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Abstract
The Multivariate Tests for the Vector of Means (TVMM) package has six functions: T2O function, which
computes Hotelling original’s T2 test; T2Boot function, which computes the parametric bootstrap ver-
sion of the original T2 test; T2RobustBoot function, which computes the robust parametric bootstrap
version of the T2Boot test; LRTTrace function, which computes the asymptotic version of the likelihood
ratio test (LRT) using the trace operator; LRTTBoot function, which computes the parametric bootstrap
version of the LRTTrace and the LRTTRBoot, which computes the robust version of the LRTTBoot.
The alternative test versions of the LRT have the advantage of being valid for high-dimensional data. We
describe the methods and illustrate the use of the TVMM package with real data on soil properties.

Keywords: High-dimension; Hypotheses; Alternative; Contaminated; Non-normal.

1. Introduction
It is a challenge to test hypotheses on a vector of non-normal and normal contaminated popula-

tions means. This challenge becomes even greater for large data (more observations than variables).
Consider the problem of testing the following hypothesis

H0 : µ = µ0 against H1 : µ ̸= µ0. (1)

where µ is the vector of population averages and µ0 is a vector of known constants. This problem
is quite common in soil science, genetics, medicine, chemistry, among other areas (Marozzi, 2015,
2016; Wang et al., 2013).
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The TVMM package was build to assist in decision making about the mean vector in a p-variable
population. The Hotelling T2 test (Alves & Ferreira, 2019) is widely used in situations that involve
making decisions about the vector of means. However, this test shows some restrictions due to
the singularity of the covariance matrix since the test statistic can not be computed. Furthermore,
under non-normality, this test is not suitable since assumptions such as homoscedasticity of the
covariance matrix are violated. Another factor that can influence decision making through this test
is the presence of outliers in the observed data. In this case, the vector of means and the matrix of
sample covariances are highly influenced. Another alternative test widely (Ledoit & Wolf, 2002)
used for testing the sample mean vector is the likelihood ratio test (LRT). However, this test also
has the same restrictions as the T2 Hotelling test.

Several proposals with adaptations of the T2 test can be found at Mudholkar & Srivastava (2000),
Tiku (1982), and Willems et al. (2002). Alternative adaptations proposed to the LRT test can be
found at Marozzi (2015, 2016) and Wang et al. (2013) for the case of high-dimensional data, which
arise when the number of variables (p) is greater than the number of observations (n). To get around
the problems showed above, we built the TVMM package to provide users, in addition to the T2

test itself, alternative tests even for high-dimensional data adapted from the T2 test and LRT (Alves
& Ferreira, 2019).

Finally, we emphasize that the main contribution of this paper is to introduce the user of statis-
tical software R to the aforementioned TVMM package. It allows the user to perform tests on the
vector of means where the assumptions are violated (non-normality) and also on high-dimensional
data, where Hotelling’s traditional T2 test does not apply.

2. Methodology
2.1 The likelihood ratio test (LRT)

The likelihood ratio test (LRT) statistic is given by the following expression

–2 ln(Λ) = n[ln |S + H| – ln |S|], (2)

where H = (X̄ – µ0)(X̄ – µ0)⊤ and ln is the natural logarithm. The –2 ln(Λ) statistic follows a chi-
square distribution with s – r degrees of freedom. Consider Ω ∈ Rs the unrestricted parametric
space and Ω0 ⊆ Rr the restricted parametric space, with Ω0 ⊂ Ω. In this case, s = p + p(p + 1)/2 and
r = p.

The T2 test of traditional Hotelling will be presented in the 2.4.1 section.

2.2 The comedian robust estimator
Let X and Y be two random variables. Thus, Falk (1997) defined the robust estimator comedian

by the following expression

COM(X, Y) = med[(X – med(X))(Y – med(Y))], (3)

where the term “med” denotes the median. The comedian is an advantageous estimation method,
since it always exists while Cov(X, Y) requires the existence of the first two moments of X and
Y. Besides that, it is symmetric, invariant to location and scale transformation. This means that
COM(X, aY + B) = aCOM(X, Y), where a ∈ R and B is a vector n × 1 of constants. This estimator
has also strong asymptotic consistency and normality (ibid.). The comedian generalizes the MAD
(median absolute deviation) method, also introduced by Falk (ibid.), which can be obtained by
making X = Y. The MAD will be useful for building the p-variant version of comedian.

Sajesh & Srinivasan (2012) provide the use of the p-variate version of the comedian estimator.
Set Xn×p as a data matrix with vector columns Xj, j = 1, 2, . . ., p. A comedian matrix COM(X) =
{MAD(Xi,Xj), if i = j; COM(Xi,Xj), if i ̸= j} is a symmetric p × p matrix.
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The comedian matrix has an issue of being non-positively defined, a requirement of a covariance
matrix. To circumvent this problem, Maronna & Zamar (2002) adopted the following steps to obtain
robust estimates for the mean vector and covariance matrix (Di Palma et al., 2013):

1. let δ(X) = DCOM(X)D⊤ be the median correlation matrix, where D is a diagonal matrix with
elements 1/MAD(Xi), i = 1, 2, ..., p;

2. calculate the eigenvalues λi and eigenvectors ej of the δ(X), j = 1, 2, ..., p and let E be a matrix
whose columns are the e′js. Hence, δ(X) = EΛE⊤, where Λ = diag(λ1, ..., λp);

3. let Q = DE, where D is defined in step 1 and Zi = Q–1xi, i = 1, 2, ..., p;
4. the robust estimators for the mean vector m(X) and covariance matrix S(X) are

S(X) = QΓQ⊤ and m(X) = Ql (4)

where Γ = diag(MAD(Z1)2, ..., MAD(Zp)2) and l = (med(Zp))⊤, p = 1, . . ., p.

Estimates can be provided through an iterative process by replacing δ by S and repeating the steps
2, 3 and 4.

Both estimator are affine-equivariant estimator of location and scale, respectively, and the come-
dian covariance matrix is positive definite estimator as required. In addition, the estimates obtained
by the COMEDIAN method have a high breaking point. The efficiency of the method increases
with increasing data size (Sajesh & Srinivasan, 2012).

2.3 The exact binomial test
Type I error rates of tests were evaluated by Monte Carlo simulations. According to Oliveira

and Ferreira (2010) these estimates are not error-free. Therefore, an exact binomial test is used to
make the decision whether each of the modified or the original T2 tests is considered exact, liberal
or conservative. In this sense, considering a nominal level of significance of 1%, the following null
hypothesis is tested

H0 : α = 5% against H1 : α ̸= 5%. (5)

The statistic of the exact binomial test (Cardoso de Oliveira & Ferreira, 2010) is given by

F =
(

z + 1
N – z

) (
1 – α

α

)
, (6)

where z is the number of rejection of the null hypothesis by one of the tests in the nominal sig-
nificance level of α and N is the number of Monte Carlo simulations performed. Under the null
hypothesis (5) the Fc statistic follows a F distribution with ν1 = 2(N – z) and ν2 = 2(z + 1) degrees of
freedom. If the null hypothesis is rejected and the type I error is considered significantly (P ≤ 0.01)
lower than the nominal level of α%, the test can be considered conservative; if the null hypothesis
is rejected and the type I error is considered significantly (P ≤ 0.01) higher than the nominal level
of α%, the test can be considered liberal; and if the null hypothesis is not rejected, (P > 0.01), the
test can be considered exact. In the next section we present our methodology used.

2.4 The TVMM package tests
The TVMM package has implemented some statistical tests, each with its particularity, which is

useful in this decision making. The tests proposed here follow the same distribution properties as the
original tests (T2 and LRT). However, these distributions are asymptotic (approximate). To improve
these distributional approaches, we built the parametric bootstrap versions of these tests. Besides, to
circumvent possible problems with the presence of real outliers, we built the robust versions of these



Brazilian Journal of Biometrics 11

tests using the comedian (Falk, 1997) robust estimator. This estimator has the advantage of being
location (average) and scale (covariance) (Maronna & Zamar, 2002) invariant. The multivariate
version of this estimator is presented in Di Palma et al. (2013) and Sajesh & Srinivasan (2012).

However, before presenting them we remember that, in general, statistical tests are classified
as conservative, exact, or liberal. We use the exact binomial test with α = 5% to classify our tests
(Cardoso de Oliveira & Ferreira, 2010) (see section 2.3). A test is considered acceptable or good if it
is conservative or exact. If it is liberal, it must be discarded. All of our proposed tests were accurate in
most of the scenarios, in which they were evaluated. In the other scenarios they were conservative
(Alves & Ferreira, 2019). We will now present these tests. All tests presented here are acceptable
(conservative or exact).

2.4.1 Hotelling’s T2 test
The T2 test is widely used to test the hypotheses given in (1) and the expression of the statistic

of the test is given by
T2

c = n(X̄ – µ0)⊤S–1(X̄ – µ0). (7)

where X̄ =
∑n

j=1 Xj/n is the sample mean vector, S =
∑n

j=1(Xj – X̄)(Xj – X̄)⊤/(n – 1) is the sample
covariance matrix and n is the sample size. Under H0 and with the hypothesis of normality and
homoscedastic covariance matrix, T2

c as in (7) follows a T2 distribution of Hotelling given by (n –
1)pFα,p,n–p/(n – p), where Fα,p,n–p is the upper quantile 100α% of the F distribution with p and n – p
degrees of freedom. Then, H0 as in (1) is rejected if T2

c > (n – 1)p/(n – p)Fα,p,n–p.
As already mentioned, the T2 test should be used in normally distributed populations where the

number of p variables is less than the number of observations n (p < n).

2.4.2 The T2 parametric bootstrap test
The T2 parametric bootstrap test, called T2

PB (T2PB), where PB is the same as parametric boot-
strap, was constructed as follows. In step 1, from the original sample, we estimate the parameters Σ
and µ, respectively, for S∗ and X̄∗, where S∗ and X̄∗ are the covariance matrix and the vector of
traditional sample means. The test statistic is then calculated by

T∗2 = n
(
X̄∗ – µ0

)⊤
S∗–1

(
X̄∗ – µ0

)
. (8)

In step 2, using the estimated sample covariance matrix S∗, a sample of size n was generated
from a normal distribution p -variate imposing H0 and taking Σ = S∗. Therefore a sample of size
n is generated from a distribution N(µ0, S∗). In step 3, for each bootstrap sample parametric the
sample mean X̄PB and the sample covariance matrix SPB are estimated. In step 4, the test statistic is
calculated by

T2
PB = n(X̄PB – µ0)⊤S–1

PB(X̄PB – µ0). (9)

The steps 2 to 4 are repeated B times and a set of size B + 1 is constructed with the B values of
the test statistics calculated in (9) and the original value (8). The null distribution of the parametric
bootstrap test is formed by this set. If the i-th member of this set is represented by T2

i , i = 1, 2, · · · ,
B + 1, then the p-value is calculated as

p-value =

B+1∑
i=1

I(T2
i ≥ T∗2)

B + 1
, (10)

where I(T2
i ≥ T∗2) is an indicator function. The null hypothesis as in (1) will be rejected with a

significance level of α if p-value ≤ α.
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2.4.3 The T2 robust parametric bootstrap test
The following steps were adopted in the construction of the T2 robust parametric bootstrap test,

called T2
RPB (T2RPB), where RPB means robust parametric bootstrap. In the first 1, the estimators

S∗ e X̄∗ are replaced by the respective robust comedian estimators SR and X̄R and the original
statistic is then calculated

T∗2 = n(X̄R – µ0)⊤S–1
R (X̄R – µ0). (11)

In step 2 is similar to that reported in the previous test, where a sample of size n is drawn from
a normal distribution N(µ0, SR). The third step is the same, but the sample mean and covariance
matrix are denoted by X̄RPB and SRPB. In step 4 the test statistic is then computed

T2
RPB = n(X̄RPB – µ0)⊤S–1

RPB(X̄RPB – µ0). (12)

The same procedure as the previous test is performed and p-value is given by

p-value =

B+1∑
i=1

I(T2
i ≥ T∗2)

B + 1
, (13)

where I(T2
i ≥ T∗2) is an indicator function. The null hypothesis as in (1) is rejected with a signifi-

cance level of α if p-value ≤ α.
As shown in the 2.4.1 section, Hotelling’s T2 test is not valid for high dimensional data (p > n).

The same occurs with the adapted tests presented so far (T2
PB, T2

RPB). We then decided to build
tests adapted to the LRT test, based on the works of Ledoit & Wolf (2002), which are valid for high-
dimensional data. The main idea is to replace the determinant (generalized variance) of the matrices
S e S + H, as in (2), by the total variance that is a corresponding feature and maintaining the same
distribution properties as the LRT test.

2.4.4 The asymptotic LRT test with a trace
The asymptotic version of the LRT test, called ATLRT (Asymptotic Trace Likelihood Ratio

Test), was obtained by directly replacing the determinant given in the expression (2) of the LRT
test by the trace tr operator. So, the expression of this test is given by

T2
ATLRT = n

{
log[tr(S∗ + H)] – tr(S∗)

}
, (14)

where H = (X̄∗ – µ0)(X̄∗ – µ0)⊤. Under H0, as in (1) and normality, T2
ATLRT has an asymptotic

chi-square distribution with p degrees of freedom. The null hypothesis is rejected if T2
ATLRT ≥

χ2
α;p, where χ2

α;p, where 100α% is the upper quantile of a chi-square distribution with p degrees of
freedom.

2.4.5 The TLR parametric trace bootstrap test
The T2

ATLRT test is not guaranteed to follow an exact chi-square distribution with p degrees
of freedom and p-various normality. To get around this issue, we proposed a parametric bootstrap
version of the likelihood ratio test (LRT), called TLRPBT (Trace Likelihood Ratio Bootstrap Para-
metric Test). The steps for building this test are the same as those previously described in the T2PB
test. The original test statistic has the following expression

T∗2 =n
{

log[tr(S∗ + H∗)] – tr(S∗)
}

, (15)
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where H∗ = (X̄∗ – µ0)(X̄∗ – µ0)⊤. The parametric bootstrap estimators S∗ and X̄∗ are obtained
from the original sample.

The test statistic expression is given by

T2
TLRPB =n

{
log[tr(STLRPB + HTLRPB)] – tr(STLRPB)

}
, (16)

where HTLRPB = (X̄TLRPB –µ0)(X̄TLRPB –µ0)⊤. In this case, the expressions X̄TLRPB and STLRPB
are the vector of averages and parametric bootsrap sample covariance matrix. The null hypothesis
H0 as in (1) will be rejected if the same conditions previously established in the T2PB test occurred.

2.4.6 The TLR robust parametric bootstrap test with trace
To get around the possible problems that can occur in the presence of real outliers, we have

proposed the robust version of the previously presented TLRPB test, called RTLRPBT (Robust
Trace Likelihood Ratio Bootstrap Parametric Test). The changes from the previously presented test
(TLRPB) are that the original test statistic has the following expression

T∗2 =n
{

log[tr(SR + HR)] – tr(SR)
}

, (17)

where HR = (X̄R – µ0)(X̄R – µ0)⊤. The comedian robust estimators for the vector of averages
and covariance matrix SR and X̄R are obtained from the original sample. The test statistic has the
following expression

T2
RTLRPB = n

{
log[tr(SRTLRPB + HRTLRPB)] – tr(SRTLRPB)

}
, (18)

where HRTLRPB = (X̄RTLRPB–µ0)(X̄RTLRPB–µ0)⊤. Here, bar bfXRTLRPB and X̄RTLRPB represent
the vector of means and the robust sample covariance matrix. The null hypothesis H0 as in (1) will
be rejected if the same conditions previously established in the TLRPB test occurred.

3. The TVMM package
The current version of the TVMM package, which is available in the CRAN repository, contains

the functions that describe the tests presented in the 2.4 section. The details are now displayed.

3.1 The T2O function
This function performs the traditional Hotelling’s T2 test and its arguments are presented, T2O(X,

mu0):

• X, a matrix n × p containing n observations and p variables. It should not contain missing values
(NA),
• mu0, a vector containing the mean population to be tested.

3.2 The T2Boot function
This function performs the T2 parametric bootstrap test (T2PB) and its arguments are presented,

T2Boot(X, mu0, B=2000):

• X, a matrix n × p containing n observations and p variables. It should not contain missing values
(NA),
• mu0, a vector containing the mean population to be tested;
• B, the number of resamples bootstrap parametric which must be at least equal to 2000.
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3.3 The T2RobustBoot function
This function performs the T2 robust parametric bootstrap test (T2RPB) T2RobustBoot(X,

mu0, B) and its arguments are presented:

• X, a matrix n × p containing n observations and p variables. It should not contain missing values
(NA),
• mu0, a vector containing the mean population to be tested,
• B, the number of resamples bootstrap parametric which must be at least equal to 2000.

3.4 The LRTTrace function
This function performs the asymptotic LRT test with trace (ATLRT) and its arguments are

presented, LRTTrace(X, mu0):

• X, a matrix n × p containing n observations and p variables. It should not contain missing values
(NA),
• mu0, a vector containing the mean population to be tested.

3.5 The LRTTBoot function
This function performs the test LRT parametric bootstrap with trace (TLRPBT) and its argu-

ments are presented, LRTTBoot(X, mu0, B):

• X, a matrix n × p containing n observations and p variables. It should not contain missing values
(NA),
• mu0, a vector containing the mean population to be tested,
• B, the number of resamples bootstrap parametric which must be at least equal to 2000.

3.6 The LRTTRBoot function
This function performs the LRT robust parametric bootstrap test with trace (RTLRPBT) and

its arguments are presented, LRTTRBoot(X, mu0, B):

• X, a matrix n × p containing n observations and p variables. It should not contain missing values
(NA),
• mu0, a vector containing the mean population to be tested,
• B, the number of resamples bootstrap parametric which must be at least equal to 2000.

3.7 The guiTVMM function
This function has as main objective to provide the user with an interactive guide in which the

user can perform all the functions previously presented. This function also features a graphical
output (histogram) that aims to provide the user with a visual interpretation of the decision made
(acceptance or rejection) around the null hypothesis as in the expression (1). Their arguments are
showed using guiTVMM(gui = TRUE):

• gui, logical argument, TRUE or FALSE. The default is TRUE.

4. Application to real data
In this section, the proposed methodology was applied to two real data sets: the first that deals

with the contents of sand and clay from Capoeira Nova, in the Amazon, Brazil, available at Ferreira
(2018); the second deals with nutrients and soil properties in the municipality of Benjamin Constant,
located in the northwest of the Amazon (www.biosbrasil.ufla.br).
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4.1 Application to bivariate data (p = 2, n = 30)
We want to verify that the Capoeira Nova soil has an average sand and clay content equal to

that of a forest population (see Table 1), at a level of 5% of significance. An exploratory analysis was
previously carried out and we verified that the variables sand and clay are correlated and the data do
not show normal p-variable according to the Royston test. There was also the presence of outliers
in the data.

Table 1. Sand and clay contents in a Capoeira Nova soil in the Amazon, Brazil.

sand clay sand clay sand clay
11 38 20 32 13 47
24 25 18 34 28 32
16 49 17 39 11 45
18 34 30 32 27 36
5 64 45 24 7 59
11 40 11 50 42 23
17 38 41 21 21 35
9 40 22 36 48 21
13 40 14 32 12 36
53 21 25 28 31 32

According to Ferreira (2018), it is known that in a forest soil the average levels of sand and
clay content have values equal to 14 and 42, respectively. So, in possession of the samples collected
of sand and clay contents in a new capoeira soil, in the Amazon, the hypotheses to be tested are
H0 : µ = µ0 = [14, 42]⊤ versus H1 : µ ̸= µ0 = [14, 42]⊤. The tests T2, T2PB, T2R, T2RPB,
ATLRT, TLRPBT and RTLRPBT have been applied (see section 2.4).

4.1.1 Application of TVMM package
Table 2 shows that all tests took the same decision to reject the null hypothesis H0. How-

ever, since the assumption of p-variate normality is not met, we suggest choosing the result of the
TLRPBT because this was the most powerful among all tests evaluated in Alves and Ferreira (2019).

Table 2. Tests for the vector of population means for the levels of sand and clay in a Capoeira Nova soil, in the
Amazon.

Test Statistics P-value Decision
T2 11.93406 0.00802 Reject H0

T2PB 11.93406 0.00899 Reject H0

T2RPB 45.19158 0.00049 Reject H0

ATLRT 9.21556 0.00997 Reject H0

TLRPBT 9.21556 0.00299 Reject H0

RTLRPBT 7.11871 0.02848 Reject H0

4.2 High-dimensional data (p = 19, n = 16)
The objective here is to verify if there is a difference between the average sample levels and the

average levels of nutrients and soil properties measured in pristine forest areas (pristine forest) (PF),
in the municipality of Benjamin Constant, in the Amazon, Brazil.
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4.2.1 Presentation of the data
The data in question is part of the project “Conservation and Sustainable Management of Below-

Ground Biodiversity” (GSM-BGBD) and was taken from the site Bios Brazil (www.biosbrasil.ufla.
br). The study area is located in the municipality of Benjamin Constant, northwest of the Amazon,
and is bordered by Brazil, Colombia, and Peru. An exploratory analysis of the data was previously
carried out and it was found that they are correlated, do not show multivariate normality, and have
outliers. The studied soil nutrients are active acidity values (pH), total Nitrogen (N), Phosphorus
(P), Potassium (K), Calcium (Ca), Magnesium (Mn), Aluminum (Al), potential acidity (H + Al),
exchangeable bases (SB), effective cation exchange capacity (CTCt), potential cation exchange ca-
pacity (CTCT), base saturation (V), aluminum saturation (m), organic material (MO), zinc (Zn),
iron (Fe), manganese (Mn), Copper (Cu), Boron (B) and Sulfur (S). Table 3 presents the observa-
tions for each variable of interest.

Table 3. Levels of nutrients and soil properties in pristine forest areas (Benjamin Constant, Amazon, Brazil).

pH P K Ca Mg Al H+Al SB CTCt CTCTV m MO Zn Fe Mn Cu B S
4.5 4.6 78.0 6.2 2.3 4.4 19.1 8.7 13.1 27.8 31.3 34.0 1.5 4.6 210.0 69.7 2.0 0.3 14.3
4.7 4.9 74.0 4.9 2.7 4.4 17.1 7.8 12.2 24.9 31.3 36.0 1.5 5.4 158.0 57.7 1.2 0.4 6.2
4.4 3.7 69.0 1.9 2.0 5.6 21.4 4.1 9.7 25.5 16.0 58.0 1.2 1.7 162.0 64.1 0.7 0.3 4.9
4.5 3.7 52.0 2.7 1.9 5.2 21.4 4.7 9.9 26.1 18.1 52.0 1.6 1.5 128.5 50.7 1.2 0.4 4.9
4.5 3.1 36.0 3.7 1.3 5.3 21.4 5.1 10.4 26.5 19.2 51.0 1.3 1.4 277.0 49.7 1.2 0.2 4.5
4.2 3.4 55.0 1.3 1.2 6.8 26.7 2.6 9.4 29.3 9.0 72.0 1.4 2.5 322.5 9.4 1.5 0.1 12.8
4.7 5.5 47.0 3.0 1.0 6.1 19.1 4.1 10.2 23.2 17.7 60.0 1.0 2.0 208.8 137.7 1.3 0.2 6.2
4.4 4.9 48.0 3.9 2.0 6.2 23.9 6.0 12.2 29.9 20.1 51.0 1.8 9.4 173.5 104.9 1.1 0.3 9.8
4.4 4.6 67.0 2.8 2.5 6.8 26.7 5.5 12.3 32.2 17.0 55.0 1.6 9.6 144.5 64.6 1.2 0.4 5.8
4.5 4.6 53.0 4.3 1.6 4.2 19.1 6.0 10.2 25.1 24.0 41.0 2.2 17.9 191.0 72.1 1.0 0.4 7.1
4.2 2.3 74.0 1.9 2.2 9.3 33.4 4.3 13.6 37.7 11.4 68.0 2.0 3.7 338.5 52.6 2.2 0.7 6.2
4.5 2.3 63.0 6.0 3.0 7.5 29.9 9.2 16.7 39.1 23.5 45.0 1.8 3.3 124.1 81.6 1.6 0.3 5.8
4.2 3.7 70.0 2.7 1.3 8.1 26.7 4.2 12.3 30.9 13.5 66.0 1.6 2.9 207.5 45.8 1.3 0.3 7.1
4.5 4.0 86.0 5.1 2.9 4.2 19.1 8.2 12.4 27.3 30.1 34.0 2.2 14.0 125.6 106.6 3.3 0.1 8.4
4.7 3.7 84.0 8.0 3.0 3.3 15.3 11.2 14.5 26.5 42.3 23.0 2.1 13.5 125.1 89.1 1.2 0.3 3.3
4.3 4.3 56.0 2.3 1.2 7.5 26.7 3.6 11.1 30.3 12.0 67.0 2.0 11.8 155.5 58.1 2.3 0.0 5.4

A hypothesis test was carried out to check if there are significant differences between the sample
levels of the measured soil attributes and the population hypothesized mean levels. The hypotheses
to be tested are H0 : µ = µ0 versus H1 : µ ̸= µ0. The tests ATLRT, TLRPBT and RTLRPBT were
applied. Here µ0 = [4.9, 3.6, 76.4, 6.1, 2.5, 3.0, 13.0, 8.8, 11.9, 21.8, 43.6, 25.3, 1.9, 6.7,
157.6, 53.9, 2.0, 0.2, 6.9]⊤.

Table 4 shows the results obtained when the adapted LRT tests are applied to this data. The
proposed tests present different decisions under the acceptance of the null hypothesis H0. While the
ATLRT test tells us that we should not rejectH0, the other two tests TLRPBT and RTLRPBT lead to
the decision to reject H0. It is worth mentioning that the ATLRT test, despite controlling the type I
error, has low power and is not recommended. Therefore, a decision must be made according to the
TLRPBT and RTLRPBT tests. As the TLRPBT test is the most powerful in all scenarios evaluated
in Alves and Ferreira (2019), the researcher must make his decision based on this test.

5. Issues: guiTVMM function
We also highlight that the TVMM package has the same tests implemented in an interactive

guide, which can be called with the guiTVMM function. It will not be presented here and help for
using this guide can be found at https://rpubs.com/Henriqueufla/617206.

www.biosbrasil.ufla.br
www.biosbrasil.ufla.br
https://rpubs.com/Henriqueufla/617206
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Table 4. Tests for the vector of population means for nutrients and soil properties of Benjamin Constant, northwest
of the state of Amazonia.

Test Statistic p-value Conclusion
ATLRT 6.09636 0.99768 Do not reject H0

TLRPBT 6.09636 0.00499 Do not reject H0

RTLRPBT 5.63033 0.03648 Do not reject H0
Note: all tests controlled the type I error.

6. Considerations
The TVMM package presents versatility in use. The user can choose the syntax of the R lan-

guage itself or choose the interactive guide. The last option ensures that the user does not need to
have a high level of understanding of the R language. Also, in the future versions of the package, we
intend to add the mobile and web interface versions so that the range of use of the package increases,
further facilitating the interaction with the TVMM package.
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