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ABSTRACT: In agronomic experiments, the presence of polytomous variables is
common, and the generalized logit model can be used to analyze these data. One of the
characteristics of the generalized logit model is the assumption that the variance is a
known function of the mean, and the observed variance is expected to be close to that
assumed by the model. However, it is not uncommon for extra-multinomial variation
to occur, due to the systematic observation of data that are more heterogeneous than
the variance specified by the model, a phenomenon known as overdispersion. In this
context, the present work discusses a diagnostic of overdispersion in multinomial data,
with the proposal of a descriptive measure for this problem, as well as presenting a
methodological alternative through the Dirichlet-multinomial model. The descriptive
measure is evaluated through simulation, based on two particular scenarios. As a
motivational study, we report an experiment applied to fruit growing, whose objective
was to compare the flowering of adult plants of an orange tree, grafted on “Rangpur”
lime or “Swingle” citrumelo, with as response variable the classification of branches into
three categories: lateral flower, no flower or aborted flower, terminal flower. Through the
proposed descriptive measure, evidence of overdispersion was verified, indicating that the
generalized logit model may not be the most appropriate. Thus, as a methodological
alternative, the Dirichlet-multinomial model was used. Compared to the generalized
logit model, the Dirichlet-multinomial proved to be more suitable to fit the data with
overdispersion, by allowing the inclusion of an additional parameter to accommodate
the excessive extra-multinomial dispersion.
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1 Introduction

Categorized data result from the observation of characteristics of individuals
that relate to quality or other attributes expressed in mutually exclusive categories.
They can be classified according to the number of categories, as dichotomous or
polytomous. In turn, polytomous variables can be classified according to their
nature, being ordinal or nominal. According to Agresti (2019), when the response
variable is polytomous, the probabilistic model most commonly associated is the
multinomial distribution. Models involving this distribution are an extension of the
generalized linear models (GLM) proposed by Nelder and Wedderburn (1972).

When the polytomous variable is nominal, the most common model is the
generalized logit model. One of the characteristics of this model is the assumption
that the variance is a known function of the mean, and the observed variance is
expected to be close to that assumed by the model. But this does not always occur.
In the field of agricultural sciences, for example, when working with data from
entomology, animal behavior or species flowering, among others, it is not uncommon
to find heterogeneity of the response variable, resulting in greater variance than
specified by the proposed model. According to Hinde and Demétrio (1998), the
experimental situations in which this discrepancy occurs, i.e., the observed variance
is greater than the nominal one, are typical of the overdispersion phenomenon.

Further according to various researchers, the phenomenon of overdispersion
can occur for several reasons, such as the variability of the experimental material,
omission of covariates that can explain the lack of homogeneity, and excess of zeros
in the data, among others. Furthermore, different causes can coexist, making it
difficult to infer the precise cause of this phenomenon. Thus, diagnostic measures
are important tools to study overdispersion, and it is essential to recognize that
this phenomenon is present in the data so that alternatives can be applied to
support model choice in order to ensure the validity of the estimation and resulting
inferences. On the other hand, according to Olsson (2002), care should be taken
not to confuse the phenomenon of overdispersion with unsatisfactory fit of the
model, which can be caused, for example by the wrong choice of the link function
or incorrect linear predictor.

The literature contains models able to deal with the overdispersion problem
in the fitting process, in particular for proportion and count data, such as quasi-
likelihood models (Wedderburn, 1974), which admit a more general form for the
variance function, or alternatively by allowing an additional parameter and a two-
stage model (Hinde and Demétrio, 1998) that assumes a distribution for the response
variable and additionally another for the parameters. In this work, the two-stage
model approach is used, through the Dirichlet-multinomial composite distribution
(Mosimann, 1962), which has been used for the analysis of polytomous datasets
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that contain extra-multinomial variation and is a multicategory extension of the
beta-binomial model.

Therefore, this work characterizes the problem of overdispersion in the context
of categorized nominal polytomous data, proposes a descriptive dispersion index as
a diagnostic measure for this overdispersion phenomenon. The performance of this
index is assessed by simulation and we use the Dirichlet-multinomial model as an
alternative in cases of overdispersion of multinomial data. An application in the field
of agricultural sciences it also presented to illustrate the methodological procedure.

2 Material and methods

2.1 Material

As a motivational study, we consider part of an experiment developed by Voigt
(2013), conducted in a greenhouse in 2011. The experiment was carried out in a
completely randomized design involving the orange tree “x11”, which has as main
characteristic the fact of presenting a short juvenile period.

The objective of this experiment was to evaluate the flowering of adult trees of
this variety formed by grafting on “Rangpur” lime or “Swingle” citrumelo rootstock,
considered as the treatments. For application purposes, this work considers the
data referring to the winter season given the fixed total of items the multinomial
distribution is an appropriate starting point. The response variable is the count
of branches in three mutually exclusive categories: lateral flower (category 1), no
flower or aborted flower (category 2), terminal flower (category 3).

2.2 Methods

2.2.1 Generalized logit model

The generalized logit model has the property of comparing each response
category against reference, often the last.

In order to establish notation, the response variable, Yijk, denotes the number
of branches of the i-th plant, in the j-th branch classification and k-th treatment,
i = 1, · · · , 16, j = 1, 2, 3 (lateral flower, no flower or aborted flower, terminal flower)
and k = 1, 2 (“Rangpur” lime or “Swingle” citrumelo rootstocks). It is assumed that
Yijk has a multinomial distribution, where its components represent the occurrences
of response categories.

For an experimental situation, consider a random sample of this distribution
and let x (rootstocks effect) be the vector of explanatory variables, where β =
(β0j , βjk)T is the vector of unknown parameters.

In this context, fixing the J-th category as a reference, in this work represented
by the classification of terminal flowers J = 3, we have that the model is that defined
by:
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ηjk = ln
(

πj(x)
πJ(x)

)
= β0j + βjkx, (1)

where βjk is the parameter associated with the k-th rootstock effect in the j-th logit,
with j = 1, 2, 3 and k = 1, 2 and πj(x) = P (Y = j|x) represents the probability for
each category, with

∑3
j=1 πj(x) = 1.

In the generalized logit model, the intercept (β0j) and the regression parameter
vector (βjk) are different for each logit, which implies that the effects of the
explanatory variables vary according to the category (Agresti, 2002). The model (1)
considers J−1 logits for all possible pairs of categories, in our case, there are 2 logits,
that are refered to the category 3 (terminal flower). Regarding the estimation of
the model parameters (1), we use the maximum likelihood method via an iterative
process. Here, we have used package “nnet” (Venables e Ripley, 2002).

Assuming model (1), the probabilities predicted by the generalized logit model
are given by:

π̂j(x) = exp (β̂0j + β̂jx)
1 +

∑2
j=1 exp (β̂0j + β̂jx)

,

where, j = 1, 2 (lateral flower, no flower or aborted flower).
However, to use the generalized logit model, as already reported, it is necessary

to check whether the observed variance is close to that expected for the model.
Otherwise, if the observed variance exceeds that, it may be an indication of
overdispersion, hence we consider diagnostics through measures such as residual
deviance, the estimation of an additional overdispersion parameter, among others.
Additionally, one can use the half-normal plot with simulated envelopes (Moral,
Hinde and Demétrio, 2017) to check the model’s goodness of fit.

Once the phenomenon of overdispersion is verified, it is necessary to use models
that take into account the extra-multinomial variation, and the model with the
Dirichlet-multinomial distribution (Mosimann, 1962) for the polytomous response
variable is a good option (Freitas, 2001) .

2.2.2 Dirichlet-multinomial model

In the Dirichlet-multinomial model (Morel & Nagaraj, 1992), the Dirichlet-
multinomial distribution described by Mosimann (1962) is assumed for the response
variable vector. In this context, let Y = (Y1, Y2, · · · , YJ) a vector for polytomous
response with the probability vetor π = (π1, π2, · · · , πJ), the function is
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f(y|α) =
∫

Ω
f(y|π)f(π|α)dπ

=
∫

Ω

n!
n1!n2! · · · nJ !

J∏
j=1

(πj)nj
Γ(

∑J
j=1 αj)∏J

j=1 Γ(αj)

J∏
j=1

(πj)αj−1dπ

= n!
n1!n2! · · · nJ !

Γ(
∑J

j=1 αij)∏J
j=1 Γ(αj)

∫
Ω

J∏
j=1

(πij)nj+αj−1dπ

= n!
n1!n2! · · · nJ !

Γ(
∑J

j=1 αj)
Γ(n +

∑J
j=1 αj)

J∏
j=1

Γ(n + αj)
Γ(αj) ,

(2)

where, Ω = {π; πj ∈ (0, 1), j = 1, · · · , J ;
∑J

j=1 πj = 1}, the parameters
α = (α1, · · · αJ) are strictly positive and Γ(.) is the gamma function. The
Dirichlet-multinomial distribution is composed by taking the random vectors Y
and π, where a first stage Y | π follows the multinomial distribution and in a
second stage the parameter vector π follows the Dirichlet distribution.

As in Section 2.2.1, let x (rootstocks effect) also be the vector of explanatory
variables, where β = (β0j , βjk)T is the unknown parameter vector of interest, where
j = 1, 2, 3 and k = 1, 2. To incorporate the effect of the explanatory variables, the
log-linear link function is used:

η = ln(αj) = ln(β0j + βT
j x),

where, αj = exp(β0j + βT
j x). Thus, the Dirichlet-multinomial model is given by:

πj(x) = αj(x)∑J
j=1 αj(x)

, j = 1, 2, 3. (3)

where πj(x) = P (Y = j|x) represents the probability for each category, with∑3
j=1 πj(x) = 1

Note that in comparison with the generalized logit model, the Dirichlet-
multinomial model does not compare each category with a reference category.

Regarding the estimation of the parameters, model (3) can be done by the
maximum likelihood method (Chen & Li, 2013).

According to Paul et al. (1989), one can reparameterize the probability
function of the Dirichlet-multinomial distribution considering γ = 1∑J

j=1
αj

. This

additional parameter plays an important role in this distribution, not only to
characterize it but also to control the variability. In this context, if γ = 0, the
Dirichlet-multinomial model reduces to a multinomial model. A positive value of
the parameter γ is characteristic of the Dirichlet- multinomial model, being usual
when there is overdispersion of data. Thus, a likelihood ratio test to discriminate
between the two model structures has the following hypotheses:
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{
H0 : γ = 0 (multinomial model).
Ha : γ > 0 (Dirichlet-multinomial model).

whose test statistic likelihood ratio test (LRT) statistic is given by:

LRT = −2 ln(ℓ1 − ℓ0),

where ℓ0 is the logarithm of the likelihood function under the null hypothesis,
and ℓ1 represents the logarithm of the likelihood function under the alternative
hypothesis. Under the true null hypothesis, LRT has a chi-square distribution χ2

g,
where g is equal to the difference between the number of parameters (np) of the
multinomial model and the Dirichlet-multinomial model. Freitas (2001) pointed
out that if the hypothesis test proposed by Paul et al. (1989) is significant, there
are indications of the presence of overdispersion. This extra- multinomial variation
will be accommodated in the Dirichlet-multinomial model because of the additional
parameter it contains. Here, we have used the package “MGLM” (Zhang and Zhou,
2016).

Additionally, in this work, the comparison between the two structures, in terms
of goodness of fit, can be done by the half-normal plot (Moral, Hinde & Demétrio,
2018).

2.2.3 Dispersion index

In this section, a dispersion index proposal is presented, as a descriptive
measure of overdispersion diagnostic, for nominal polytomous data, constructed
as follows:

1. Consider a response variable Yj , where j represents the j-th category. A
dispersion index is calculated for each category:

IDj = Varj(Observed)
Varj(Expected)

where Varj(Observed) is given by the j-th observed variance of the data and
Varj(Expected) is the j-th variance expected of the assumed model, in which
in the present work j = 1, 2, 3.

2. Finally, the mean of the dispersion indices obtained in the previous item for
each of the categories is calculated, so the multinomial dispersion index (MDI)
is given by:

MDI =
∑J

j=1 IDj

J (4)

where J is the total number of categories.
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Thus, it is expected that if the descriptive measure of the overdispersion
diagnostic is around one, there is evidence that the data are equidispersed, that
is, the observed variance is close to that fitted by the proposed model. On the other
hand, if MDI is greater than one, there is evidence of the presence of overdispersed
data.

In order to investigate the behavior of the dispersion index proposed in this
work, a simulation study was carried out next (Section 2.2.4).

2.2.4 Simulation study

Under the equidispersion and overdispersion hypothesis, data were simulated
from two particular scenarios.

For the simulation, we considered three response categories (j = 1, 2, 3)
with two explanatory variables (k = 1, 2), for N = 60 groups containing 20
individuals each (n = 20). The simulations were carried out under the hypothesis
of two scenarios: equidispersed and overdispersed data. In the first scenario, we
applied the multinomial distribution and in the second the Dirichlet-multinomial
distribution, since this distribution has an additional parameter to accommodate
the extra-multinomial scattering (γ).

For the multinomial distribution, the probability vectors used in the simulation
process associated with each explanatory variable were π1j = (0.66; 0.28; 0.06) and
π2j = (0.59; 0.37; 0.03). For the Dirichlet-multinomial distribution, additionally
the parameters α1j = (0.1; 0.4; 0.1) and α2j = (0.2; 0.5; 0.3) were used, whose
parameters values were chosen randomly.

The simulation was performed using the R software (R Core Team, 2020).
Based on these fixed parameters, 1,000 datasets were simulated for each scenario
considered. In this context, for the first scenario, the probability vectors of the
multinomial distribution were fixed, in which the dataset was simulated using the
rmultinom ( ) function. In the second scenario, the dataset was simulated using the
rdirm ( ) function, fixing the parameters of the Dirichlet-multinomial distribution.

For each simulated dataset, the multinomial and Dirichlet-multinomial models
were fitted. It was possible to calculate for each simulated dataset the variance
observed, the variance expected by the multinomial model, and the finally
multinomial dispersion index, as expressed by equation (4). The indexes were
then analyzed descriptively, allowing empirically obtained acceptable ranges for
the assumed existence of overdispersion.

3 Results and discussion

3.1 Simulation study

Based on the simulation study described in Section 2.2.4, some descriptive
statistics are presented below.

Under the hypothesis of equidispersed data, the multinomial dispersion index
(MDI) varied approximately from 0.7 to 1.5 (Table 1). On the other hand,
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Table 1 - Descriptive measures referring to the dispersion index based on simulated
data, according to each scenario considered in the estimation process

Descriptive First scenario Second scenario
measures (equidispersion) (overdispersion)
Maximum 1.59 15.25
Minimum 0.73 8.22
Amplitude 0.86 7.03
Mean 1.12 11.82
Standard deviation 0.15 0.95

(a) First scenario (equidispersion). (b) Second scenario (overdispersion).

Figure 1 - Histograms of the dispersion index according to equidispersion (a) and
overdispersion (b) scenarios considered in the simulation study.
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under the variance perturbation, the multinomial dispersion index (MDI) varied
approximately from 8 to 15, as shown in the Table 1. Based on the histograms
presented in the Figure 1 (a) and (b), the distribution of the multinomial dispersion
index apparently has normal distribution.

Comparison of the simulations carried out by the two processes showed that
the mean dispersion index obtained in the second scenario was approximately 10.5
times greater than that obtained in the first. In turn, the standard deviation
was approximately six times higher in the second scenario than the first one,
indicating extra variation between the dispersion index when considering the
multinomial model. Therefore, empirically for our scenarios, it can be assumed
that the acceptable values of the multinomial dispersion index range from 0.7 to
1.5, indicating there is no extra-multinomial variation present in the data.

3.2 Motivational study

Descriptive analysis was performed to explore the data, through mean and
variance, that are presented in the Table 2.

Table 2 - Descriptive summary of the number of branches in relation to
classification, according to the experiment performed by Voigt (2013)
during the winter season

Rootstocks
Rangpur lime Swingle citrumelo

Branch classification Mean Variance Mean Variance
Lateral flower 89.00 939.25 70.43 496.25
No flower or aborted 3.67 10.00 4.43 7.62
Terminal flower 12.33 71.50 27.71 430.57

There were on average a greater number of branches classified as lateral flower,
followed by terminal flower, and no flower or aborted flower. Furthermore, there
was a strong mean-variance relationship, that is, the variance increased with the
mean.

Then, the generalized logit model with canonical link function was fitted to
data and with this to observe the possible existence of overdispersion, by comparing
the variances observed and those assumed by the model, presented in the Table 3

There was a lack of homogeneity in the treatments, since both the observed
variances were greater than those obtained with fitted model. Also, the value of the
residual deviance exceeded the number of degrees of freedom (deviance = 159.11;
df= 28). Furthermore, the proposed multinomial dispersion index was MDI = 7.7.
Based on these three diagnostics measures, there is evidence of overdispersed data.
In this context, an alternative model would be the Dirichlet-multinomial.

The diagnostic by the half-normal plots for both models are presented in
the Figures 2 (a) and (b). In the generalized logit model, most of the points
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Table 3 - Observed variances and expected from fitted generalized logit model,
according to the data from the experiment performed by Voigt (2013)
in the winter season

Rootstocks
Rangpur lime Swingle citrumelo

Branch classification Observed Expected Observed Expected
Lateral flower 939.25 103.46 496.95 106.08
No flower or aborted 10.00 1.11 7.62 1.28
Terminal flower 71.50 11.51 430.57 38.25

(a) Generalized logit model. (b) Dirichlet-multinomial model.

Figure 2 - Diagnostic graph (half-normal plot) to assess the fit goodness of the
generalized logit model and Dirichlet-multinomial model, fitted to the
data referring to the experiment performed by Voigt (2013) in the winter.

Table 4 - Comparison between the generalized logit models, with multinomial and
Dirichlet-multinomial distributions for response and through the values of
the AIC, log-likelihoods (ℓ), the parameter number (np) and the likelihood
ratio test (LRT)
Models np ℓ AIC LRT p-value
Multinomial 4 -136.62 281.24
Dirichlet-multinomial 6 -68.34 208.68 76.56 <0.001
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are outside the simulation envelope, indicating that this model has unsatisfactory
fit. Thus, as previously mentioned, to accommodate the overdispersion, the
Dirichlet-multinomial model was considered, which presented a satisfactory fit,
as the points were accommodated within the simulation envelope. Furthermore,
both the likelihood ratio test (LRT) and the Akaike information criterion (AIC),
presented in the Table 4, also indicate the selection of the Dirichlet-multinomial
model.

Table 5 - Likelihood ratio test for the treatment effect using generalized logit and
Dirichlet- multinomial models, where np= number of parameters, ℓ =
log-likelihood and LRT = likelihood ratio test statistic

Models
Generalized Logit Dirichlet-multionomial

Linear Predictor np ℓ LRT p-value np ℓ LRT p-value
ηjk = β0j 2 -169.55 3 -102.15
ηjk = β0j + βjk 4 -136.62 65.87 <0.01 6 -98.33 7.63 0.0543

In order to verify the possible existence of a treatment effect in the experiment,
the likelihood ratio test was used (Table 5), showing at 5% significance that the
Dirichlet-multinomial model did not present a rootstock effect, but can consider
them marginally. On the other hand, when applying the generalized logit model
with multinomial distribution, there were significant rootstock effects. Therefore,
this corroborates the importance of overdispersion diagnostics in the data to choose
the appropriate model to ensure more reliable estimation and avoid erroneous
conclusions.

Table 6 - Estimated parameters and standard errors in relation to the Dirichlet-
multinomial model with rootstock effect in the winter season

Parameter Estimate Standard error p-value
β01(lateral flower) 2.977 0.457 <0.01
β02(no flower or aborted) 0.004 0.442 0.993
β03(terminal flower) 1.038 0.445 0.020
β11(lateral flower “Swingle”) -0.206 0.677 0.761
β21(no flower or aborted “Swingle”) 0.274 0.646 0.671
β31(terminal flower “Swingle”) 0.666 0.677 0.326

The estimates and standard errors obtained by fitting the Dirichlet-
multinomial model are presented in the Table 6, indicating the parameters βjk

are not significant, due to the marginal treatment effect.
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Figure 3 - Observed and predict probabilities by the Dirichlet-multinomial model
regarding rootstocks and branch classification.

Finally, the predicted and observed probabilities according to the Dirichlet-
multinomial model are illustrated in the Figure 3. The most likely category of
branches during the winter season was lateral flowers, estimated at 0.837 for plants
with “Rangpur” lime rootstock and 0.700 for “Swingle” citrumelo rootstock. The
second most likely category was terminal flowers, and its probability was higher in
plants with “Swingle” citrumelo rootstock, but this difference was not significant.

Conclusions

This work presents an introductory study to analyze polytomous data, with
overdispersion in a cross-sectional study. The proposed alternative is the use of
the Dirichlet-multinomial model, a two-stage model that contains an additional
parameter in comparison with the multinomial one, allowing accommodation of
extra variability. We also proposed the dispersion index as a diagnostic measure of
overdispersion in nominal polytomous data, and evaluated its performance through
the initial simulation study.

Both overdispersion diagnostics and the choice of the appropriate model are
important to avoid wrong conclusions. As observed in the analysis of data in
the motivational study, if the presence of overdispersion is not considered, it can
be concluded, by using the generalized logit model, that the treatment effect is
significant. However, with the Dirichlet-multinomial model, this fact does not occur.

Although the Dirichlet-multinomial model presented a satisfactory fit and the
dispersion index initially presented satisfactory performance we reinforce, this work
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presents only an initial study for modeling of multinomial categorical data with
overdispersion, which is a topic for future research. As perspectives for future
work, we intend to carry out a more detailed study of the proposed dispersion
index, by evaluating its performance with confidence intervals and applying other
distributions such as the negative multinomial for example.
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alternativa para diagnóstico e análise de dados multinomiais com superdispersão:
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RESUMO: Em experimentos agronômicos é comum a presença de variáveis politômicas
e o modelo dos logitos generalizados é uma classe de modelos de regressão que podem
ser empregadas para a análise desses dados. Uma das características do modelo dos
logitos generalizados é a pressuposição de que a variância é uma função conhecida da
média e, espera-se que a variância observada esteja próxima da pressuposta pelo modelo.
No entanto, não é raro ocorrer uma variação extra-multinomial, devido à observação
sistemática de dados mais heterogêneos do que a variância especificada pelo modelo,
fenômeno este conhecido como superdispersão. Neste contexto, o presente trabalho
tem como objetivo discutir a importância de diagnosticar o problema da superdispersão
em dados multinomiais, com proposta de uma medida descritiva para diagnóstico,
assim como apresentar uma alternativa metodológica por meio do modelo Dirichlet-
multinomial. A medida descritiva foi avaliada por meio de simulação, restringindo-se
a dois cenários particulares. Como um estudo de motivação tem-se um experimento
aplicado à fluticultura, cujo o objetivo foi avaliar o florescimento de plantas adultas
de uma laranjeira, enxertadas sobre o limão “Cravo” e o citrumelo “Swingle”, tendo
com variável resposta à classificação de ramos das plantas em três categorias: terminal,
lateral, sem flor ou abortada. Por meio da medida descritiva proposta verificou-se
evidências de superdispersão, indicando que o modelo dos logitos generalizados pode
não ser o mais apropriado. Dessa forma, como alternativa metodológica utilizou-se o
modelo Dirichlet-multinomial. Comparativamente ao modelo dos logitos generalizados
o Dirichlet-multinomial mostrou-se mais adequado para o ajuste de dados com
superdispersão por permitir a inclusão de um parâmetro adicional para acomodar a
dispersão excessiva extra-multinomail.

PALAVRAS-CHAVE: Seleção de modelos, Dirichlet-multinomial, Máxima-verossimilhança,
Índice de dispersão.
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