regressors coefficients of µ, β̂ = (β̂0, β̂1, β̂2),
in the OINUL-RM keeping σ fixed (continuous line: σ = 0.2, dashed
line σ = 0.5 and dotted line: σ = 0.8).

are the same for the three models, since they have the same inflation structure. The
significant variables at the 5% level, in this case, were sex and unemployment rate,
and the latter was significant only in the presence of the GDP variable.

Table 2 shows the Akaike (AIC) and Schwarz Bayesian (BIC) information
criteria used later to discriminate the models. Note that the ZINUL-RM has the
lowest (best) value for the considered criteria. However, these values apparently do
not show a considerable difference when compared to the AIC and BIC of the ZIUL-
RM. Thus, a residual analysis of each model allowed us to measure and determine
the model with the best fit for the data in question.

Figure 16 presents the construction of worm plot graphs that assess the
deviation of residues from the quantiles of a standard normal distribution. In the
ideal scenario, the deviations should follow, as close as possible, the red horizontal
line within the bands bordered by the black dotted lines. In such conditions, the
ZINUL-RM has the best fit, since its residues are distributed in a more satisfactory
way within the area delimited by the bands.
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Figure 11 - MSE of the estimates of the regressors coefficients of µ, β̂ = (β̂0, β̂1, β̂2),
in the OINUL-RM keeping σ fixed (continuous line: σ = 0.2, dashed
line σ = 0.5 and dotted line: σ = 0.8).
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Figure 12 - Bias of the β̂, γ̂ and λ̂ estimates of the regressors coefficients of the
parameters vector in the ZOINUL-RM (continuous line: j= 0, dashed
lined: j= 1 and dotted line: j= 2).
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Figure 13 - MSE of the β̂, γ̂ and λ̂ estimates of the regressors coefficients of the
parameters vector in the ZOINUL-RM (continuous line: j= 0, dashed
lined: j= 1 and dotted line: j= 2).
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Figure 14 - Bias of the estimates of the regressors coefficients of µ, β̂ = (β̂0, β̂1, β̂2),
in the ZOINUL-RM keeping σ and ρ fixed (continuous line: σ = 0.2,
dashed line σ = 0.4, dotted line: σ = 0.6 and dash-dotted line: σ = 0.8).
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Figure 15 - MSE of the estimates of the regressors coefficients of µ, β̂ = (β̂0, β̂1, β̂2),
in the ZOINUL-RM keeping σ and ρ fixed (continuous line: σ = 0.2,
dashed line σ = 0.4, dotted line: σ = 0.6 and dash-dotted line: σ = 0.8).
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Table 1 - Statistical summary of numerical variables

Suicide
Rate log(GDP) Unemployment

Rate HDI

Minimum 0 23.08 0.15 0.73
1º Quartile 2.5× 10−5 23.23 6.01 0.77

Median 7.3× 10−5 24.57 7.12 0.84
Mean 1.2× 10−4 24.90 8.71 0.84

3º Quartile 1.5× 10−4 26.69 12.95 0.87
Maximum 9.7× 10−4 27.38 17.62 0.94

Table 2 - Models Discrimination Statistics

Model AIC BIC
ZINUL-RM -2119.50 -2084.20
ZIUL-RM -2094.20 -2058.90
ZIBE-RM -1817.03 -1778.79
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Figure 16 - Worm plot of residues for ZINUL-RM, ZIUL-RM and ZIBE-RM models.
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10 Conclusion

In this paper, we propose inflated versions of the NUL distribution to deal with
continuous unit variables in the presence of zeros, ones, as well as zeros and ones
at the same time. Our distributions are viable alternatives to literary distributions
that have the same support, since they have a number of important properties
(such as closed forms for moments for the quantile function). In addition, they are
members of the exponential family and describe, within the subinterval (0, 1), a
unimodal asymmetric behavior. The simulation study showed that the MLE of the
µ conditional mean was influenced by the σ mixing parameter, with a lower MSE for
values below σ. When applied to real data on the suicide rates in the year of 2016,
which is characterized by a strong concentration very close to zero, the ZINUL-RM
was the one that had the best fit when compared to the ZIUL-RM and ZIBE-RM.
Finally, we believe that our models can be useful for researchers and professionals
looking for probability distributions with similar characteristics.
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discutidas neste trabalho bem como um estudo de simulação Monte Carlo para avaliar a
performance dos coeficientes regressores. Por fim, trazemos uma aplicação a dados reais
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Appendix

# Implementation of models for R software

rm(list = ls()) graphics.off()

library(’lamW’);
library(’expint’);
library(’gamlss’);
library(’gamlss.inf’);

# ---- New unit-Lindley distribution (Nul)

# if X ~ Nul(mu), then E[X] = mu.

#---- probability density function

dNul <- function(y, mu, log = FALSE){

theta = mu/(1-mu);

t1 = theta * theta;
t5 = y * y;
t12 = exp(-theta * (0.1e1 - y) / y);
fy = t1 / (0.1e1 + theta) / t5 / y * t12;

if(log){fy <- log(fy)}

return(fy)
}

#---- cumulative distribution function

pNul <- function(q, mu, lower.tail = TRUE, log.p = FALSE){

theta = mu/(1-mu);

t4 = 0.1e1 / q;
t6 = exp((-0.1e1 + q) * theta * t4);
cdf = (q + theta) * t6 * t4 / (0.1e1 + theta);

if(!lower.tail){cdf <- 1-cdf}
if(log.p){cdf <- log(cdf)}
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return(cdf)
}

#---- quantile function

qNul <- function(p, mu, lower.tail = TRUE, log.p = FALSE){

theta = mu/(1-mu);

if(log.p){p <- exp(p)}
if(!lower.tail){p <- 1 - p}

t1 = 0.1e1 + theta;
t3 = exp(-t1);
t5 = lamW::lambertWm1(-p * t1 * t3);
qtf = -theta/(t5 + 1);

return(qtf)
}

#---- random values

rNul <- function(n, mu){

stopifnot( n > 0)

n <- ceiling(n);
u <- runif(n);
qNul(u, mu);

}

# ---------------------------- gamlss implantation

pow <- function(x, y) x^y

Nul <- function (mu.link = "logit"){
mstats <- checklink("mu.link", "Nulindley",

substitute(mu.link),c("logit",
"probit", "cloglog", "cauchit",
"own"))

Rev. Bras. Biom., Lavras, v.40, n.3, p.291-326, 2022 - doi: 10.28951/bjb.v40i3.571 321



structure(list(family = c("Nul", "New unit-Lindley
distribution"),

parameters = list(mu = TRUE),
nopar = 1,
type = "Continuous",
mu.link = as.character(substitute(mu.link)
),
mu.linkfun = mstats$linkfun,
mu.linkinv = mstats$linkinv,
mu.dr = mstats$mu.eta,
dldm = function(y, mu){t1 = mu * mu; t3 =
0.2e1 * y; t10 = pow(-0.1e1 + mu, 0.2e1);
(t1 * y + (-t3 - 0.1e1) * mu + t3) / mu /
t10 / y },
d2ldm2 = function(y, mu){t1 = mu * mu;
t11 = -0.1e1 + mu; t12 = t11 * t11;
(-y * t1 * mu + (0.3e1 * y + 0.2e1) *
t1 - 0.6e1 * mu * y + 0.2e1 * y) /
t11 / t12 / y / t1 },
G.dev.incr = function(y, mu, ...){-2*
dNul(y, mu, log = TRUE)},
rqres = expression(rqres(pfun = "pNul",
type = "Continuous", y, mu)),
mu.initial = expression(mu <- mean(y)),
mu.valid = function(mu) all(mu>0 & mu<1),
y.valid = function(y) all( y>0 & y<1),
mean = function(mu){mu},
variance = function(mu){theta = -mu/(-1+
mu);
t1 = expint(theta, 1); t2 = theta * theta;
t6 = exp(theta); return( t1 * t2 / (0.1e1
+ theta) * t6 )}),

class = c("gamlss.family", "family"))
}

# ---- inflated models

# The inflated models can be easily obtained through the
# gamlss.inf library which uses logit specification in the # fits.

library(’gamlss.inf’)

gen.Inf0to1(family = "Nul", type.of.Inflation = "Zero")
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gen.Inf0to1(family = "Nul", type.of.Inflation = "One")

# In the parameterization adopted in this work for the
# ZOINUL distribution, we need to implement it directly as
# an object of the gamlss library. So we have

#---- The Zero-and-One inflated New unit-Lindley distribution

#---- probability density function

dZOINUL <- function(y, mu, sigma, nu, log = FALSE){

fy <- ifelse( y > 0 & y < 1, (1 - sigma)*dNUL(y, mu),
sigma*(1-nu))
fy <- ifelse( y==1, sigma*nu, fy)

if(log){fy <- log(fy)}
return(fy)

}

#---- cumulative distribution function

pZOINUL <- function(q, mu, sigma, nu, lower.tail = TRUE,
log.p = FALSE){

cdf <- ifelse( q > 0 & q < 1, sigma*(1-nu) + (1-sigma)*
pNUL(q = q, mu, lower.tail = TRUE, log.p = FALSE),
sigma*(1-nu))
cdf <- ifelse( q>=1, 1, cdf)

if(!lower.tail){cdf <- 1-cdf}
if(log.p){cdf <- log(cdf)}

return(cdf)
}

#---- quantile function

qZOINUL <- function(p, mu, sigma, nu, lower.tail = TRUE,
log.p = FALSE){
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if(log.p){p <- exp(p)}
if(!lower.tail){p <- 1 - p}

p0 <- sigma*(1-nu);

q <- ifelse( p <= sigma*(1-nu), 0, qNUL( (p - p0)/
(1 - sigma) , mu, lower.tail = TRUE, log.p = FALSE))
q <- ifelse( p >= 1- sigma*nu, 1, q)
q

}

#---- random values

rZOINUL <- function(n, mu, sigma, nu){

n <- ceiling(n)
p <- runif(n)
r <- qZOINUL(p, mu, sigma, nu = nu)
r

}

# ---------------------------- gamlss implantation

ZOINUL <- function(mu.link ="logit", sigma.link ="logit",
nu.link ="logit"){

mstats <- checklink("mu.link","ZOINUL",
substitute(mu.link),

c("logit", "probit", "cloglog", "log"
,"own"))

dstats <- checklink("sigma.link","ZOINUL",
substitute(sigma.link),

c("logit", "probit", "cloglog", "log"
,"own"))

vstats <- checklink("nu.link","ZOINUL",
substitute(nu.link),

c("logit", "probit", "cloglog", "log"
,"own"))

structure(list(family = c("ZOINUL", "The Zero-and-One
inflated New unit-Lindley distribution"),
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parameters = list(mu =TRUE, sigma =TRUE, nu =TRUE),
nopar = 3,
type = "Mixed",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
nu.link = as.character(substitute(nu.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
nu.linkfun = vstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
nu.linkinv = vstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
nu.dr = vstats$mu.eta,
dldm = function(y, mu){

t1 = mu * mu;
t3 = 0.2e1 * y;
t10 = pow(mu - 0.1e1, 0.2e1);
dldm = ifelse( ((y == 0) | (y == 1)), 0, 0.1e1 /
y / t10 / mu*(y * t1 + mu * (-t3 - 0.1e1) + t3))
dldm

},
d2ldm2 = function(y, mu){

t1 = mu * mu;
t11 = mu - 0.1e1;
t12 = t11 * t11;
d2ldm2 = ifelse( (y == 0) | (y == 1), 0, 0.1e1 /
t1 / y / t12 / t11 * (-t1 * mu * y + t1 * (0.3e1
* y + 0.2e1) - 0.6e1 * mu * y + 0.2e1 * y) )

d2ldm2
},
dldd = function(y, sigma){

dldd = ifelse( ((y == 0) | (y == 1)), 0.1e1 /
sigma, 0.1e1 / (-0.1e1 + sigma))
dldd

},
d2ldd2 = function(y, sigma){

t1 = sigma * sigma;
t2 = pow(-0.1e1 + sigma, 0.2e1);
d2ldd2 = ifelse( (y == 0) | (y == 1), -0.1e1 /
t1, -0.1e1 / t2)
d2ldd2

},
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dldv = function(y, nu){
dldv = ifelse( y==0, -0.1e1 / (0.1e1 - nu), 0)
dldv = ifelse( y==1, 0.1e1 / nu, dldv)
dldv

},
d2ldv2 = function(y, nu){

t1 = nu * nu;
t2 = pow(0.1e1 - nu, 0.2e1);
d2ldv2 = ifelse( y==0, -0.1e1 / t2, 0)
d2ldv2 = ifelse( y==1, -0.1e1 / t1, d2ldv2)
d2ldv2

},
d2ldmdd = function(y){

d2ldmdd = rep(0, length(y))
d2ldmdd

},
d2ldmdv = function(y){

d2ldmdv = rep(0, length(y))
d2ldmdv

},
d2ldddv = function(y, sigma, nu){

d2ldddv = rep(0, length(y))
d2ldddv

},
G.dev.incr = function(y, mu, sigma, nu, ...){-2 *
dZOINUL(y, mu, sigma, nu, log = TRUE)},
rqres = expression(rqres(pfun = "pZOINUL", type =
"Mixed",mass.p = c(0,1), prob.mp=cbind(sigma, nu)
, y, mu, sigma, nu = nu)),
mu.initial =expression(mu <- mean(y[y>0 & y<1])),
sigma.initial =expression(sigma <- mean(y==0) ),
nu.initial =expression(nu <- mean(y==1) ),
mu.valid =function(mu) all(mu > 0 & mu < 1),
sigma.valid =function(sigma) all(sigma>0 &
sigma<1),
nu.valid =function(nu) all(nu > 0 & nu < 1),
y.valid =function(y) all(y >= 0 & y <= 1)),

class = c("gamlss.family", "family"))
}
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