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Abstract
We propose two non-parametric methods to construct locally fitted quantile reference curves that are

robust with respect to outliers in the predictor variable. The first includes a weighting procedure and the

second, the detection and subsequent elimination of outlying predictor variable values before the local

fitting process. The reference curves fitted by the proposed methods generate quantile limits that are less

affected in regions with a low frequency of the predictor variable values. The proposed procedures are

used to fit reference curves to data extracted from a study conducted at the Heart Institute of the Univer-

sity of São Paulo Medical School.

Keywords: outliers, predictor variables, quantize regression.

1. Introduction
Reference curves are constructed to obtain quantiles of a response variable as a function of one

or more predictor variables and are popular in many scientific areas. In Pediatrics, for example,

reference curves for weight or height are built according to age and sex so that the growth of a child
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can be compared to that of children with the same age and sex (Freeman et al., 1995). In Economics,

Fitzenberg et al. (2002) used reference curves to examine the relationship between development and

economic growth of different countries. Martins et al. (2004) employed reference curves to study

the distribution of wages as a function of schooling level. In Education, such curves are employed to

evaluate the relationship between the distribution of public school student performance and certain

characteristics such as parent income, classroom size and teacher qualification (Buchinsky, 1998).

In the field of Biology and Ecology, reference curves may be used to estimate the effects of factors

that may affect growth, survival and reproduction of certain systems (Cade et al., 1999), as well as

to evaluate the association between the size of prey and the size of predators (Scharf et al., 1998).

Different methods for constructing reference curves are available. Harris and Boyd (1995) clas-

sified these methods as parametric, according to which the form of the relationship between the

response variable Y and the predictor variable X is specified, or non-parametric, where this type

of relationship is not completely specified. Parametric reference curves are considered in Royston

(1991) and de Paula et al. (2005), for example. Non-parametric reference curves, mainly based on

quantile regression models discussed in Koenker and Hallock (2001), are also considered for such

purposes and, perhaps, constitute the current paradigm for such purposes. See, for example, Fan and

Gijbels, (1996), Healyet al. (1988), Huang and N ’Guyen (2018), Waldmann (2018) and Muggeo et

al. (2021), among others.

To motivate our investigation, we consider a dataset containing data from patients that sought

the Heart Institute of University of São Paulo Medical School for check-ups. The complete data

were analyzed by de Paula et al. (2005). For our purposes, we consider data from 349 females

showing no symptoms of cardiac illnesses. The response variable is the mean heart rate (bpm),

computed from measurements over a period of 24 hours and the predictor variables is age (years). As

illustrated in Figure 1 (left panel), the reference curves obtained by standard local quantile regressions

are strongly affected by points corresponding to the few individuals aged over 60 years.

In an attempt to reduce the influence of these points in regions with low frequency, we propose

two robust methods for the construction of quantile reference curves. The first considers assigning

additional weights to the observations as in Einbeck et al. (2004) and generates reference curves

that are resistant with respect to regions with low frequency of the predictor variable. The second

considers a procedure for the detection and subsequent elimination of values in such regions before

locally fitting the reference curves.

In Section 2, we describe the standard local quantile regression model. In Section 3, we outline

the two robust procedures and in Section 4, we show how they may be used to construct reference
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Figure 1. Standard (left panel), soft robustified (right panel) and hard robustified reference curves (bottom panel): 2.5%

and 97.5%: solid lines, 10% and 90%: dotted lines, 25% and 75%: dashed lines.

curves for the motivating cardiology dataset. A brief discussion and proposal for future studies are

outlined in Section 5.

2. Local quantile regression
Quantile regression, introduced by Koenker and Bassett (1978), characterizes the conditional

quantile distribution of a response variable given the values of predictor variables, thus providing

a broad description of the relationship between them in addition to being robust with respect to

outlying values of the response variable.

Formally, the objective of an (α, ξα(x)) quantile regression is to estimate the 0 < α < 1 pop-

ulation conditional quantile of a response variable Y corresponding to the value x of a predictor

variable X via an unspecified function ξα(x). It is expected that, for each value x, (1 – α)100% of

the population values of the response variable Y lie among the limits ξα/2(x) and ξ1–α/2(x).

Fan and Gijbels (1996) showed that the reference value ξα(x0) can be locally obtained in the

vicinity of a target point X = x0 by weighting the values of X in a pre-specified neighbourhood of

x0 via a kernel function. Specifically, these authors suggest that the local fit of ξα(x0) involves the
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minimization of
n∑

i=1
ℓα

[
Yi –

p∑
j=0

βj(Xi – x0)j
]
K

[
Xi – x0

h(α)

]
, (1)

where ℓα(t) = |t| + (2α– 1)t, 0 < α < 1, βj, j = 0, . . . , p are the coefficients of the polynomial adopted

for the local fit, K(·) is a kernel function and h(α) is a bandwidth, depending only on α.

In their original work, Fan and Gijbels (1996) note that the choice of the bandwidth h(α) is an

important aspect to be considered since it controls the amount of smoothing applied to the data. For

small values of h, only observations lying in a small neighborhood of x0 are taken into account and

lead to a more complex model; otherwise, for large values of h, observations that are distant from x0

will also affect the local fitting process. This problem has been addressed by many authors, without

a clear definition of an optimal solution. In particular, Yu and Jones (1998) presented a simplified

approach relating the parameter α used in the local fit of ξα(·) to the bandwidth which minimizes

the asymptotic mean squared error used in fitting the regression function. These authors obtained

the following expression for the computation of an “optimal" bandwidth

hopt

[
α(1 – α)

ϕ
(
Φ–1(α)

)2

]1/5

, (2)

where ϕ and Φ are, respectively, the density and the cumulative distribution functions of a standard

normal distribution and hopt is the plug-in optimal estimator proposed by Ruppert et al. (1995).

Many authors have considered modifications and improvements of the method proposed by Fan

and Gijbels (1996). Among them, we mention Anas Knefati et al. (2016), who propose plugging a

radial basis function neural network in the local linear quantile regression estimation and Liu et al.

(2019), who consider an algorithm based on a normal scale-mixture representation of an asymmetric

Laplace distribution that enjoys the same good design adaptation that ensures non-crossing quantile

curves for any given sample. More recently, Muggeo et al. (2021) propose an iterative algorithm

to select the smoothing parameters in additive quantile regression, wherein the functional forms of

the predictor variables are unspecified and expressed via B-spline bases with different penalties on

the spline coefficients.

The fitting methods proposed by these authors are robust with respect to response variable out-

lying values, but not with respect to predictor variable outlying values as in our motivating example.

Based on the ideas of Einbeck et al. (2004), we consider two procedures for the estimation of quan-

tile regression functions that are robust with respect to outlying values in the response and in the

predictor variables simultaneously.
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3. Predictor variable outlier-robust local quantile regression
3.1 Soft robustification method

In the context of local regression models, Einbeck et al. (2004) proposed to modify the standard

fitting algorithm by adding weights associated to the values of the density function of the predictor

variable in such a way that points lying in a sparse region are penalized. Specifically, for fitting the

regression function at a point x0, the algorithm consists of the minimization of

ξα(x0) =
n∑

i=1

[
Yi – β0 – β1(Xi – x0)2

]
ζ(Xi)K

(
Xi – x0

hn

)
, (3)

where β0 and β1 are the parameters to be estimated, ζ(·) is a monotonic increasing function of the

density function f (·) of X, K(·) is a kernel function and hn is the bandwidth.

The role of ζ(·) in (3) is to reduce the effect of the outlying X values in the estimation of the

regression function. The reduction can be more effective if we consider ζ(·) = f (·)k for some k > 1

although k cannot increase arbitrarily, since estimation may become unstable.

Einbeck et al. (2004) use a consistent estimator for the density function of the variable X at the

point x0, given by

f̂ (x0) =
1

nsn

n∑
i=1

K

(
Xi – x0

sn

)
,

where sn is the bandwidth proposed by Silverman (1986), namely sn = 0.9An–1/5, with

A = min

(
dp,

IIQ
1.34

)
, (4)

where dp and IIQ are, respectively, the standard deviation and the interquartile sample range of the

predictor variable X. Other non-parametric estimators of f (·) as those proposed by Fan and Gijbels

(1996) may also be considered.

Along similar lines, we extend the results to address quantile regression models by considering

the minimization of

ξα(x0) =
n∑

i=1
ℓα

[
Yi – β0 – β1(Xi – x0)

]
ζ(Xi)K

(
Xi – x0

hn

)
,

where ℓα(t) and K(.) are defined in (1), hn is the bandwidth defined in (2), ζ(·) is defined in (3) and

β0 and β1 are parameters to be estimated for each local linear fit.

3.2 Hard robustification
In the process of fitting ξα(·) described in the previous section, the effect of the outlying X

values is minimized, but not eliminated. In an attempt to further reduce this effect, Einbeck et al.
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(2004) suggest an alternative procedure to detect and eliminate these values. For such a purpose,

these authors consider the outlying values of X as those with estimated density below a certain

threshold (cut-off value). To determine the amount of elimination, they assume that X follows a

normal distribution with mean equal to the sample median, xmd , and standard deviation given by A

in (4). Letting d be the proportion of expected outlying values of X, Einbeck et al. (2004) proposed

a cut-off point given by

δ = Nµ,A2
(
xmd + Azd/2

)
=

1
A

ϕ
(
zd/2

)
, (5)

where zd/2 denotes the quantile of order d/2 of the standard normal distribution.

Using this criterion, we propose that the hard robustified quantile regression function ξ̂α(·) be

obtained by minimizing

n∑
i=1

ℓα

[
Yi – β0 – β1(Xi – x0)

]
ζ(Xi)I

[
f (Xi) > δ

]
K

(
Xi – x0

hn

)
,

where ℓα(t), K(·) are defined in (1), hn is defined in (2), ζ(·) is defined in (3), I(·) is the indicator

function and β0 and β1 are parameters to be estimated for each local linear fit.

4. Analysis of the heart dataset
In this section we apply of the procedures for fitting the local quantile reference curves discussed

in Section 3 to the dataset presented in Section 1.

In our proposal, we consider the bandwidth given in (2) and a Gaussian kernel function. Com-

putation of hopt may be carried out via the function dpill(), available in the package KernSmooth

and the proposed quantile regression functions may be fitted via slight modifications of the function

lprq(), available in the quantreg R package.

In Figure 1 (right panel) we present the 2.5%, 10%, 25%, 75%, 90% and 97.5% quantile ref-

erence curves fitted by the soft robustification method. Observe that the curves obtained by soft

robustification unlike the ones fitted by the standard local quantile regression method are less af-

fected by values of age over 60 years.

In the process of fitting quantile reference curves by hard robustification, we fixed the amount of

points to exclude as d = 5%; then, from (5) it follows that the outlying values of X were considered

as those for which the estimated density is ≤ δ = 0.05. The estimated density along with the cut-off

points are displayed in Figure 2.
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Figure 2. Estimated age density and cut-off limits.

The region where estimation of the reference curves is considered to be less reliable corresponds

to ages less than 17 or greater than 64, and imply that 8 observations should be discarded. This

corresponds to 2.3% of the sample size. The associated reference curves are displayed in the bottom

panel of Figure 1, clearly indicating the region where the observations are sparse.

The local quantile reference curves displayed in Figure 1 are quite irregular; they may be

smoothed by applying the rqss() function in the standard case and by fitting local polynomial

models to the robust estimated response variable fitted values in both the soft and hard robust cases.

This is easily accomplished via the locpoly() function. The smoothed curves are displayed in

Figure 3.
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Figure 3. Standard (left panel), soft robustified (right panel) and hard robustified smoothed reference curves (bottom

panel): 2.5% and 97.5%: solid lines, 10% and 90%: dotted lines, 25% and 75%: dashed lines.

5. Discussion

Although construction of quantile reference curves has been addressed by many authors, it is still

a problem with no optimal solution, specially when data are irregular and/or sparse. Recent work

by Liu et al. (2019) and Muggeo et al. (2021) are clear examples of the associated complexity. In

particular, we mention the algorithm proposed by the latter, implemented via the function gcrq()

available in the quantregGrowth package, where the generated reference curves accommodate

different characteristics of the data and have interesting features, like avoiding crossing of the dif-

ferent quantile curves. Nevertheless, the choice of the parameters that govern the construction of

the reference curves is not an easy task. An naive application of the function with the proposed op-

timal choice of parameters to the data described in the Introduction generates the reference curves

presented in Figure 4.
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Figure 4. 2.5%, 10%, 25%, 75%, 90% and 97.5% reference curves generated by the gcrq function.

We consider two alternative approaches where regions with sparse predictor variable values are

penalized. In the soft robustification approach, observations in these regions are downweighted,

generating wider intervals; otherwise, in the hard robustification case, these observations are elimi-

nated, defining regions where the reference curves construction is assumed unreliable. In this regard,

we quote Einbeck et al. (2004), who mention that

Surely the question arises whether one can rely on estimation results in areas where the data were down-

weighted or even cut off. This, however, is a question inherent to any robust method. In particular, when

applying soft robustification techniques, we must face the question of whether it is correct to downweight the

data, on the one hand, i.e., to pretend not to trust the data, but to believe in the estimation results in the same

region, on the other hand. Some decision has to be made and we suggest to base it on areas of confidence, which

can be selected by means of density estimation. Within the areas of confidence, i.e., for all x with f̂ (x) > δ ,

the estimation is considered to be reliable. Outside these areas, the reliability of the estimation procedures is

questionable and interpretation of the estimated curve must be taken cautiously.

The choice between the reference curves must take the regions in which the explanatory variable

values are sparse into account. These points can drastically affect the curves obtained by the standard

method, as illustrated in the manuscript, and one of the two proposed methods may provide an

alternative solution. The hard robustification method allows the elimination of the region with low

frequency of explanatory variable values. This was not the case in our example. The few points in

the region made up of patients over 64 can be attributed to the small population of women without
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any heart disease who attend the Heart Institute. In this case, the points can be kept in the analysis

and weighted to obtain robust reference curves via the soft robustification technique. Analytical

methods to decide which alternative to use are not yet available and constitute an interesting topic

for further research.

Although the proposed quantile reference curves may be implemented via straightforward mod-

ifications of well established R package functions, we recognize that further research is needed to

improve the solution. The choice of appropriate bandwidths and possible annoying crossing of the

quantile curves are two topics under investigation.
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