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Abstract
Diabetes mellitus is one of the deadliest incurable diseases globally, and its cases continue upward. The
identification of the disease in an early way helps fight it; however, blood tests can be considered invasive,
discouraging its accomplishment. In this vein, this work aims to build a model as an alternative to tradi-
tional exams to identify the disease. Statistical learning algorithms such as logistic regression, K-nearest
neighbors, decision trees, random forest, and support vector machines were used for diabetes classifica-
tion. These models were considered separately and combined via hard and soft voting classifiers. The
methods were applied to a widely known dataset of 768 individuals and nine variables, compared using
several accuracy metrics based on the confusion matrix, and used to estimate the probability of diabetes
for a given profile.

Keywords: Diabetes mellitus; Statistical learning; Random forest; Support vector machines; K-nearest
neighbors; Hard and soft voting classifiers.

1. Introduction
As defined by the World Health Organization, diabetes mellitus, commonly known as diabetes, is a
chronic metabolic disease characterized by high blood glucose levels, which over time, can lead to
severe damage to the heart, veins, eyes, kidneys, and nerves. Diabetes is divided into Type 1, Type
2, and gestational. There is a great deal of attention around the globe regarding Type 2 diabetes,
as it comprises 90% of cases, and it has been increasing in the last three decades in countries of all
income levels and is linked to unhealthy habits, as reported by the World Health Organization and
by the International Diabetes Federation (International Diabetes Federation, 2019; World Health
Organization, 2020).
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Among the incurable diseases, diabetes is one of the deadliest, with 1.5 million deaths attributed
to the disease every year, making it the ninth leading cause of death in 2019 (World Health Orga-
nization, 2020). The number of cases has been growing consistently in recent decades; however,
there is a global agreement to reverse this trend by 2025, and technology can play a key role in this
mission (World Health Organization, 2021).

The American Diabetes Association recommends that any person with disease symptoms, like
weight loss, frequent urination, or excessive thirst, should be tested for the disease. People older than
45 should also be tested once every three years even if they don’t have any symptoms as referenced
in endocrineweb.com. With cases on the rise, the global diabetes diagnostics market is expected to
reach 42.4 billion dollars by 2026. The demand for diabetes diagnostics is being driven, among many
other things, by developing non-invasive techniques like the one we present in this paper and others
such as non-invasive wearable glucose testing devices as referenced in prnewswire.com. Shang et al.,
2022 compared some non-invasive testing techniques with invasive monitors and noticed that the
non-invasive techniques were generally less accurate but less painful and produced less biological
waste. ibid. acknowledged the barriers but predicted success for non-invasive techniques shortly.

Many computer models can be an alternative to help identify people with diabetes based on
specific covariates. Aiming at proposing and/or applying models to identify and classify individuals
with/without diabetes, several studies can be found in the literature, with some of them applied to
the data that we considered in this paper. Kumari et al., 2021 used a soft voting classifier algorithm
but only achieved an accuracy of 79.1%, while Hina et al., 2017 used more complex algorithms,
such as the multi-layer perception achieving an accuracy of 81.8%, being this the only metric they
used, which can be problematic, especially in unbalanced data, as is the case. Sisodia & Sisodia, 2018
also proposed to classify diabetes cases as positive or not using different machine learning models,
and their best-performing model was the Naive Bayes, achieving an accuracy of 76.3%. Ara et al.,
2018 used Naive Bayes and Logistic Regression to predict the outcome variable, obtaining accuracy
of 75% and 77%, respectively. Using a different diabetes dataset, Bressan et al., 2020 managed to
classify 73.7% of the patients in the intervention group correctly, as well as 69.2% of the patients in
the control group.

Several papers use neural network algorithms to predict diabetes, including Jeatrakul et al., 2010,
which achieved an accuracy of 76.6% using an artificial neural network. Ayon & Islam, 2019 ob-
tained a surprisingly high accuracy of 98% as well as a sensitivity of 98.8% and specificity of 96.6%;
however, we could not locate enough details to allow for the reproducibility of the results.

In this paper, we will use statistical and machine learning models to classify the presence/absence
of diabetes. In particular, we will use the Logistic Regression (Cox, 1958), an algorithm that works
based on the logistic function; the K-nearest neighbors (Silverman & Jones, 1989), which classi-
fies new observations based on the nearest neighbors; the Decision tree (Breiman et al., 1984), an
algorithm with the style of a flowchart that can classify new observations by splitting the "nodes"
based on conditions; the Random Forest (Breiman, 2001), a collection of decision trees that uses
random samples from the dataset to obtain a lower correlation between the trees; and the support
vector machines (Cortes & Vapnik, 1995), that uses mapping functions or hyperplanes to classify
new observations. Moreover, we will also consider the hard and soft methods of a voting classifier
to combine the results of the considered models and use them to estimate the probability of diabetes
for a given profile. A more in-depth description of these models will be made, and all of them will be
evaluated through the k-fold cross-validation procedure, which consists of dividing the dataset into
K parts, and then, iteratively, using some of them to learn the model, while the others are explored
in the evaluation of its performance (Anguita et al., 2012). All models were implemented in python
using the Scikit-learn (Pedregosa et al., 2011) library and applied to a widely known dataset of 768
individuals and nine variables (Smith et al., 1988).

To evaluate the model performance, several accuracy metrics will be used: accuracy, specificity,

https://www.endocrineweb.com/conditions/diabetes/who-should-be-tested-diabetes-how-diabetes-diagnosed
https://www.prnewswire.com/news-releases/global-diabetes-diagnostics-market-to-reach-42-4-billion-by-2026--301605655.html
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sensitivity, positive predictive value (precision), negative predictive value, and F1 score. The use of
multiple metrics has the advantage of avoiding overfitting when the model performs well only on
training data. In contrast to other studies, other metrics will be used in addition to the accuracy
because, in the field of disease prediction/classification, a balance is always sought in predicting false
positives and false negatives, measured through sensitivity and specificity, respectively. In addition,
as it is a database in which 65% of patients do not have diabetes, therefore unbalanced, metrics such
as precision and F1 score may stand out in terms of accuracy. In this way, the results will provide
a broad, robust approach with superior performance compared to other articles on the same field
mentioned above (Hina et al., 2017; Jeatrakul et al., 2010; Kumari et al., 2021; Sisodia & Sisodia,
2018).

This paper is organized as follows. Section 2 describes the data, the methods, and the accuracy
measures. Section 3 provides the results, including the initial variable selection, a descriptive analysis,
the model performance, and the discussion of the results. The paper ends with some concluding
remarks in Section 4.

2. Materials and methods
This section will describe the data set and explain the methodology used in this paper. Figure 1
provides a summary of the methodology, which consists of (i) selecting the data; (ii) pre-processing
by, e.g., removing inconsistent observations, standardizing the variables; (iii) selecting the most
important variables for the models; (iv) modeling, i.e., applying the selected models with the adjusted
parameters to the training data; (v) combining the models using the hard and soft voting classifiers
and apply them to the training data; and (vi) use the validation set to assess the performance of the
models in (iv) and (v), throughout the accuracy measures.

Figure 1. Flowchart describing the methodology used in this paper.

2.1 Data set
The original database obtained from the National Institute of Diabetes and Digestive and Kidney
Diseases survey has 768 observations and nine variables with information related to the health of
North American indigenous women of the Pima ethnicity (Smith et al., 1988). During data pre-
processing, the 11 observations with a zero body mass index (BMI) were treated as some kind of
writing/measurement error and removed. In this way, we consider a data set with 757 individu-
als and nine variables: Age: years; blood pressure: diastolic blood pressure (mm Hg), BMI: body
mass index (weight in kg/(height in m)2); diabetes pedigree: diabetes pedigree function, glucose:
plasma glucose concentration 2 hours after an oral glucose tolerance test (mg/dL); Insulin: 2-hour
serum insulin (mu U/ml); pregnancies: number of pregnancies; skin thickness: triceps skin fold
thickness (mm); and outcome: 0 if no diabetes and 1 if diabetic. Among the women in the study,
491 (64.86%) do not have diabetes, while 266 (35.14%) have the disease. Hence, it is considered
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that a prediction model with an accuracy lower than 64.86% is highly unsatisfactory, as this would
be the accuracy achieved if it pointed out that no observed woman has diabetes. In Figure 2 and
3, the main descriptive measures of the eight covariates are presented, where it can be observed
that the greatest variability is that of insulin while the smallest is the BMI. Insulin has the greatest
discrepancy between the median and the mean, in which the latter is more than double the former.
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Figure 2. Feature importance.
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Figure 3. Boxplots of covariates.

2.2 Models
In this subsection, we will present a brief description of the statistical and machine learning models
used in this paper.
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2.2.1 Logistic regression
Logistic regression is a model that works based on the logistic function, which transforms any value
into a number in the range between zero and one. As our variable of interest is categorical and
binary, it allows the use of a regression model to calculate the probability of a specific event. Unlike
simple linear regression, in binary logistic regression, the output variable is on the nominal scale,
and the error has a Bernoulli distribution with zero mean and variance π(x)(1 – π(x)), with π(x)
the probability of success. In addition, this model does not accept multicollinearity; that is, the
independent variables cannot have a strong correlation with each other (Cox, 1958). The posterior
probabilities of the K classes (K = 2 for binary response variables) in the logistic regression models
are obtained via linear functions of x, while ensuring that they sum one, and, for K = 2, have the
form:

log
(

π(x)
1 – π(x)

)
= β0 + βT

1 x1 (1)

where β0 is the intercept from the linear regression equation and βT
1 x1 is the transposed vector of

regression coefficients multiplied by the value of the predictor.
These models can be fitted by maximum likelihood, using the conditional probability of G given

X, with its log-likelihood for N observations given by:

l(θ) =
N∑
i=1

log pgi (xi; θ) (2)

where pk(xi; θ) = Pr(G = k|X = xi; θ) (Hastie et al., 2009). When t independent covariates X1 . . .Xt,
are available to model the response variable, the multiple logistic regression model can be written
as:

log
(

π(x)
1 – π(x)

)
= β0 + βT

1 x1 + . . . + βtxt. (3)

where βtxt is the vector of the t-th regression coefficients multiplied by the value of the t-th pre-
dictor.

2.2.2 k-nearest neighbors (KNN)
The K-Nearest Neighbors is an algorithm that is based on the idea that observations close to new
data that we seek to classify provide important information. Classification by this method usually
involves dividing the sample into test and training categories, and it is based on the Euclidean distance
between a new observation and specified training samples. During the training process, the real class
of each sample is used, while in the test process, it is sought to predict the real classes of each sample.
In this model, each value of k chosen by the researcher produces a “neighborhood” and a different
final result (Silverman & Jones, 1989). In practice, given an observation in the test data, x0, we find
the k training observations closest, in Euclidean distance, to x0 and classify x0 using the majority
vote among its k neighbors.

2.2.3 Decision tree
A decision tree is a flowchart-style algorithm that works from the binary slicing of attributes. The
division starts at the so-called “root node”, which represents the entire dataset; over time, it is divided
into two or more homogeneous sets to find the best attribute until reaching the “leaf node,” where
it is no longer possible to split the dataset. This is a very commonly used algorithm due to the
greater ease of interpretation and understanding when compared to other classification algorithms
(Breiman et al., 1984).
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The classification of observations is done as follows. In a node m representing the region Rm
with Nm observations, we have that:

p̂mk =
1

Nm

∑
xi∈Rm

I(yi = k) (4)

is the proportion of observations of class k at node m. If the majority class at node m is k, all obser-
vations in the node are classified as belonging to that class (Hastie et al., 2009).

2.2.4 Random Forest
Random forest (Breiman, 2001) is a collection of classification and regression trees trained on datasets
of the same size as the training sets so that each tree depends on the value of an independent and
identically distributed random vector. The algorithm, based on bagging (i.e., bootstrap aggrega-
tion), starts by selecting random samples from the dataset and then building a decision tree for each
sample. As seen before, the different decision trees return the best attributes, after which the at-
tribute with the most repeated appearances is chosen. The generalization error of a random forest
depends on the strength of each individual tree and the correlation between them (Ho, 1995).

To classify new observations, the Random Forest model obtains a class vote for each tree, as
explained in the previous subsection, and then classifies the new observation using the majority vote.
So if Ĉb(x) is the class prediction of the b-th tree, b = 1, . . . , B, B the number of bootstrap samples,
of the random forest, we have that the class obtained by the random forest algorithm ĈB

rf (x) is given

by majority vote among all B regression trees Ĉb(x), b = 1, . . . , B (Hastie et al., 2009).

2.2.5 Support vector machines
Support Vector Machines (SVM) is a classification methodology proposed by (Cortes & Vapnik,
1995), that seeks to build a hyperplane as a decision surface, in such a way that the separation between
the classes is maximum. This is considering linearly separable patterns. For non-linearly separable
patterns, we look for an appropriate mapping function to make the mapped set linearly separable.
SVM stands out for at least two characteristics: it has a solid theoretical foundation and can achieve
high performance in practical applications. Learning theory can precisely identify the factors that
must be considered for successful learning and build models that are quite complex. More details
can be found elsewhere, e.g., (Hastie et al., 2009).

2.3 Hard and soft voting classifier
The combination of the results from two or more classification models can be done through a voting
classifier. Here two voting classifiers are considered: the hard voting classifier, and the soft voting
classifier. In the hard voting classifier method, the predicted class is the one that represents the
majority according to the individual classification of each model. For example, if in a scenario with
three models, two are classified as “A,” and one is classified as “B”, the predicted class will be “A”
because it had the voting majority of the classifications.

In the soft voting classifier method, the averages of the probabilities of each class assigned by
each model are used, returning the one with the highest average of the predicted probabilities.
For example, in the situation in the previous paragraph, if the three models return the following
probabilities for classes “A” and “B”, respectively, (0.55, 0.52 and 0.4) and (0.45, 0.48 and 0.6), the
soft voting classifier will classify the new observation in class B because it presented a higher average
probability (0.51 against 0.49).
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For both cases, it is possible to establish weights, that is, to increase the importance of one
classification method to the detriment of the others. In the majoritarian approach, it would count n
times, and in the probabilistic approach, a weighted average is calculated (Wolpert, 1992).

It is worth mentioning that this strategy of combining models increases the computational cost
and, in situations where a large number of models is considered, and a large volume of data is used,
this strategy can become time-consuming.

2.4 Accuracy measures
To compare and evaluate the classification accuracy of each method, several accuracy measures are
used. To understand what each metric represents, we first introduce the concept of a confusion
matrix. Table 1 shows a confusion matrix, in which we have true negative (TN) and true positive
(TP) when the observation is correctly classified, and false negative (FN) and false positive (FP)
when the wrong classification occurs.

Table 1. Confusion Matrix

Predicted Value True Value
Y = 0 Y = 1

Y = 0 True Negative (TN) False Negative (FN)
Y = 1 False Positive (FP) True Positive (TP)

Based on the confusion matrix in Table 1, we can define several metrics that will be used to
measure the classification accuracy of the considered models.

• Accuracy (A): is the number of correct predictions divided by the total number of predictions,
that is,

A =
TN + TP

TN + TP + FN + FP
(5)

informs the percentage of correctly classified diagnoses of diabetes;

• Specificity (E): is the rate of correctly identified negative cases, that is,

E =
TN

TN + FP
(6)

informs the percentage of correctly classified negative diagnoses of diabetes;

• Sensitivity (S): is the rate of correctly identified positive cases, that is,

S =
TP

TP + FN
(7)

informs the percentage of correctly classified positive diagnoses of diabetes;

• Positive predictive value (PPV): it is the rate of true positives in relation to all positive predictions,
that is,

PPV =
TP

TP + FP
(8)

informs the percentage of positive diagnoses of diabetes among all that the model classified as
positive;
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• Negative predictive value (NPV): it is the rate of true negatives in relation to all negative pre-
dictions, that is,

NPV =
TN

TN + FN
(9)

informs the percentage of negative diagnoses of diabetes among all that the model classified as
negative;

• F1 score (F1): is the harmonic mean between sensitivity and the positive predictive value, that
is,

F1 =
2

1
S + 1

PPV
(10)

More details about these metrics can be found elsewhere, e.g., Izbicki & dos Santos, 2020.

3. Results and discussion
3.1 Variables selection
After verifying that there were no strong correlations between the independent variables, a selection
of variables was performed using the method known as recursive elimination of variables, which is
essentially a backward selection of the predictors. This technique begins by building a model on the
entire set of predictors and computing an importance score for each predictor. The least important
predictors are then removed, the model is rebuilt, and importance scores are computed again. The
subset size that maximizes the accuracy is used to select the predictors based on the importance
rankings (Kuhn & Johnson, 2019). This analysis was carried out in the software R, version 4.1.2,
(R Core Team, 2022) using the package Caret (Kuhn et al., 2021) and consists of evaluating the
performance of the Random Forest model for all possible subsets of independent variables. We
chose to pair the recursive elimination of variables with the Random Forest because it tends not
to exclude variables from the prediction equation, and it has a well-known internal method for
measuring feature importance (Kuhn & Johnson, 2019). From this analysis, it was verified that
the maximum accuracy was obtained in the presence of four variables, which according to the
predictors function of R are age (age), the number of pregnancies (pregnancies), BMI (BMI) and
glucose level (glucose), which are the most important variables as shown in the last column of Table ??.
During the analysis, we verified that the performance of all algorithms improved by using these four
features.

The features’ importance in the last column of Table ?? were obtained with the use of varImp
function from Caret package in R (Kuhn et al., 2021). It was estimated by a Learning Vector Quanti-
zation Model, which is a prototype-based supervised classification algorithm proposed by Kohonen,
1995. This method aims to divide the data space into distinct regions and define a vector prototype
for each region.

After data manipulation and organization, the mean and median of all eight features present in
the dataset grouped into “diabetic” and “non-diabetic” were obtained (Table 2). Table 2 also features
the values for the Mann-Whitney test statistics and p-values, whose alternative hypothesis is that
the medians of the groups are different, being the test statistic the sum of the rankings of the two
groups (Mann & Whitney, 1947; Wilcoxon, 1945). A non-parametric test was used because none
of the features’ observations followed a normal distribution. From the values of mean and median
presented in the table, one can infer that there seems to be a significant difference between the two
groups for most features. After conducting the hypotheses tests, we rejected the null hypothesis
based on the p-values for the following features: Glucose, BMI, Age, Pregnancies, Blood Pressure,
Skin Thickness, and Diabetes Pedigree Function, meaning that the median of the two groups is
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different. For the feature Insulin, we failed to reject the null hypothesis if we consider a significance
level of 0.05, meaning that the two groups have the same median. However, for a significance level
above 0.07, the null hypothesis of equality between medians is rejected.

Table 2. Mean, median, Mann-Whitney test statistic and p-value of the features’ observations grouped/compared into “di-
abetic” and “non-diabetic”

Median Statistic P-value

Features Non-diabetic Diabetic

Glucose 107.0 140.0 27762 0.00
BMI 30.1 34.3 40875 0.00
Age 27.0 36.0 41325 0.00

Pregnancies 2.0 4.0 50112 0.00
Blood Pressure 70.0 74.0 54477 0.00
Skin Thickness 21.0 27.0 58430 0.02

Insulin 42.0 0.0 60472 0.07
DPF 0.34 0.45 51207 0.00

3.2 Models Performance
After data preparation, the models described in the previous section were fitted to the data. For this,
the database was divided into two parts, 80% for cross-validation (k-fold) and 20% for validation.
After that, the value of 50 was chosen for k-fold; that is, the dataset was divided into 50 parts, using
49 (k - 1) to train the model and the remaining part to test it, repeating this process 50 times. As a
result, the models gain greater generalization capacity and greater stability, avoiding overfit (Stone,
1974).

The models were adjusted, through optimization methods, so that they were as accurate as
possible in the training set. In the sequence, they were selected for validation. The best parameters
for this case are 29 neighbors for the KNN, a maximum depth of two for the decision tree, and a
maximum depth of five for the random forest.

Table 3 shows the values of the metrics for the selected models calculated with the validation
set, being the values between parentheses the best hyperparameters of the models, obtained via
optimization. The random forest (5) yielded the best performance in accuracy (0.8224), sensitivity
(0.6596), NPV (0.8545), and F1 score (0.6966); the SVM obtained the best performance in the
specificity (0.9048) and PPV (0.7436), and the second best accuracy (0.8158). The lowest accuracy
was obtained by the decision tree with a value of 0.7697.

Table 3. Evaluation metrics (accuracy, specificity, sensitivity, positive predictive value (PPV), negative predictive value
(NPV), and F1 score, respectively) for the five models under consideration (random forest, support vector machines (SVM),
k-nearest neighbor (KNN), logistic regression, and decision tree). The values between parentheses give the best hyperpa-
rameters of the models.

Accuracy Sensitivity Specificity PPV NPV F1 score

Random forest (5) 0.8224 0.6596 0.8952 0.7381 0.8545 0.6966
SVM 0.8158 0.6170 0.9048 0.7436 0.8407 0.6744
KNN (29) 0.8092 0.6383 0.8857 0.7143 0.8455 0.6742
Logistic regression 0.8026 0.6170 0.8857 0.7073 0.8378 0.6591
Decision tree (2) 0.7697 0.5319 0.8762 0.6579 0.8070 0.5882
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The strategy adopted in this paper to improve the evaluation metrics was using a combination
of models for classification, that is, combining them to obtain a classification result. The first two
rows of Table 4 shows the performance using the hard voting (majority) and soft voting (proba-
bility) methods combining all models. Subsequently, an analysis was made to search for the best
combination of models, and it was found that Random Forest, SVM, KNN together via soft voting
with weights 2, 1, and 1, respectively, was the best alternative, being the results added to Table 4.
Figure 4 shows a summary of this process, in which post-processing and variable selection is applied
to models via soft voting with their weights. It is observed that this combination was the holder of
the best result in all six metrics. It obtained 83.55% of the diagnoses right, with a rate of 65.96% for
the positive cases, and 91.43% for the negative ones, a PPV of 77.50%, an NPV of 85.71 % (Table 4).
The average between sensitivity and PPV is 0.7126 (F1 score). For this reason, it was determined
as the chosen classifier. The confusion matrix for this classifier is presented in Table 5.

Table 4. Evaluation metrics (accuracy, specificity, sensitivity, positive predictive value (PPV), negative predictive value
(NPV), and F1 score, respectively) for the hard voting (majority) and soft voting (probability) methods combining all models,
and the soft voting considering random forest, SVM, KNN with weights 2, 1 and 1, respectively

Accuracy Sensitivity Specificity PPV NPV F1 score

Hard (all) 0.8224 0.6383 0.9048 0.7500 0.8482 0.6897
Soft (all) 0.8158 0.6170 0.9048 0.7436 0.8407 0.6744
Soft (RF, SVM, KNN) 0.8355 0.6596 0.9143 0.7750 0.8571 0.7126

Figure 4. Algorithm of the best performing method for diabetes classification: soft voting combining random forest, SVM,
and KNN, with weights 2, 1, and 1, respectively.

Table 5. Confusion Matrix for the best performing method for diabetes classification: soft voting combining random forest,
SVM, and KNN, with weights 2, 1, and 1, respectively.

Predicted Value True Value
Y = 0 Y = 1

Y = 0 96 9
Y = 1 16 31

The model resulting from the voting classifier, in addition to diabetes classification, computes the
probability of such an event. In that way, it is possible to estimate the probability of given profiles.
For example, a 33-year-old woman with a BMI of 32, a glucose of 121, and one pregnancy is 49.6%
probability of being diabetic according to the model. A 24-year-old woman with a BMI of 27, a
glucose of 91, and one pregnancy has a 4.5% probability of being diabetic. While a 41-year-old
woman with a BMI of 36, a glucose of 141, and 6 times pregnant has a 64.3% probability.
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The classification is based on these probabilities, if it is greater than 50%, it is considered diabetic.
Having access to these probabilities, it is possible to modify the threshold to other values, such as
60%. This approach was applied, but no superior performance was obtained with it, so the default
threshold (50%) was maintained.

4. Conclusions
The detection of diabetes is extremely important for humans because this disease causes many com-
plications, and the sooner it is identified, the better it can be fought. Therefore, contributions to help
improve the diagnosis are of great importance. As an alternative to traditional exams, computational
algorithms can be used to help identify diabetes using a set of covariates.

In this paper, statistical learning algorithms such as logistic regression, K-nearest neighbors,
decision trees, random forest, and support vector machines were used individually and combined
using hard and soft voting classifiers, for diabetes classification. The results showed that in this case,
using a soft voting classifier combining random forest, SVM, and KNN yielded the best perfor-
mance in all metrics under consideration, indicating that this is the most suitable model for pre-
dicting diabetes in this database. Moreover, based on the chosen model, the probability of diabetes
could be estimated for any given profile. The codes and data used in this work can be accessed at
https://github.com/Andersonof30/Diabetes-hard-soft-classifier.

The methodology and strategies used in this paper are of great generality and can be applied
and extended to other data sets in the same field of research, and also to other areas where the aim
is to make a classification based on a set of covariates.
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