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Abstract
There are agronomic experiments where measurements of a response variable are carried out over more
than one longitudinal factor, for example, at different depths over time. These observations, made sys-
tematically in each experimental unit, can be correlated and might have heterogeneous variances at the
different levels of the longitudinal factor. It was possible to model this correlation between repeated mea-
sures and the heterogeneity of variances by using mixed models. Thus, it was necessary to adapt some
covariance structures that are common in experiments with only one longitudinal factor. The objective
of this study was to use the class of linear mixed models to study sugarcane root dry mass. The experi-
ment was the randomized complete blocks design and the parcels received four nitrogen doses. Repeated
measurements were made over two longitudinal factors, one being qualitative ordinal (depths) and one
being quantitative (distances from the planting line). It was possible to select a parsimonious covariance
structure and another one to explain the average behavior of the responses through likelihood ratio tests,
Wald tests, and using the AIC and BIC information criteria. The adjustment of the selected model was
verified by using residual diagnostics graphs.

Keywords: Ordinal qualitative; quantitative; profiles; covariance.

1. Introduction
In several research areas, it is common to conduct experiments in which repeated measurements

of one or more variable responses are taken on successive occasions in the same experimental unit,
which characterizes longitudinal experiments. Although experiments involving only one longitu-
dinal factor are more common, there are cases where observations are made by considering two or
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more of these factors. In these studies, each experimental unit is associated with a vector of observa-
tions, called individual response profile, whose components are the observed values of the response
variable at the levels of the longitudinal factor.

Considering that these repeated measurements are made systematically at each experimental
unit, it is assumed that the observations made at different levels of the longitudinal factor are corre-
lated and that the variances at different levels are heterogeneous (Lima, 1996). These characteristics
of longitudinal data, which are not typical of usual regression models, can be included in the analysis
model with the specification of linear (or non-linear) mixed models (Pinheiro; Bates, 2000; West;
Welch; Galecki, 2007).

Laird and Ware (1982), making use of the ideas of Harville (1977), proposed an approach that
allows the use of different variances and covariance structures between and within experimental
units involving the specification of two-stage linear mixed models when individual and population
characteristics are identified.

In order to fit linear mixed models to a dataset involving a qualitative ordinal and a quantita-
tive longitudinal factors, there is a need to adapt some variance and covariance structures that are
common in studies with only one longitudinal factor.

The purpose of this work arose from the need to study a dataset by Otto (2007) in which nitro-
gen (N-urea) doses were applied in the furrow of a sugarcane plantation and the dry root mass (g
dm–3) was observed at different depths (ordinal qualitative factor) and different distances from the
sugarcane planting line (quantitative factor).

The objective of this work was to use the mixed linear model class to study the effects of the
treatment factor in a randomized complete block design with repeated measurements along with
two longitudinal factors, where one is qualitative ordinal and one is quantitative.

2. Matherials and Methods
The data analyzed are from Otto (2007) and come from experiments with sugarcane carried out

at the Santa Adélia Plant, located in Jaboticabal, SP. Each experimental unit consisted of 48 furrows
spaced 1.50 m apart (48 ×1.50 m = 72 m wide), with 15 m in length, totaling 1.080 m2 per plot.
The experimental design was a randomized complete blocks design with 4 treatments, referring to
doses of 0, 40, 80 and 120 kg ha–1 N applied in the form of urea in the planting furrow, with 4
replications. The observed response variable was the sugarcane dry root mass (DRM), in g dm–3. In
order to collect the soil samples, a probe with internal diameter of 5.5 cm was used. The dry root
mass was obtained after the samples were sieved (2 mm) and dried in an oven. The observations
were made in July 2006 before the sugarcane harvest. DRM was evaluated over the planting row
and at 30 and 60 cm from it, both to the right and left (Local: 0, 30 and 60) and also at two depths
(Depth: 0 to 30 cm and 30 to 60 cm), according to the Figure 1.

Figure 1. Illustration of soil sample collection for plant cane
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The 32 individual profiles of DRM separated by Depth level (16 for Depth 0-30 cm and 16 for
Depth 30-60 cm) are represented in Figures 2(a) and 2(b), respectively.
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Figure 2. Individual profiles of the sugarcane dry root mass at each depth

It can be seen in Figure 2 a greater variability in sugarcane dry root mass at Depth 0-30 cm and
in the planting row (Local = 0). It is also noted that there is a decrease in DRM as the distance from
the planting row increases. Regarding the variability, a decrease is noted as the distance from the
same row increases. Thus, the closer it is to the sugarcane, the higher concentration of DRM can be
found, however, not all observations made close to the sugarcane showed this high concentration.

To fit a mixed model to these data, the approach of Laird and Ware (1982) was used, which uses
the linear model,

yij = Xijβ + Zijuij + εij. (1)

where, yij(b × 1) is the response profile of the (ij)-th individual, being block i, treatment j, for
i = 1, . . . , r and j = 1, . . . , a; Xij(b× p) is a known and specification rank matrix p < b associated with
the vector β(p× 1) of unknown subpopulational parameters, where b is the number of longitudinal
factor levels and p the number of fixed effect parameters; Zij(b × q) is a known and specification
matrix, with a complete column rank and associated with the vector of random effects uij(q × 1) of
individual differences around the population values, and εij(b × 1) is a vector of random errors.

The model (1) can be formulated in two stages, and in the first stage, for each experimental unit
(ij), there is:

yij |uij = Xijβ + Zijuij + εij ∼ N(Xijβ + Zijuij,Rij), (2)

where, Rij is known as conditional dispersion matrix and is associated with the conditional error
εij = yij – Xijfi – Zijuij.

In the second stage, it is assumed that uij ∼ N(0,G) is independent of εij, thus it is obtained the
marginal (or unconditional) model:

yij ∼ N(Xijfi,Vij) (3)

where, the matrix Vij = ZijGZt
ij +Rij is called marginal dispersion matrix and is associated with the

marginal error eij = yij – Xijfi, which is given by the sum eij = Zijuij + εij.
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To establish the fixed and random effects to compose the mixed model, it was used the top-down
strategy (Verbeke; Molenberghs, 2000), which began by fitting the maximal model with all possible
fixed effects terms of interest in order to explain thoroughly the systematic variation in the responses.
Subsequently, we sought a structure for the random effects (covariance matrix G) to be included in
the model. The remainder of the variability, which was not explained by the variation between-
individuals, is due to the within-individual experimental error, selecting an appropriate covariance
structure for the covariance matrix Rij. In comparisons involving the fixed effect parameters, the
likelihood ratio test for nested models (Verbeke; Molenberghs, 2000; West; Welch; Galecki, 2007)
and the Akaike (Akaike, 1974) and Bayesian (Schwarz, 1978) information criteria were used.
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Figure 3. Average profiles of sugarcane dry root mass per dose at each depth

After visual analysis of individual DRM profile plots along the quantitative longitudinal factor
levels, for each qualitative longitudinal factor level (Figure 2), and still observing the average profiles
by dose and by depth of Figure 3, the maximal model (4) was defined for the fixed part involving a
second degree polynomial for each of the nitrogen doses:

E(yijkl) = Bi + β0jk + β1jkLocaljkl + β2jkLocal2jkl, (4)

for i = 1, 2, 3, 4; j = 1, 2, 3, 4; k = 1, 2 and l = 1, 2, 3, where, E(yijkl) is the average DRM of the
parcel, in the ith Block, that received the jth Nitrogen dose, at the kth Depth and lth Location; Bi is
the fixed effect of the ith block; β0jk, β1jk and β2jk are, respectively, the intercept, the first degree
coefficient and the second degree coefficient of the parabola associated with the parcels (jk). In this
notation: Localjkl = 0 cm if l = 1; Localjkl = 30 cm if l = 2 and Localjkl = 60 cm if l = 3, for all
combinations (jk).

The marginal dispersion matrix (Vij) defined in (3) can be modeled by specifying random effects
(Zij), with its corresponding covariance structure between individuals (G) and the specification of
a structure for within-individual measurements (Rij). Firstly, it is aimed to model the (positive)
correlation between experimental units and the heterogeneity of variances. In order to achieve a
better fit to the structure of sample variances and correlations, the process is completed by verifying
the need for a more complex structure for the matrix Rij. The process of choosing the random
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effects and the respective covariance structure started with the inclusion of a random effect in all the
coefficients of the polynomial curve and a completely parameterized covariance structure.

In Table 1 some interesting structures for the within-individual covariance matrix (Rij) are
presented, they are adapted for the case of two longitudinal factors. These structures were defined
by assuming that the three levels of Locations (second longitudinal factor) are nested within each of
the two levels of Depths (first longitudinal factor). Such structures were created by using the pdMat,
varFunc, and corStruct classes arguments of the lme function of the nlme library (Pinheiro; Bates,
2000) of the R program (R Core Team, 2022). Other structures can be created by combining the
arguments of these classes, depending on the variability and correlation characteristics of the data.

2.1 Estimation and selection methods
In the process of choosing the random part of the mixed model, the restricted maximum like-

lihood (REML) method was used to estimate the parameters of the models, since the fixed part of
the model was kept unchanged. Models with nested random effects structures were compared by
using the likelihood ratio test (LRT) and the Akaike (AIC) and Bayesian (BIC) information criteria.
According to West, Welch and Galecki (2007), for cases of comparisons in which the parameters
lie on the boundary of the parameter space, the LRT statistic follows a mixture of χ2 distributions.
For example: when the inclusion of a random effect in the model is tested, the null hypothesis (H0)
imposes that the variance of this random effect must be null. Negative values for the test statistic are
not allowed. In this case, the descriptive level of the test was calculated by

p-value = 0.5 × P(χ2
H0

> LRT) + 0.5 × P(χ2
H1

> LRT), (5)

where χ2
H0

and χ2
H1

are the quantiles of the chi-squared distribution with degrees of freedom given
by the random effects numbers of the models under the assumptions H0 and H1, respectively, and
LRT is the likelihood ratio calculated value.

After choosing the random part of the mixed model, the significance of the parameters of the
fixed part was tested, we fit the models by the maximum likelihood (ML) method, by using the
Wald, LRT tests if the models are nested, and the AIC and BIC information criteria if models are
not nested. The fixed effects selection process was ended when a parsimonious model was obtained,
which managed to explain with a smaller number of parameters all the important characteristics of
the phenomenon being studied.

The diagnosis of the fitted models was performed by using a plot of standardized conditional
residuals versus predicted values in order to verify homoscedasticity of these residuals; plot of stan-
dardized conditional residuals versus observations’ indexes to detect outliers; the normality assump-
tion was verified by plot of norm quantiles versus standardized conditional residuals and by his-
togram of these residuals (Singer; Nobre; Rocha, 2018), furthermore, it was confirmed by non-
parametric Shapiro-Wilk test (Shapiro; Wilk, 1965).

Finally, to visualize the goodness of fit of the final selected model, scatterplots of the observed
data were constructed, with the mean curves fitted and the individual curves predicted.

3. Results and Discussion
While evaluating the descriptive statistics of dry root mass (Table 2) for the main effects of

treatment and longitudinal factors it was observed that the mean and standard deviation of the
DRM in the doses 0 and 80 kg ha–1 of N-urea were very close and lower than the responses of the
doses 40 and 120 kg ha–1, and also, that the mean and standard deviation of the DRM decrease with
increasing depth or distance from the planting row (local).
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Table 1. Structures for the matrix Rij adapted to two longitudinal factors, a qualitative factor with 2 levels (depth) and a
quantitative factor with 3 levels (local)

Unstructured or com-
pletely parameterized:
Different variances at all
combinations of location
and depth levels and
different covariances be-
tween each combination.
Number of parameters:
21.

UN =


σ2

1 σ12 σ13 σ14 σ15 σ16

σ12 σ2
2 σ23 σ24 σ25 σ26

σ13 σ23 σ2
3 σ34 σ35 σ36

σ14 σ24 σ34 σ2
4 σ45 σ46

σ15 σ25 σ35 σ45 σ2
5 σ56

σ16 σ26 σ36 σ46 σ56 σ2
6



Autoregressive of 1st or-
der: Equal variances for
different locations at each
depth, different variances
between depths, equal co-
variances between depths
for different locations,
and decreasing correla-
tion with increasing the
interval between levels of
the longitudinal factors.
Number of parameters: 4.

AR(1) =
σ2

1 σ2
1ρ σ2

1ρ
2 σ12ρ

3 σ12ρ
4 σ12ρ

5

σ2
1ρ σ2

1 σ2
1ρ σ12ρ

2 σ12ρ
3 σ12ρ

4

σ2
1ρ

2 σ2
1ρ σ2

1 σ12ρ σ12ρ
2 σ12ρ

3

σ12ρ
3 σ12ρ

2 σ12ρ σ2
2 σ2

2ρ σ2
2ρ

2

σ12ρ
4 σ12ρ

3 σ12ρ
2 σ2

2ρ σ2
2 σ2

2ρ

σ12ρ
5 σ12ρ

4 σ12ρ
3 σ2

2ρ
2 σ2

2ρ σ2
2



Compound symmetry
with heterogeneity: Equal
variances at different loca-
tions at the same depth,
different variances at the
two depths, equal covari-
ances between depths at
different locations, and
equal correlation between
depths. Number of param-
eters: 4.

CSH =
σ2

1 σ2
1ρ σ2

1ρ σ12ρ σ12ρ σ12ρ

σ2
1ρ σ2

1 σ2
1ρ σ12ρ σ12ρ σ12ρ

σ2
1ρ σ2

1ρ σ2
1 σ12ρ σ12ρ σ12ρ

σ12ρ σ12ρ σ12ρ σ2
2 σ2

2ρ σ2
2ρ

σ12ρ σ12ρ σ12ρ σ2
2ρ σ2

2 σ2
2ρ

σ12ρ σ12ρ σ12ρ σ2
2ρ σ2

2ρ σ2
2



Variance components
with heterogeneity: Differ-
ent variances at the two
depths, but equal in the
three locations evaluated
at the same depth. Num-
ber of parameters: 2.

VCH =


σ2

1 0 0 0 0 0

0 σ2
1 0 0 0 0

0 0 σ2
1 0 0 0

0 0 0 σ2
2 0 0

0 0 0 0 σ2
2 0

0 0 0 0 0 σ2
2



Table 2. Mean values and standard deviations of DRM (g dm–3) of Nitrogen Doses (kg ha–1), Depths (cm) and Locations (cm)

Doses Depths Locations
0 40 80 120 0-30 30-60 0 30 60

Mean 0.35 0.62 0.37 0.48 0.65 0.26 0.97 0.27 0.12
Standard Deviation 0.43 0.84 0.41 0.64 0.79 0.21 0.82 0.16 0.07



210 Brazilian Journal of Biometrics

3.1 Random effects - matrix G
In addition to the intercept, the inclusion of random effects to the other parameters of the curves

was tested, as indicated in Table 3.

Table 3. Initial structures for inclusion of random effects, considering the maximal structure (4) for fixed effects, for sugar-
cane DRM data

Model (Fixed) Parameters with Random Effects

m1 β0j1, β0j2, β1j1, β1j2, β2j1, β2j2

m2 β0j1, β0j2, β1j1, β1j2, β2j1

m3 β0j1, β0j2, β1j1, β2j1

m4 β0j1, β1j1, β2j1

In this initial phase, the structure R = Iσ2 was used for the within-individual covariance matrix.
Models were fitted by using the REML method and compared by using the likelihood ratio test
(LRT). The results (Table 4) were favorable to the m3 model, which proposes random effects for the
intercepts of the two curves (Depths 0-30 cm and 30-60 cm) and for the coefficients of degree 1 and
degree 2 of the curve relative to Depth 0-30 cm. The analysis did not indicate the need to include
random effects to the coefficients of the first and second degrees of the curve relative to Depth 30-60
cm, due to the low variability of the responses in different locations.

Table 4. Initial comparison of models aiming to include random effects by LRT

Model df –2ℓ Comparison χ2 p-value

m1 46 107.31
m2 40 112.40 m1 × m2 5.09 0.469
m3 35 119.73 m2 × m3 7.33 0.158
m4 31 130.98 m3 × m4 11.24 0.017

The structure of the random effects matrix was

Gm3 =


σ2

D1 σD1,D2 σD1,D1×L σD1,D1×L2

σD1,D2 σ2
D2 σD2,D1×L σD2,D1×L2

σD1,D1×L σD2,D1×L σ2
D1×L σD1×L,D1×L2

σD1,D1×L2 σD2,D1×L2 σD1×L,D1×L2 σ2
D1×L2

 (6)

where, D1 - Depth 0-30 cm and D2 - Depth 30-60 cm.

3.2 Covariance matrix (R)
The suggested structures are in Table 5, where,

• m5, significant difference for Depth level;
• m6, significant interaction of Depth and Location levels;
• m7, homogeneity for levels 30 and 60 for Locations;
• m8, Dose levels differ for Depth levels and Location levels;
• m9, Doses 0 and 80 are equal and the others are different.



Brazilian Journal of Biometrics 211

Table 5. Within-individual covariance structures (R) for sugarcane DRM data

Model Variances Parameters
of R

m5 diag(σ2
D1,σ2

D1,σ2
D1,σ2

D2,σ2
D2,σ2

D2) 2

m6 diag(σ2
L0,D1,σ2

L30,D1,σ2
L60,D1,σ2

L0,D2,σ2
L30,D2,σ2

L60,D2) 6

m7 diag(σ2
L0,D1,σ2

L3060,D1,σ2
L3060,D1,σ2

L0,D2,σ2
L3060,D2,σ2

L3060,D2) 4

m8 diag(σ2
L0,D1,σ2

L3060,D1,σ2
L3060,D1,σ2

L0,D2,σ2
L3060,D2,σ2

L3060,D2) 16

different for each Dose level

m9 diag(σ2
L0,D1,σ2

L3060,D1,σ2
L3060,D1,σ2

L0,D2,σ2
L3060,D2,σ2

L3060,D2) 12

equal for doses 0 and 80 and different for other levels

The results of the comparisons between the models m5, m6, m7, m8 and m9, described in Table
5, with the model m3 chosen in the previous section, are in Table 6.

Table 6. Comparison of m3, m5, m6, m7, m8 and m9 models by LRT and by the AIC and BIC information criteria

Model df AIC BIC –2ℓ Comparison χ2 p-value

m3 35 189.73 269.42 119.73
m5 36 188.88 270.84 116.88 m3 × m5 2.86 0.091
m6 38 187.58 274.10 111.58 m3 × m6 8.15 0.043
m7 37 187.16 271.39 113.16 m6 × m7 1.57 0.210
m8 40 192.22 283.29 112.22 m7 × m8 0.93 0.818
m9 39 190.67 279.46 112.66 m7 × m9 0.49 0.782

In the comparisons contained in Table 6, it was observed that among the nested structures (m3,
m5 and m6) the LRT indicated the choice of the structure m6, which proposes different variances at
each depth and at each location. The comparison of the m6 and m7 models, which are not nested,
was favorable to the m7 model, which presented the lowest AIC and BIC values. Comparing the
m7 and m8 structures by the LRT, the m7 structure was favorable, and it allowed to conclude that
the DRM data for the different doses have equal variances. And lastly, in the comparison of the m7
and m9 structures by the AIC and BIC values, the m7 model was favorable, which confirms that the
variances of the DRM in the different doses were considered equal.

Other simpler (CS, AR(1)) or more complex (UN) intra-individual structures were compared
to the diagonal structure with heterogeneity (diag w/ het) of the m7 model (Table 7), but all com-
parisons were favorable to the m7 structure, which has a smaller number of parameters.
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Table 7. Comparison of models m7, m7.1, m7.2 and m7.3 by LRT

Structure Model df AIC BIC –2ℓ Comparison χ2 p-value

diag w/ het m7 37 187.16 271.39 113.16
AR(1) m7.1 38 187.28 273.79 111.28 m7 × m7.1 1.886 0.171

CS m7.2 38 188.48 275.00 112.49 m7 × m7.2 0.671 0.413
UN m7.3 52 211.38 329.77 107.38 m7 × m7.3 5.773 0.983

Therefore, the selected covariance structure was Gm3 (6) and Rm7 (Table 5).

3.3 Fixed effects
To verify the equality of the regression coefficients of the fixed maximal model, and the chosen

covariance structure, the Wald test was used, with the model fitted by the maximum likelihood
(ML) method. From the results presented in Table 8, it was possible to conclude that the regression
coefficients of degrees 0, 1 and 2 of the maximal model (4) are significantly (p < 0.05) non-null.

Table 8. Wald test for fixed-effect parameters of the maximal model (m7)

Regression Coefficients numerator df denominator df F p-value

Dose×Depth0–30 4 57 12.134 <0.001
Dose×Depth30–60 4 57 19.262 <0.001
Dose×Depth0–30×Local 4 57 55.786 <0.001
Dose×Depth30–60×Local 4 57 33.253 <0.001
Dose×Depth0–30×Local2 4 57 3.005 0.0255
Dose×Depth30–60×Local2 4 57 6.131 0.0004

In Table 9 are the structures that were compared in the sequence of the analysis. These com-
parisons are shown in Table 10.
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Table 9. Fixed Effects Structures for Testing Equality of Average of Doses

Model Fixed Effects

m10 Dose×Depth0–30 + Dose×Depth0–30×Local + Dose×Depth0–30×Local2 +
Depth30–60 + Depth30–60×Local + Depth30–60×Local2

m11 Depth0–30 + Depth0–30×Local + Depth0–30×Local2 +
Depth30–60 + Depth30–60×Local + Depth30–60×Local2

m12 Dose1×Depth0–30 + Dose1×Depth0–30×Local + Dose1×Depth0–30×Local2 +
Depth30–60 + Depth30–60×Local + Depth30–60×Local2

m13 Dose2×Depth0–30 + Dose2×Depth0–30×Local + Dose2×Depth0–30×Local2 +
Depth30–60 + Depth30–60×Local + Depth30–60×Local2

m14 Dose2×Depth0–30 + Dose2×Depth0–30×Local + Dose2×Depth0–30×Local2 +
Depth30–60 + Depth30–60×Local

Table 10. Goodness-of-fit measures of the m7, m10, m11, m12, m13 and m14 models

Model df AIC BIC –2ℓ Comparison χ2 p-value

m7 37 –78.36 16.53 –152.36
m10 28 –82.70 –10.89 –138.70 m7 × m10 13.66 0.135
m11 19 –81.25 –32.52 –119.25 m10 × m11 19.45 0.021
m12 25 –85.78 –21.68 –135.78 m10 × m12 2.913 0.405
m13 22 –89.56 –33.14 –135.56 m12 × m13 2.226 0.527
m14 21 –74.23 –20.37 –116.23 m13 × m14 17.33 <0.001

The m10 structure which fits a curve for each of the four Dose levels for the Depth0–30, and
only one curve for the Depth30–60 was compared with the m7 structure, which considers a curve
for each Dose level and for each Depth level. According to the information criteria, the coefficients
of degrees 0, 1, and 2 for Depth30–60 do not differ significantly from each other.

Next, the structure m11 was fitted, considering only one curve for the Depth0–30. Comparing
m10 with m11, the equality of the coefficients of degrees 0, 1 and 2 of the four curves for the
Depth0–30 should not be considered, since the comparison by the AIC indicates that the model m10
fits better than m11. On the other hand, the comparison by BIC, which penalizes the model with
the highest number of parameters, shows that the best fit is the m11. Therefore, in order to compare
the equalities of the means of combinations of the Dose levels, it was considered that the structure
m11 was rejected by the AIC.

Thus, the structure m10 was compared to the structure m12, in which we consider the equality
of the coefficients of the curves referring to Doses 0 and 80 kg ha–1 N for the Depth0–30. In this
comparison, the equality of these two curves must be considered, since the AIC and BIC criteria
indicated that the structure m12 has a better fit in relation to the m10.

Thus, the structure m12 was compared to m13 in which, in addition to the equality of the curves
referring to Doses 0 and 80, in the last one it is also considered the equality of the curves referring
to Doses 40 and 120 kg ha–1N to Depth0–30. For this comparison, according to the AIC and BIC
information criteria, there are only two curves for the Depth0–30 and only one for the Depth30–60.
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Furthermore, the significance of the quadratic coefficient for the Depth30–60 (m13) in relation
to a straight line (m14) was tested. In this comparison, it resulted that the quadratic coefficient is
significant to the model, therefore, the m13 structure is the one that best fits to the DRM data.

3.4 Diagnostic of the selected model - m13
Figure 4 shows the residuals diagnostic plots. In 4(a), it is observed that there is a greater variation

in the amplitude of the standardized conditional residuals for the predicted values closer to zero.
However, since there is no point outside the –3 to 3 range. In 4(b), it can be observed that there are
no outliers.

Regarding the normality of the residuals, it can be seen in the plots 4(c) and 4(d) that the stan-
dardized conditional residuals of the selected model (m13) are very close to the normal distribution,
which is confirmed by the p-value = 0.221 of the Shapiro-Wilk test.
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Figure 4. Diagnostic plots of standardized conditional residuals - m13
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3.5 Final Model - m13
Parameter estimates for this model are presented in (7), the random effects matrix G in (8), and

the within-individual covariances matrix (Rij) in (9).

ŷ =

 1.26 – 0.05Local + 0.0005Local2, Dose = 0 and 80 kg ha–1 N, Depth 0-30 cm
1.62 – 0.05Local + 0.0005Local2, Dose = 40 and 120 kg ha–1 N, Depth 0-30 cm
0.51 – 0.01Local + 0.0001Local2, Depth 30-60 cm

(7)

G =


0.852 0.024 –0.046 0.0005
0.024 0.002 –0.001 0.00001
–0.046 –0.001 0.002 –0.00003
0.0005 0.00001 –0.00003 0.0000003

 (8)

Rij = diag
(

0.012, 0.002, 0.002, 0.022, 0.004, 0.004
)

(9)

Figure 5 shows the observed values of sugarcane DRM, as well as the average and individual
curves for the final model (m13). In this same figure, it can be observed that at Depth 0-30 cm the
Nitrogen doses that result in a higher sugarcane DRM are 40 and 120 kg ha–1 N. The curve fitted
for the Depth 30-60 cm was below the two curves for the Depth 0-30 cm, which indicates that
regardless of the nitrogen dose applied, the greater the depth, the lower the sugarcane DRM always
is. It can also be observed that in the planting row the DRM decreases more sharply at the Depth
0-30 cm, whereas when it is beyond 30 cm from the planting row, the DRM at both depths and
with four nitrogen doses are very similar.

It can also be noted in Figure 5 that the selected covariance structure captured the variability of
the data properly, which indicates that the final linear mixed model also explained well the behavior
of individual responses and average responses as a function of increasing nitrogen doses, depths and
locations.



216 Brazilian Journal of Biometrics

Local

D
R

M

0 30 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

*

*
*

*
*

*

*

*
*

*

* *

*

* *

*

*

*

*

*
*

*

*
*

* DRM
Average Curve
Individual Curves

(a) Depth 0-30 cm - Doses 0 and 80 equal

Local

D
R

M

0 30 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

*

*

*

*

*

*

*

*
*

* *
*

*

*

*

*
*

*

*

*

*

*

* *

* DRM
Average Curve
Individual Curves

(b) Depth 0-30 cm - Doses 40 and 120 equal

Local

D
R

M

0 30 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

* *

*

*

* *

*

*
*

*

* *

*
* *

*

*

*

*
*

*

*

* *

*

*
*

*

* *

*

*
*

*

*
*

*

*
*

*

* *

*
* *

*

*
*

* DRM
Average Curve
Individual Curves

(c) Depth 30-60 cm - Equal Doses

Figure 5. Observed DRM values, fitted mean curves and predicted individual curves in the final model - m13
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Conclusions
The use of linear mixed models in the analysis of dry root mass data, from an experiment in-

volving two longitudinal factors, was quite effective, as it managed to properly explain the behavior
of average response and the complex structure of correlations between the levels of these factors and
heterogeneous variances.

The functions of the nlme library from the R package were very important in the analysis,
for they provided the adjustment of several covariance structures involving the two longitudinal
factors, the comparison between them, and the construction of excellent quality graphics used in
the diagnostics.
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