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Abstract
In this paper, we address the problem of fitting probabilistic models based on several sampling designs
that originated from the ranked set sampling (RSS) scheme. Although these sampling designs have been
proved to be efficient and/or economical alternatives to simple random sampling (SRS) and RSS, the
problem of model fitting still should be properly studied for a complete understanding of their advantages.
In this study, we investigated the performance of eight RSS-based designs, among them the recently
proposed modified neoteric RSS (Taconeli & Cabral, 2019), combined with six estimation methods in
model fitting. Through extensive simulations, we could identify the combinations that provided higher
efficiency. The simulated results showed that the RSS-based designs outperformed SRS in model fitting,
whereas the Anderson-Darling and maximum product of spacings were the most efficient among the
estimation methods. In addition, the Anderson-Darling and maximum product of spacings estimation,
combined with the neoteric RSS design and its variants, allowed the highest efficiency under both perfect
and imperfect ranking. Additional simulations based on real data set from a forest inventory corroborated
these findings.
Keywords: Anderson-Darling estimation; Double ranked set sampling; Maximum product of spacings;
Monte Carlo simulation; Neoteric ranked set sampling; Paired ranked set sampling.

1. Introduction
Ranked set sampling (RSS), proposed by McIntyre (1952), leads to more efficient estimation

when the units to be sampled can be easily ranked prior to being effectively measured. It is useful
when measuring the variable of interest is somehow difficult, costly or demands destructive tests,
but small sets of population units can be easily ranked. The statistical efficiency of RSS estimation
over its simple random sampling (SRS) counterpart was first proved by Takahasi & Wakimoto, 1968,
when the population units are ranked into the sets without errors (perfect ranking), whereas Dell

© Brazilian Journal of Biometrics. This is an open access article distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/)

https://orcid.org/0000-0002-3485-400X
https://orcid.org/0000-0003-1884-9849
cetaconeli@gmail.com
http://creativecommons.org/licenses/by/4.0/


Brazilian Journal of Biometrics 145

& Clutter, 1972 verified that RSS still produces more efficient estimators under imperfect ranking.
The ranking process can be based on the values of some accessible concomitant variable or personal
judgment. In the last decades, several studies have ratified the superiority of RSS over SRS in different
contexts. For a comprehensive review of the RSS theory and its applications, we recommend Chen
et al., 2003. The RSS design can be described as follows.

1. Randomly select n2 units from the target population and divide them randomly into n sets of
size n;

2. Rank the units within each set according to some easy and inexpensive ranking criterion;
3. Select the unit ranked in position i from the ith set, for i = 1, 2, ..., n, to compose the final sample.

Only these observations must be effectively measured for the variable of interest;
4. Steps 1-3 can be repeated m times to draw a sample of size mn.

The final sample is denoted by
{
y[i]j; i = 1, ..., n, j = 1, 2, ...,m

}
, such that y[i]j refers to the sample

unit judged on position i in the ith set from the jth cycle. Similar notations may be adopted for all
sampling designs we have considered in this study. When assuming a particular probabilistic model,
these random variables are independent, as they are produced by sample units from disjoint sets of
the population, but not identically distributed, due to the ranking process.

Several extensions of the original RSS design were proposed in the last decades. These extensions
may provide additional statistical efficiency and/or more economy to the sampling process. To
highlight some of these extensions, Al-Saleh & Al-Kadiri, 2000 introduced the double ranked set
sampling (DRSS) technique; Muttlak, 1996 proposed the paired ranked set sampling (PRSS); Haq
et al., 2016, the paired-double RSS (PDRSS); Zamanzade & Al-Omari, 2016, the neoteric ranked
set sampling (NRSS); and Taconeli & Cabral, 2019, the double NRSS. These sampling schemes will
be described in details later, as well as their pros and cons.

Although the existing literature encompasses many studies on RSS and its extensions, the sce-
nario is somewhat different regarding parametric estimation and model fitting, as the majority of
publications are limited to the original RSS scheme. Moreover, these studies often consider maxi-
mum likelihood estimation (MLE), where the likelihood function is based on the strong and very
restrictive assumption of perfect ranking (see Akgül et al., 2018; Chen et al., 2017, 2019; Esemen &
Gürler, 2018). Under the perfect ranking scenario, and assuming a particular probabilistic model,
the RSS sample units produce a set of independent order statistics, and the likelihood function can
be easily derived. Under imperfect ranking, however, the likelihood function is not so trivially ob-
tained. Perfect ranking is not common in practice, since ranking errors are always expected. In such
cases, the efficiency of MLE quickly deteriorates with the ranking errors, as can be seen in Dey et al.,
2017 and Consulin et al., 2018. Alternatives to MLE were recently considered by Taconeli & Bonat,
2020 and Pedroso et al., 2020, but only for the original RSS design.

For some RSS-based schemes such as NRSS, PRSS, and their double-stage versions, the random
variables are neither independent nor identically distributed, since some sample units are drawn
from the same ranked set. In this case, MLE is challenging even under perfect ranking. This fact
may explain the gap in the literature regarding parametric estimation for these sampling designs.
More precisely, in our search we did not find studies on parametric estimation under NRSS, PRSS,
and their extensions. Moreover, the number of studies is scarce even for the original RSS and the
DRSS procedures.

Our practical motivation for this research was based on a native forest data set. Forest data usually
involve performing measurements on a set of variables in the field, generally being a quite expensive
activity. The tree total height is strongly correlated with the individual tree diameter (Sharma &
Parton, 2007), which allows estimating the tree growth potential and the forest production over
time. Due to overlapping treetops, total height is hard to measure directly within the forest, requir-
ing adequate training of operators, besides high precision instruments for indirect measurements.
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In practice, few selected trees have their total height measured during the forest inventory, while
diameter can be easily obtained from all trees. This practice comes of the desire to reduce mea-
surement costs, and/or sometimes is due to poor visibility in the forest (Zhang et al., 2004). In this
context, alternative sampling methodologies to simple random sampling become relevant, especially
when they are associated with lower costs of data collection, such as the RSS-based designs.

Therefore, in this study we evaluated the performance of eight different RSS-based designs
combined with six estimation methods in fitting probabilistic models. We have also performed
additional simulations based on a data set obtained from a forest inventory carried out in native
forests located at Brazil. The variable of interest was the height of trees, and their diameters were
used to rank the units into each set. Our main objective was to identify methods that meeting
the following requirements: (i) flexibility to encompass non-identically distributed and/or non-
independent sample units; (ii) robustness to imperfect rankings; and (iii) practical applicability, with
particular interest in forest data. Our study was based on extensive simulations, where different
probabilistic models, sample sizes, and levels of imperfect ranking were considered. Additionally,
we proposed and assessed the performance of a new sampling design based on a modification of
NRSS, which we named as modified NRSS (NRSSm).

In Section 2 we present the sampling designs considered in this study. Section 3 describes the
parametric estimation methods we have used. Monte Carlo simulation was used to address the
performance of the proposed methods and the results are presented in Section 4. Simulation analysis
based on a real data set from a forest inventory are discussed in Section 5. Our final remarks are
given in the Section 6.

2. RSS-based designs
In this section, we describe the RSS-based designs considered in this work. Although some

designs are based on a greater number of initially identified elements, or two ranking stages, all of
them produce a final sample of size N = mn. For additional information on the sampling designs we
recommend consulting the original papers.

2.1 Paired ranked set sampling (PRSS)
PRSS is an economic alternative to RSS and other RSS-based designs, as fewer population units

must be initially identified. The following steps describe the PRSS procedure.

1. Randomly select nk elements from the target population and allocate them randomly into k sets
of size n. For even n, k = n/2, and, for odd n, k = [n/2] + 1, where [x] is the integer part of x;

2. Rank the sample units within each set according to some easy and inexpensive ranking criterion;
3. Select the units ranked in positions 1 and n from the 1st set, the units ranked in positions 2 and

n – 1 for the 2nd set, and so on;
4. Steps 1-3 can be repeated m times to draw a sample of size mn.

Not all observations from a PRSS sample are independent, as the final sample presents pairs
of sample units selected from the same ranked set (Muttlak, 1996). According to Zamanzade &
Mahdizadeh, 2018, there is a positive correlation among sample units provided by the same ranked
set, such that the statistical inference based on PRSS is expected to be less efficient than that based
on RSS, for a fixed sample size.

2.2 Neoteric ranked set sampling (NRSS)
The following steps describe NRSS:

1. Randomly select n2 units from the target population;
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2. Rank the n2 sample units based on the pre-established ranking criterion;
3. Select the sample unit ranked in position [(i – 1)n + l]th for the final sample, for i = 1, ..., n. If n is

odd, then l = n+1
2 ; if n is even, then l = n+2

2 when i is odd and l = n
2 when i is even;

4. Again, steps 1-3 should be repeated m times to obtain a final sample of size mn.

For the sake of illustration, for n = 3 a single set with n2 = 9 elements must be composed and
ranked, and the elements ranked in positions 2, 5, and 8 must be sampled. For n = 4, the units
ranked in positions 3, 6, 10, and 14 from a single set of size n2 = 16 must be selected, and so on.
By this way, the random variables provided by the NRSS sample units in a specific cycle are neither
independent nor identically distributed. However, the larger sets induce lower variances for these
random variables, and NRSS outperforms RSS for estimating several population parameters. For
additional details, see Zamanzade & Al-Omari, 2016.

We also propose here a variation of the original NRSS scheme, which can be used for m > 1,
i.e. when there are two or more cycles. In such instances, we randomly select a number between 1
and n (let us say q) for the first cycle, and the units ranked in positions [q + (i – 1)n] must be selected
for the final sample, i = 1, ..., n. If, for example, we consider n = 3 and q = 1, the sample units ranked
in the 1st, 4th, and 7th positions must be selected. For the second cycle, a new value for q is drawn
from the set {1, 2, ..., n}, and the units ranked in positions [q + (i – 1)n]th must be selected, i = 1, ..., n.
This procedure must be repeated in each cycle, yielding a final modified-neoteric RSS (NRSSm)
sample of size N = mn.

2.3 Double ranked set sampling (DRSS)
The DRSS design can be described as follows:

1. Randomly select n3 elements from the target population, which should be randomly allocated
into n blocks, each one with n sets of size n;

2. Apply the RSS algorithm to each block, producing n new sets of size n;
3. Reapply the RSS algorithm to the sets generated in step 2, resulting in a DRSS sample of size n;
4. Steps 1-3 can be repeated m times for a final sample of size N = mn.

DRSS has proven to provide more efficient estimators than SRS and RSS. On the other hand,
it requires identifying n3 elements from the target population, rather than n2, producing a more
time-consuming two-stage ranking process to obtain the final sample.

2.4 Paired double ranked set sampling (PDRSS)
The PDRSS configures a two-stage variation of PRSS, and it can be described as follows:

1. Randomly select n3/2 elements from the target population, which should be randomly allocated
into n/2 blocks, each one with n sets of size n;

2. Apply the RSS algorithm to each block, producing n/2 new sets of size n;
3. Employ the PRSS algorithm to the sets produced in step 2, resulting in a PDRSS sample of size

n;
4. Steps 1-3 can be repeated m times for a final sample of size N = mn.

The presented scheme considers that n is even. For an odd n, the procedure is similar, but we
begin identifying n2(n + 1)/2 elements, which must be randomly allocated into (n + 1)/2 blocks with
n2 elements each. Just as PRSS is an economic alternative to RSS, PDRSS is less expensive than
DRSS.
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2.5 Neoteric-neoteric ranked set sampling (NNRSS)
The NNRSS design is also a two-stage sampling, with both stages based on NRSS. The follow-

ing steps allows selecting a NNRSS sample:

1. Randomly select n3 elements from the target population and divide them randomly into n sets
of size n2;

2. Apply the NRSS method in each set to obtain n NRSS samples of size n;
3. Employ the NRSS procedure to the pooled n2 elements selected in step 2 to obtain a NNRSS

sample of size n;
4. Steps 1-3 can be repeated m times to obtain sample of size mn.

As for the other RSS-based designs, the double-stage NRSS provides more efficient inferences
than their single-stage counterparts.

2.6 Modified NNRSS (MNNRSS)
The MNNRSS procedure is somewhat similar to NRSS, but the selection scheme in the first

stage is somewhat different:

1. Randomly select n3 elements from the target population and divide them randomly into n ranked
sets of size n2;

2. Select the units ranked in the positions {i + jn}, for j = 0, 1, ..., n– 1, from the ith set, i = 1, 2, ..., n;
3. Apply the NRSS procedure to the pooled n2 elements in step 2 to obtain a MNNRSS sample of

size n;
4. Steps 1-3 can be repeated m times to obtain a sample of size mn.

Similar to NNRSS, the MNNRSS procedure require the initial identification of n3 elements
from the target population, and the final sample is also obtained after two ranking stages. Additional
informations on NNRSS and MNNRSS can be obtained in Taconeli & Cabral, 2019.

We should emphasize that NRSS and its two-stage versions can lead to logistical challenges
depending on the available ranking criterion. Ranking larger sets based on visual inspection, for
example, can be a very difficult task, whereas it can be more accessible when some concomitant
variable is used to this end. Hence, operational issues should also be taken into account to choose
the most appropriate RSS-based design.

3. Estimation methods
Among the available estimation methods, MLE may be highlighted by its popularity and desir-

able asymptotic properties, such as unbiasedness, efficiency, consistency, and normality. However,
MLE may be not feasible in some situations, particularly when specifying correctly the likelihood
function becomes a hard task. Other estimation methods based on the likelihood function, as the
Bayesian approaches, suffer from the same drawback. This might be one of the main reasons why
we have few studies on the parametric estimation and model fitting for RSS-based designs. In this
work, we address a variety of estimation methods applied to RSS-based designs, namely: maximum
product of spacings, ordinary and weighted least squares, Cramér-von-Mises, Anderson-Darling,
and right-tail Anderson-Darling. These methods were already considered as alternatives to MLE,
under SRS, in several studies, as can be observed in Mazucheli et al., 2013, Do Espirito Santo &
Mazucheli, 2015, Mazucheli et al., 2017, and Menezes et al., 2018, among others.

The following subsections describe the aforementioned estimation methods. For all of them,
let us consider y a continuous random variable with cumulative distribution function (CDF) F(·,θ)
and probability density function (PDF) f (·,θ), where θ ∈ Θ represents a vector of distribution
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parameters, and Θ the parameter space. Additionally, let y(1), y(2), ..., y(N) be the N = mn sample
units ordered in an ascending way according to the effectively evaluated values for the variable of
interest.

3.1 Maximum product of spacings
The maximum product of spacings (MPS) method applies the probability integral transformation

to the sample data. The parameter estimates are obtained such that the spacings between the ordered
transformed observations are uniformly distributed at most (see Cheng & Amin, 1979). The uniform
spacings are defined as:

Di(θ) = F(y(i)|θ) – F(y(i–1)|θ),

for i = 1, 2, ...,N + 1, where F(y(0)|θ) = 0 and F(y(N+1)|θ) = 1, such that
∑N+1

i=1 Di(θ) = 1.
The MPS estimate of θ is obtained by maximizing the geometric mean of the spacings with

respect to θ, given by:

θ̂MPS = argmax
θ∈Θ

[ N∏
i=1

Di(θ)

] 1
N+1

= argmax
θ∈Θ

1
N + 1

N+1∑
i=1

log (Di(θ)) .

3.2 Ordinary and weighted least-squares
Ordinary and weighted least-squares were presented in Swain et al., 1988. Let y(i) be the ith order

statistic from a random sample of size N generated from a continuous probability distribution. The
following general results can be verified:

E
[
F(y(i)|θ)

]
=

i
N + 1

and Var
[
F(y(i)|θ)

]
=

i(N – i + 1)
(N + 1)2(N + 2)

.

The ordinary least square (OLS) estimate for θ, denoted by θ̂OLS , minimizes the following sum
of squares:

θ̂OLS = argmin
θ∈Θ

N∑
i=1

[
F(y(i)|θ) –

i
N + 1

]2
.

We can weighting the sum of squares components by the inverse of their respective variances,
producing the weighted least squares (WLS) method. The WLS estimate, denoted by θ̂WLS , is
obtained as follows:

θ̂WLS = argmin
θ∈Θ

N∑
i=1

(N + 1)2(N + 2)
i(N – i + 1)

[
F(y(i)|θ) –

i
N + 1

]2
.

3.3 Cramér-von-Mises
The Cramér-von-Mises, Anderson Darling, and right-tail Anderson Darling methods are de-

rived from some well known goodness-of-fit statistics. We start with the Cramér-von-Mises (CVM)
method, detailed in Parr & Schucany, 1980.

The CVM estimate for θ, denoted by θ̂CVM , is obtained by minimizing the CVM test statistic:

θ̂CVM = argmin
θ∈Θ

{
1

12N
+

N∑
i=1

[
F(y(i)|θ) –

2i – 1
2N

]2
}

.
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3.4 Anderson-Darling and right-tail Anderson-Darling
The Anderson-Darling (AD) estimate for θ, denoted by θ̂AD, is obtained by minimizing the

Anderson-Darling test statistic, proposed in Anderson & Darling, 1952 and given by:

θ̂AD = argmin
θ∈Θ

{
–N –

1
N

N∑
i=1

(2i – 1)
[
logF(y(i)|θ) + log

(
1 – F(y(N+1–i)|θ)

)]}
.

Finally, for the right-tail Anderson-Darling (RTAD) method, we must find θ that minimizes
the RTAD statistics:

θ̂RTAD = argmin
θ∈Θ

{
N
2

– 2
N∑
i=1

F(y(i)|θ) –
1
N

N∑
i=1

(2i – 1) log
(

1 – F(y(i)|θ)
)}

.

3.5 Estimation methods applied to RSS-based designs
Our proposal to apply the presented estimation methods for RSS-based designs is somewhat

general. It consists in pooling all the N = mn effectively measured sample units along the m cycles,
and ranking them according to the observed values for the variable of interest in an ascending order.
Regardless of the sampling design, the pooled ranked sample can be denoted as y(1), y(2), ..., y(N), and
all estimation methods we have discussed so far were applied here to this pooled sample. Although
this approach does not explicitly consider the sampling design, as the rankings provided by the
ranked sets are not taken into account, it has been adopted in other studies due to its flexibility
and efficiency under imperfect ranking (Alizadeh Noughabi, 2017; Pedroso et al., 2020; Taconeli &
Bonat, 2020).

All suggested estimation methods require numerical optimization to compute the parameter
estimates. We implemented the approaches using the optim() function of the statistical software R
Core Team, 2019. The R-scripts are available upon request from the authors.

4. Monte Carlo simulation
This section presents the results of a simulation study conducted to assess the performance of the

proposed methods. The following parameters were considered to set up the simulated scenarios:

• Sampling designs: SRS, RSS, PRSS, NRSS, NRSSm, DRSS, PDRSS, NNRSS, and MNNRSS;
• Sample sizes: N = 15 (m = 5; n = 3 and m = 3, n = 5); N = 30 (m = 10; n = 3 and m = 6, n = 5);

and N = 60 (m = 20; n = 3 and m = 12, n = 5);
• Probabilistic models: Beta(3,3), Beta(9,2), Exponential(1), Weibull(4,1), Gamma(5,2), Logis-

tic(2,1), Lognormal(4,2), and Normal(2,1).

The chosen probabilistic models cover a wide variety of shapes for density functions, with dif-
ferent degrees of skewness and kurtosis. The adopted sample sizes are very useful for RSS-based
designs, where, in general, the set sizes are small and larger sample sizes are obtained by increas-
ing m. We have also evaluated the impact of imperfect ranking. This was done by first simulating
data from a standard bivariate normal distribution with correlation ρ. In this case, we took one
of these variables as the variable of interest while the other was considered a concomitant vari-
able, used to rank the sets. In this way, we have perfect ranking when ρ = 1, while for ρ = 0
the sampling scheme becomes equivalent to SRS. We considered the following correlation levels:
ρ = 0.5, 0.6, 0.7, 0.8, 0.9, and 1. Finally, the inverse probability integral transformation was applied
to the variable of interest in order to generate samples from the target distribution. The smaller ρ,
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the lower the correlation between the concomitant and interest variables, increasing the amount of
ranking errors induced in the simulation.

We randomly simulated 10,000 samples from each probabilistic model and for each combination
of sampling design, sample size, set size, and correlation level. As we are interested in evaluating the
sampling designs and estimation methods in model fitting, we adopted the mean integrated squared
error (MISE) as a discrepancy measure between the true and fitted PDFs. Let f (y; θ̂) and f (y;θ)
represent the true and fitted PDF. MISE is defined as follows:

MISE = E
[∫ (

f (y; θ̂) – f (y;θ)
)2

dy
]

,

MISE was estimated based on the 10,000 simulated samples for each simulated scenario, as de-
scribed by:

M̂ISE =
1

10, 000

10,000∑
b=1

∫ (
f (y; θ̂

(b)
) – f (y;θ)

)2
dy,

where θ̂
(b)

refers to the estimate for θ produced by the bth simulated sample, for b = 1, 2, ..., 10, 000.
The total number of simulated scenarios is too high to display the results for each of them.

Therefore, we proceeded with a two-step strategy. First, we present a series of marginal evaluations,
averaging the simulated MISEs over the sampling designs, estimation methods, sample sizes, and/or
correlation levels. These results allowed us to initially explore the performances of the sampling
designs and estimation methods in a wide range of scenarios. Then, we selected some sampling
designs, in addition to the estimation methods that produced the best results in the first stage, to
explore each scenario individually. At this stage, we do not averaged the MISEs over any other
simulation parameter.

Figure 1 presents the estimated MISEs averaged over the sample sizes and sampling designs, for
each probabilistic model and according to the levels of imperfect ranking. We may conclude that
MPS and AD were the most efficient methods for almost all combinations of probabilistic model
and ρ. The WLS method often appears at third position, while the others estimation methods have
shown worse performance. All estimation methods becomes less efficient as ρ gets smaller. In all
plots, we represent the results for MLE based on SRS as a benchmark. In most simulated scenarios,
the AD and MPS methods were more efficient than SRS-MLE, even for the smallest ρ values.

Figure 2 displays the results for the sampling designs averaging over the sample sizes and es-
timation methods. Despite some overlapping curves, we can notice that the RSS-based designs
outperformed SRS-MLE in most scenarios. Once again, higher MISEs were verified for lower ρ
values. It was also possible to identify a general hierarchy on the results: NNRSS and MNNRSS
produced the lowest MISEs, followed by NRSS and NRSSm; then DRSS and PDRSS; next, RSS
and PRSS; finally, SRS provided the least efficient estimation. Among the pair members themselves
(for example, NNRSS and MNNRSS), the differences were negligible.

Figures 3 and 4 allow us to analyze how each estimation method and sampling design performed
for different sample sizes and probabilistic models. We averaged here the MISEs over the correlation
levels, and over either the sampling designs (Figure 3) or the estimation methods (Figure 4). We
may observe from Figure 3 that the RSS-based estimators outperformed SRS-MLE in most scenarios
for all sample sizes. Additionally, all estimators lose efficiency for small sample sizes and, for a fixed
sample size, higher efficiency was reached by increasing n rather than m. The curves were almost
parallel for all distributions, suggesting that the relative performances of the estimation methods did
not substantially change with the different combinations of sample size and probabilistic model.

For a better visualization of the results, we omitted the following sampling designs from Figure 4:
PRSS, PDRSS, NNRSS, and NRSSm, which performed, respectively, very similar to those of RSS,
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DRSS, MNNRSS, and NRSS. Once again, the sampling designs keep the performances hierarchy
registered in Figure 2. The curves again shown a clear parallelism, indicating that their relative
performances did not vary for the different sample sizes and probabilistic models.
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Figure 2. MISE of the sampling designs, averaging over sample sizes and estimation methods, for different correlations
used to simulate the variable of interest and its concomitant (ρ). The horizontal dashed line represent the simulated MISEs
for SRS-MLE.
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Figure 3. MISE of the estimation methods averaging over correlation levels and sampling designs. The horizontal dashed
lines represent the simulated MISEs for SRS-MLE when N=15 (top), N=30 (middle), and N=60 (bottom).
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Figure 4. MISE of the sampling designs averaging over correlation levels and estimation methods. The horizontal dashed
lines represent the simulated MISEs for SRS-MLE when N=15 (top), N=30 (middle), and N=60 (bottom).

For the pair of estimation methods with better performance, AD and MPS, we also present their
relative efficiencies (RE1) to the SRS-MLE, for each combination of sampling designs, N, n and ρ,
averaging over the eight probabilistic models. RE1 was calculated as follows:
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RE1(θ̂·RSS, θ̂SRS-MLE) =
1
8

8∑
d=1

MISESRS-MLE(d)
MISE·RSS(d)

, (1)

where MISE·RSS(d) represents the MISE for some combination of sampling designs, N, n and ρ
under a specific probabilistic model (d), and MISEMLE,SRS(d) the MISE for SRS-MLE under the
same specification, d = 1, 2, ..., 8. These results can be seen in Tables 1 and 2 for AD and MPS
estimation, respectively. Some remarks are presented as fallows:

• For both AD and MPS methods, RSS-based estimation allowed more efficient model fittings
than SRS-MLE and their SRS analogous in most cases;
• The relative efficiencies decreased for smaller ρ, and they were higher, for a fixed N, when n = 5

than for n = 3;
• The highest efficiency was verified using MNNRSS, followed by NNRSS;
• NRSS and NRSSm provided better model fittings than some double-stage RSS designs, as DRSS

and PDRSS, indicating that they are cost-effective alternatives;
• PRSS allowed similar results to RSS, and the same for PDRSS relative to DRSS. By this way,

PRSS and PDRSS are cost-effective alternatives to RSS and DRSS, respectively;
• When combined with AD estimation, the proposed NRSSm design provided higher efficiency

than their single-stage opponents, besides DRSS and PDRSS. NRSS, on the other hand, out-
performed the same set of sampling designs when combined with MPS estimation. Therefore,
NRSSm-AD and NRSS-MPS are recommended methods for model fitting in the RSS frame-
work.

Table 3 presents the efficiencies of AD and MPS estimation relative to the well-established RSS-
MLE combination, calculated as:

RE2(θ̂·RSS, θ̂RSS-MLE) =
1
8

8∑
d=1

MISERSS-MLE(d)
MISE·RSS(d)

, (2)

where MISE·RSS(d) represents the MISE for some combination of sampling designs, N, n and ρ
under a specific probabilistic model (d), and MISEMLE,RSS(d) the MISE for RSS-MLE under the
same specification, d = 1, 2, ..., 8. We should remember that RSS-MLE is based on the distributions
of order statistics, i.e, derived from the assumption of perfect ranking. In general, we highlight that:

• AD and MPS estimation provided higher efficiency than RSS-MLE when combined with NRSS,
NRSSm, DRSS, PDRSS, NNRSS, and MNNRSS. The efficiency improvement was higher as
N and ρ increase and, for a fixed N, when n = 5 than for n = 3;
• For RSS and PRSS, AD and MPS were still more efficient than RSS-MLE, but only for the

lowest correlations (particularly for ρ = 0.7 and ρ = 0.5);
• AD was usually more efficient than MPS for almost all RSS-sampling designs, except for NRSS,

NNRSS, and MNNRSS.

As mentioned before, we proceed now with the analysis of some selected sampling designs and
estimation methods under each probabilistic model, one at a time. Figures 8 to 15, available as
online supplementary material, show the corresponding results. We choose to present the results for
AD and MPS estimation, as they proved to be the most efficient estimation methods based on our
previous simulation. In addition, we opted to display the results of DRSS, MNNRSS, NRSS, and
RSS, since they produced similar results, respectively, to PDRSS, NNRSS, NRSSm, and PRSS. The
results obtained for the different probabilistic models are somewhat similar, and the main findings
are briefly summarized in the following remarks.



Brazilian Journal of Biometrics 157

Ta
bl

e
1.

Re
la

tiv
e

eff
ic

ie
nc

ie
st

o
SR

S-
M

LE
fo

rR
SS

-b
as

ed
de

si
gn

s(
RE

1)
,a

ve
ra

ge
d

ov
er

th
e

pr
ob

ab
ili

st
ic

m
od

el
s,

fo
rA

D
es

tim
at

io
n.

Th
e

nu
m

be
rs

be
tw

ee
n

pa
re

nt
he

se
sd

en
ot

e
th

e
RE

ra
nk

sf
or

ea
ch

co
m

bi
na

tio
n

of
N

,n
,a

nd
ρ

N
n

ρ
RS

S
PR

SS
NR

SS
NR

SS
m

DR
SS

PD
RS

S
NN

RS
S

M
NN

RS
S

SR
S

15

3

1
1.

56
(7

)
1.

55
(8

)
2.

35
(4

)
2.

42
(3

)
2.

00
(5

)
1.

98
(6

)
4.

03
(2

)
4.

74
(1

)
1.

02
(9

)
0.

9
1.

37
(7

)
1.

36
(8

)
1.

64
(4

)
1.

74
(3

)
1.

61
(5

)
1.

59
(6

)
1.

95
(2

)
2.

15
(1

)
1.

01
(9

)
0.

7
1.

19
(7

)
1.

17
(8

)
1.

24
(6

)
1.

29
(3

)
1.

26
(4

)
1.

26
(5

)
1.

29
(2

)
1.

33
(1

)
1.

01
(9

)
0.

5
1.

08
(7

)
1.

08
(8

)
1.

10
(6

)
1.

11
(5

)
1.

13
(2

)
1.

12
(4

)
1.

13
(3

)
1.

13
(1

)
1.

01
(9

)

5

1
2.

14
(7

)
2.

07
(8

)
4.

61
(3

)
3.

75
(4

)
3.

30
(5

)
3.

23
(6

)
15

.3
1

(2
)

16
.3

9
(1

)
1.

01
(9

)
0.

9
1.

66
(7

)
1.

62
(8

)
2.

26
(3

)
2.

14
(4

)
2.

09
(5

)
2.

05
(6

)
3.

01
(2

)
3.

09
(1

)
1.

01
(9

)
0.

7
1.

28
(7

)
1.

25
(8

)
1.

37
(5

)
1.

37
(6

)
1.

38
(3

)
1.

37
(4

)
1.

45
(2

)
1.

49
(1

)
1.

01
(9

)
0.

5
1.

12
(7

)
1.

11
(8

)
1.

14
(6

)
1.

14
(5

)
1.

16
(3

)
1.

15
(4

)
1.

16
(2

)
1.

17
(1

)
1.

01
(9

)

30

3

1
1.

46
(7

)
1.

44
(8

)
1.

95
(4

)
2.

32
(3

)
1.

86
(5

)
1.

86
(6

)
2.

66
(2

)
3.

54
(1

)
0.

95
(9

)
0.

9
1.

31
(7

)
1.

27
(8

)
1.

44
(6

)
1.

66
(2

)
1.

51
(3

)
1.

50
(5

)
1.

50
(4

)
1.

78
(1

)
0.

96
(9

)
0.

7
1.

12
(7

)
1.

09
(8

)
1.

14
(5

)
1.

21
(1

)
1.

19
(4

)
1.

19
(3

)
1.

13
(6

)
1.

20
(2

)
0.

95
(9

)
0.

5
1.

02
(7

)
1.

01
(8

)
1.

03
(6

)
1.

06
(1

)
1.

06
(3

)
1.

05
(4

)
1.

03
(5

)
1.

06
(2

)
0.

95
(9

)

5

1
2.

00
(7

)
1.

93
(8

)
3.

97
(4

)
4.

02
(3

)
3.

10
(5

)
3.

03
(6

)
10

.5
7

(2
)

12
.8

5
(1

)
0.

95
(9

)
0.

9
1.

56
(7

)
1.

53
(8

)
2.

03
(4

)
2.

12
(3

)
1.

94
(5

)
1.

92
(6

)
2.

52
(2

)
2.

69
(1

)
0.

96
(9

)
0.

7
1.

21
(7

)
1.

19
(8

)
1.

28
(6

)
1.

33
(3

)
1.

29
(4

)
1.

29
(5

)
1.

33
(2

)
1.

37
(1

)
0.

95
(9

)
0.

5
1.

06
(7

)
1.

04
(8

)
1.

07
(6

)
1.

09
(4

)
1.

09
(3

)
1.

09
(5

)
1.

09
(2

)
1.

10
(1

)
0.

95
(9

)

60

3

1
1.

41
(7

)
1.

39
(8

)
1.

55
(6

)
2.

27
(2

)
1.

79
(4

)
1.

80
(3

)
1.

75
(5

)
2.

51
(1

)
0.

93
(9

)
0.

9
1.

26
(5

)
1.

22
(6

)
1.

21
(7

)
1.

61
(1

)
1.

46
(2

)
1.

45
(3

)
1.

10
(8

)
1.

41
(4

)
0.

92
(9

)
0.

7
1.

09
(4

)
1.

07
(6

)
1.

04
(7

)
1.

18
(1

)
1.

16
(2

)
1.

15
(3

)
0.

96
(8

)
1.

07
(5

)
0.

93
(9

)
0.

5
1.

00
(4

)
0.

99
(6

)
0.

99
(7

)
1.

03
(1

)
1.

02
(2

)
1.

02
(3

)
0.

96
(8

)
0.

99
(5

)
0.

92
(9

)

5

1
1.

92
(7

)
1.

84
(8

)
3.

35
(4

)
3.

92
(3

)
2.

98
(5

)
2.

93
(6

)
6.

99
(2

)
9.

57
(1

)
0.

93
(9

)
0.

9
1.

52
(7

)
1.

46
(8

)
1.

83
(6

)
2.

07
(2

)
1.

89
(4

)
1.

87
(5

)
2.

04
(3

)
2.

31
(1

)
0.

93
(9

)
0.

7
1.

17
(7

)
1.

15
(8

)
1.

19
(6

)
1.

29
(1

)
1.

27
(2

)
1.

26
(4

)
1.

20
(5

)
1.

26
(3

)
0.

93
(9

)
0.

5
1.

02
(7

)
1.

01
(8

)
1.

03
(6

)
1.

06
(1

)
1.

05
(3

)
1.

05
(2

)
1.

04
(5

)
1.

05
(4

)
0.

93
(9

)

M
ea

n
1.

36
(7

)
1.

33
(8

)
1.

74
(4

)
1.

84
(3

)
1.

65
(5

)
1.

63
(6

)
2.

80
(2

)
3.

22
(1

)
0.

96
(9

)



158 Brazilian Journal of Biometrics

Table
2.Relative

efficienciesto
SRS-M

LE
forRSS-based

designs(RE
1 ),averaged

overthe
probabilistic

m
odels,forM

PS
estim

ation.The
num

bersbetw
een

parenthesesdenote
the

RE
ranksforeach

com
bination

ofN
,n,and

ρ

N
n

ρ
RSS

PRSS
NRSS

NRSSm
DRSS

PDRSS
NNRSS

M
NNRSS

SRS

15

3

1
1.41

(7)
1.39

(8)
2.74

(3)
1.73

(4)
1.60

(5)
1.59

(6)
4.95

(2)
5.44

(1)
1.05

(9)
0.9

1.30
(7)

1.28
(8)

1.92
(3)

1.49
(4)

1.43
(5)

1.43
(6)

2.57
(2)

2.61
(1)

1.05
(9)

0.7
1.19

(7)
1.17

(8)
1.39

(3)
1.25

(4)
1.24

(5)
1.23

(6)
1.55

(1)
1.53

(2)
1.05

(9)
0.5

1.10
(7)

1.09
(8)

1.19
(3)

1.13
(6)

1.14
(4)

1.13
(5)

1.25
(1)

1.24
(2)

1.05
(9)

5

1
1.67

(7)
1.63

(8)
4.48

(3)
2.01

(4)
2.00

(5)
1.98

(6)
18.69

(1)
13.46

(2)
1.04

(9)
0.9

1.47
(7)

1.45
(8)

2.41
(3)

1.66
(5)

1.67
(4)

1.65
(6)

3.45
(1)

3.27
(2)

1.05
(9)

0.7
1.25

(7)
1.23

(8)
1.48

(3)
1.30

(6)
1.31

(4)
1.31

(5)
1.62

(1)
1.61

(2)
1.05

(9)
0.5

1.14
(7)

1.12
(8)

1.21
(3)

1.15
(6)

1.16
(4)

1.15
(5)

1.24
(2)

1.25
(1)

1.05
(9)

30

3

1
1.32

(7)
1.29

(8)
2.30

(2)
1.69

(4)
1.51

(5)
1.50

(6)
2.10

(3)
3.12

(1)
0.98

(9)
0.9

1.24
(7)

1.20
(8)

1.79
(3)

1.44
(4)

1.36
(5)

1.35
(6)

1.87
(2)

2.19
(1)

0.99
(9)

0.7
1.11

(7)
1.09

(8)
1.35

(3)
1.19

(4)
1.16

(6)
1.17

(5)
1.45

(2)
1.47

(1)
0.98

(9)
0.5

1.04
(7)

1.03
(8)

1.14
(3)

1.06
(5)

1.06
(6)

1.06
(4)

1.19
(1)

1.19
(2)

0.98
(9)

5

1
1.60

(7)
1.56

(8)
4.49

(3)
2.20

(4)
1.94

(5)
1.93

(6)
8.87

(2)
11.99

(1)
0.98

(9)
0.9

1.41
(7)

1.38
(8)

2.40
(3)

1.70
(4)

1.58
(6)

1.58
(5)

3.15
(2)

3.23
(1)

0.98
(9)

0.7
1.18

(7)
1.17

(8)
1.45

(3)
1.27

(4)
1.24

(6)
1.24

(5)
1.59

(1)
1.58

(2)
0.98

(9)
0.5

1.07
(7)

1.05
(8)

1.15
(3)

1.09
(4)

1.09
(6)

1.09
(5)

1.20
(1)

1.20
(2)

0.98
(9)

60

3

1
1.31

(6)
1.28

(7)
1.51

(2)
1.73

(1)
1.51

(3)
1.50

(4)
0.85

(9)
1.38

(5)
0.96

(8)
0.9

1.22
(6)

1.18
(7)

1.45
(2)

1.44
(3)

1.34
(4)

1.34
(5)

1.06
(8)

1.45
(1)

0.95
(9)

0.7
1.10

(7)
1.07

(8)
1.29

(2)
1.17

(4)
1.15

(5)
1.14

(6)
1.26

(3)
1.37

(1)
0.96

(9)
0.5

1.02
(7)

1.02
(8)

1.12
(3)

1.05
(4)

1.04
(5)

1.03
(6)

1.16
(2)

1.17
(1)

0.95
(9)

5

1
1.61

(7)
1.55

(8)
3.08

(2)
2.36

(4)
2.00

(5)
1.96

(6)
2.60

(3)
4.11

(1)
0.96

(9)
0.9

1.40
(7)

1.36
(8)

2.16
(2)

1.74
(4)

1.60
(5)

1.58
(6)

2.16
(3)

2.55
(1)

0.96
(9)

0.7
1.16

(7)
1.15

(8)
1.43

(3)
1.26

(4)
1.24

(5)
1.23

(6)
1.51

(2)
1.55

(1)
0.96

(9)
0.5

1.04
(7)

1.03
(8)

1.14
(3)

1.07
(4)

1.06
(6)

1.07
(5)

1.20
(1)

1.18
(2)

0.96
(9)

M
ean

1.27
(7)

1.24
(8)

1.92
(3)

1.47
(4)

1.39
(5)

1.39
(6)

2.86
(2)

2.96
(1)

1.00
(9)



Brazilian Journal of Biometrics 159

1. All RSS-based designs outperformed their SRS counterparts and MLE based on SRS in fitting
the probabilistic models;

2. The efficiency provided by the RSS-based designs decreased for lower ρ;
3. Higher efficiency was achieved for larger N, or by increasing n for fixed N;
4. MNNRSS (and NNRSS) generally performed the best among the RSS-based designs, followed

by NRSS (and NRSSm); then DRSS (and PDRSS); and finally RSS (and PRSS);
5. In general, there was not a remarkable difference between AD in MPS estimation, as they usually

provided very similar performances. The only exception was the log-normal distribution, for
which AD estimation was superior than MPS, especially when combined with RSS and DRSS
designs.

5. Simulation based on real forest data
Tree height is an important variable for predicting the forest growth and yield. Especially in

native forest, height measures are performed in few trees since it is a hard procedure with high costs.
However, the tree diameter at breast height is easily accessible and positively correlated with total
height. Therefore, RSS and its extensions are promising designs in order to estimate the distribution
of tree heights, where the diameter may be considered a concomitant variable used to rank the
elements into each set. In this section, we use total height (in meters) and diameter at breast height
(in centimeters) data provided by a forest inventory project developed on the Forest Management
Lab, Department of the Forest Engineering of Federal University of Jequitinhonha and Mucuri
Valleys, Diamantina/Minas Gerais - Brazil. This data set contains heights and diameters at breast
height for 12,295 trees from 172 native species, and it is available in the R package forestmangr,
named as exfm20. For additional details about this data set, see Sollano Rabelo Braga et al., 2019.

The Pearson product-moment correlation coefficient calculated for this pair of variables is 0.632,
while the Spearman’s rank correlation coefficient is 0.631. These values are relatively low for this
type of study, but we are handling with native forest data and a large number of different native tree
species. However, it can be quite interesting to observe how the estimation methods are affected
by this level of imperfect ranking in a real problem. Figure 5 displays the height distribution and
a correlation plot for height and diameter. We may notice that height distribution is slightly right
skewed, as well as diameter and height show a quite common non-linear relationship (Cysneiros
et al., 2020).

Following, we proceeded with the search of a probabilistic model providing the best fit for the
height distribution considering the entire data set. This step was necessary since we are interested
in assessing how the sampling designs and estimation methods perform in fitting a probability dis-
tribution that properly describes the tree heights.

In our search, we have fitted several probabilistic models with one, two, or three parameters
using MLE, and they were compared based on the Akaike information criterion (AIC). The two-
parameter power Lindley distribution, an extension of the original one-parameter Lindley model,
performed the best, yielding lower AIC than all the other investigated models. Therefore, we con-
sidered the power Lindley distribution for this application. Ghitany et al., 2013 presents this model,
its mathematical properties, and associated inferences, while Taconeli & Giolo, 2020 discuss MLE
for the power Lindley distribution under RSS.

Based on this data set and the power Lindley distribution, a new simulation study was conducted.
Once again, we have considered the following settings: N=15, 30, and 60; n=3 and 5; AD and MPS
estimation, and the eight RSS-based sampling designs, along with SRS. For each combination of
N, n, estimation method and sampling design, 10,000 samples were drawn. Samples were simulated
with replacement from the exfm20 data set, and for each selected sample, the power Lindley dis-
tribution was fitted. We have used two different ranking schemes: in the first, the trees in each set
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were directly ranked based on their heights, configuring the perfect ranking scenario; in the second,
they were ranked according to their respective diameters at breast height, configuring the imper-
fect ranking scenario. Results are again summarized through MISE and the relative efficiencies to
SRS-MLE, as described in (1), and they are presented in Figures 6 and 7 for perfect and imperfect
ranking, respectively.
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Figure 5. Histogram of height and scatter plot for height vs. diameter for the exfm20 data set.
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Figure 6. Relative efficiencies for RSS-based estimation applied to the forest inventory data set under perfect ranking. The
continuous lines are placed at RE=1, and the dashed lines represent the RE for RSS-MLE.
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We may observe that RSS-based estimation performed better than SRS-MLE for almost all sam-
pling designs under both perfect and imperfect ranking scenarios. As expected, the efficiency gains
were higher when the ranking is perfect, and lower as the sample size increases. In general, the
designs based on NRSS provided higher efficiency than their competitors. Under imperfect rank-
ing, RSS-MLE was highly affected by ranking errors, in such a way that the alternative estimation
methods were more efficient for all simulated scenarios. Finally, we may observe that some alterna-
tives to RSS-MLE have shown better performance even for perfect ranking. It is the case of NRSSm
combined with AD estimation, which produced higher RE than RSS-MLE for all combinations of
N and n.

6. Final remarks
We have evaluated the performance of six estimation methods combined with eight different

RSS-based designs in fitting probabilistic models. These procedures have shown to be flexible, pro-
viding higher efficiency than their SRS-based counterparts, and they are also more robust than
RSS-MLE for imperfect ranking, particularly with respect to AD and MPS. The simulated results
allowed us to rank the RSS-based designs and estimation methods according to the provided ef-
ficiencies. Based on the results, we can recommend to use RSS-based designs for model fitting
purposes. The AD and MPS estimation are preferable, since they usually produced lower MISEs.
Furthermore, the NRSS and its extensions were recommended to achieve the best results, but op-
erational restrictions must be taken into account regarding ranking larger sets. The double-stage
designs outperformed their respective single-stage versions, and they are also recommended, but
respecting operational difficulties in selecting a greater number of population units to obtain a fixed
sample size.

Our research showed that the RSS and their extensions have great potential to be applied at
forest data and improve the efficiency of forest modeling. These methodologies are also important as
alternatives for reducing the sample size, the time for collecting data and the cost involved with forest
inventory, which can directly impact the forest management. For practical forest management, the
heights are widely used for simulating the tree growth over time and predicting the individual tree
volume for multiple timber products. The higher costs for collecting data induce lower sample sizes
in practice, increasing the uncertainty in height estimations. Efficiency gains by using the RSS-
based designs can improve the forest inventory quality based on less sample units. A lower sample
associated with great efficiency has potential to reduce the costs and improve the forest modeling.

We believe that this study may enable a wide range of new developments. As topics for future re-
search, we may highlight the evaluation of other RSS-based designs and/or estimation methods, the
situation of discrete random variables, such as that related to count data, and additional applications
based on other real data sets. Furthermore, as our simulation methodology is consistent with the
case of non-finite populations, where a single sample unit can only appear once in the final sample,
studies considering finite and small to moderate population sizes are also recommended for future
research.

Finally, additional researches on forest sciences, involving other variables such as the tree volume
and biomass, are also recommended for future investigation. It would be very useful to assess how
the RSS-based designs could be employed combined with other traditional and well established
sampling schemes in this area. Stratified or clustered RSS-based designs, for example, could be
considered as possible cost-benefit sampling schemes for forest inventories.

Acknowledgments
We thank the editor and the reviewers for the careful comments on our manuscript.



Brazilian Journal of Biometrics 165

Conflicts of Interest
The authors declare no conflict of interest.

References
1. Akgül, F. G., Acıtaş, Ş. & Şenoğlu, B. Inferences on stress–strength reliability based on ranked

set sampling data in case of Lindley distribution. Journal of Statistical Computation and Simulation
88, 3018–3032 (2018).

2. Al-Saleh, M. F. & Al-Kadiri, M. A. Double-ranked set sampling. Statistics & Probability Letters
48, 205–212 (2000).

3. Alizadeh Noughabi, H. Efficiency of ranked set sampling in tests for normality. Journal of
Statistical Computation and Simulation 87, 956–965 (2017).

4. Anderson, T. W. & Darling, D. A. Asymptotic theory of certain" goodness of fit" criteria based
on stochastic processes. The annals of mathematical statistics 23, 193–212 (1952).

5. Chen, W., Tian, Y. & Xie, M. Maximum likelihood estimator of the parameter for a con-
tinuous one-parameter exponential family under the optimal ranked set sampling. Journal of
Systems Science and Complexity 30, 1350–1363 (2017).

6. Chen, W., Yang, R., Yao, D. & Long, C. Pareto parameters estimation using moving extremes
ranked set sampling. Statistical Papers, 1–17 (2019).

7. Chen, Z., Bai, Z. & Sinha, B. Ranked set sampling: theory and applications (Springer Science &
Business Media, 2003).

8. Cheng, R. & Amin, N. Maximum product-of-spacings estimation with applications to the
lognormal distribution. Math Report 79 (1979).

9. Consulin, C. M., Ferreira, D., Rodrigues de Lara, I. A., De Lorenzo, A., di Renzo, L. &
Taconeli, C. A. Performance of coefficient of variation estimators in ranked set sampling. Jour-
nal of Statistical Computation and Simulation 88, 221–234 (2018).

10. Cysneiros, V. C., Pelissari, A. L., Gaui, T. D., Fiorentin, L. D., Carvalho, D. C. d., Silveira
Filho, T. B. & Machado, S. d. A. Modeling of tree height–diameter relationships in the Atlantic
Forest: effect of forest type on tree allometry. Canadian Journal of Forest Research 50, 1289–1298
(2020).

11. Dell, T. & Clutter, J. Ranked set sampling theory with order statistics background. Biometrics,
545–555 (1972).

12. Dey, S., Salehi, M. & Ahmadi, J. Rayleigh distribution revisited via ranked set sampling. Metron
75, 69–85 (2017).

13. Do Espirito Santo, A. & Mazucheli, J. Comparison of estimation methods for the Marshall–
Olkin extended Lindley distribution. Journal of Statistical Computation and Simulation 85, 3437–
3450 (2015).

14. Esemen, M. & Gürler, S. Parameter estimation of generalized Rayleigh distribution based on
ranked set sample. Journal of Statistical Computation and Simulation 88, 615–628 (2018).

15. Ghitany, M., Al-Mutairi, D. K., Balakrishnan, N & Al-Enezi, L. Power Lindley distribution
and associated inference. Computational Statistics & Data Analysis 64, 20–33 (2013).

16. Haq, A., Brown, J., Moltchanova, E. & Al-Omari, A. I. Paired double-ranked set sampling.
Communications in Statistics-Theory and Methods 45, 2873–2889 (2016).



166 Brazilian Journal of Biometrics

17. Mazucheli, J., Ghitany, M. & Louzada, F. Comparisons of ten estimation methods for the
parameters of Marshall–Olkin extended exponential distribution. Communications in Statistics-
Simulation and Computation 46, 5627–5645 (2017).

18. Mazucheli, J., Louzada, F. & Ghitany, M. Comparison of estimation methods for the param-
eters of the weighted Lindley distribution. Applied Mathematics and Computation 220, 463–471
(2013).

19. McIntyre, G. A method for unbiased selective sampling, using ranked sets. Australian Journal
of Agricultural Research 3, 385–390 (1952).

20. Menezes, A. F. B., Mazucheli, J. & Dey, S. The Unit-Logistic distribution: different methods
of estimation. Pesquisa Operacional 38, 555–578 (2018).

21. Muttlak, H. A. Pair rank set sampling. Biometrical journal 38, 879–885 (1996).

22. Parr, W. C. & Schucany, W. R. Minimum distance and robust estimation. Journal of the Amer-
ican Statistical Association 75, 616–624 (1980).

23. Pedroso, V. C., Taconeli, C. A. & Giolo, S. R. Estimation based on ranked set sampling for the
two-parameter Birnbaum–Saunders distribution. Journal of Statistical Computation and Simula-
tion, 1–18 (2020).

24. R Core Team. R: A Language and Environment for Statistical Computing R Foundation for Sta-
tistical Computing (Vienna, Austria, 2019). https://www.R-project.org/.

25. Sharma, M. & Parton, J. Height–diameter equations for boreal tree species in Ontario using a
mixed-effects modeling approach. Forest Ecology and Management 249, 187–198 (2007).

26. Sollano Rabelo Braga, Marcio Leles Romarco de Oliveira & Eric Bastos Gorgens. forestmangr:
Functions for Forest Mensuration and Management R package version 0.9.1 (2019). https://CRAN.
R-project.org/package=forestmangr.

27. Swain, J. J., Venkatraman, S. & Wilson, J. R. Least-squares estimation of distribution functions
in Johnson’s translation system. Journal of Statistical Computation and Simulation 29, 271–297
(1988).

28. Taconeli, C. A. & Bonat, W. H. On the performance of estimation methods under ranked set
sampling. Computational Statistics, 1–22 (2020).

29. Taconeli, C. A. & Cabral, A. d. S. New two-stage sampling designs based on neoteric ranked
set sampling. Journal of Statistical Computation and Simulation 89, 232–248 (2019).

30. Taconeli, C. A. & Giolo, S. R. Maximum likelihood estimation based on ranked set sampling
designs for two extensions of the Lindley distribution with uncensored and right-censored
data. Computational Statistics 35, 1827–1851 (2020).

31. Takahasi, K. & Wakimoto, K. On unbiased estimates of the population mean based on the
sample stratified by means of ordering. Annals of the institute of statistical mathematics 20, 1–31
(1968).

32. Zamanzade, E. & Al-Omari, A. I. New ranked set sampling for estimating the population mean
and variance. Hacettepe Journal of Mathematics and Statistics 45, 1891–1905 (2016).

33. Zamanzade, E. & Mahdizadeh, M. Estimating the population proportion in pair ranked set
sampling with application to air quality monitoring. Journal of Applied Statistics 45, 426–437
(2018).

34. Zhang, L., Bi, H., Cheng, P. & Davis, C. J. Modeling spatial variation in tree diameter–height
relationships. Forest Ecology and Management 189, 317–329 (2004).

https://www.R-project.org/
https://CRAN.R-project.org/package=forestmangr
https://CRAN.R-project.org/package=forestmangr


Brazilian Journal of Biometrics 167

Supplementary material

4

3
1

2

4
31
2

4312
4312

43124312

4
31

2

4312

4312
4312

43124312

43
1
2

4
3

1
24

3
1
24

3
1
24312

4312

4

3
1

2

4
31
2

4
31
2

4312
4312

4312

4

3
1

2

4
31
2

4
312

4312
4312

4312

4

31

2

4
312

4312
4312

4312
4312

4

3

1

2

4

3

1

2

4
3
1

2

4
3
1
2

4
312

4312

4

3

1

2

4

3

1

2

4

3
1

2

4
3
1
2

4
3
1
2

4
312

431

24
312

4
3
1
2

4
3
1
2

4
312

4
3
1
2

4

3

1

2

4

3

1

2

4

3
1

2

4
3
1
2

4
312

4312

4

3

1

2

4

3

1

2

4

3
1

2

4
3
1

2

4
3
1
2

4
312

4

3
1

2

4

3
1

2

4

3
1

2

4
3
1
2

4
3
1
2

4312

N
=

1
5

N
=

3
0

N
=

6
0

AD

n=3 n=5

MPS

n=3 n=5

0.6 0.8 1.0 0.6 0.8 1.0 0.6 0.8 1.0 0.6 0.8 1.0

0.03

0.06

0.09

0.01

0.02

0.03

0.04

0.05

0.01

0.02

ρ

M
IS

E

Design 1 2 3 4DRSS MNRSS NRSS RSS

Figure 8. MISE of the selected sampling designs and estimation methods for the Beta(3,3) distribution. The horizontal lines
represent MISE for AD and MPS estimation (continuous) and MLE (dashed) under SRS.



168 Brazilian Journal of Biometrics

4

3
1

2

4
31
2

431
2

4312
43124312

4
31

2

431
2

4312
4312

4312
4312

43
1
2

43
1
2

4
3
1
2431

243124312

4

3
1

2

4
31
2

4
31
2

4312
4312

4312

4

3
1

2

4
31
2

4
312

4312
4312

4312

4

31

2

4
31
2

4312
4312

4312
4312

4

3

1

2

4

3

1

2

4

3
1

2

4
3
1

2

4
3
1
2

4
312

4

3

1

2

4

3

1

2

4

3
1

2

4

3
1

2

4
3
1
2

4
3
1
2

4
31
24

3
12

4
3
1
2

4
3
1
2

4
3
1
2

4
3
1
2

4

3

1

2

4

3

1

2

4

3
1

2

4
3
1
2

4
3
1
2

4
312

4

3

1

2

4

3

1

2

4

3

1

2

4
3
1

2

4
3
1
2

4
312

4

3

1

2

4

3

1

2

4

3
1

2

4
3
1
2

4
3
1
2

4
3
1
2

N
=

1
5

N
=

3
0

N
=

6
0

AD

n=3 n=5

MPS

n=3 n=5

0.6 0.8 1.0 0.6 0.8 1.0 0.6 0.8 1.0 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.03

0.06

0.09

0.01

0.02

0.03

0.04

0.05

ρ

M
IS

E

Design 1 2 3 4DRSS MNRSS NRSS RSS

Figure 9. MISE of the selected sampling designs and estimation methods for the Beta(9,2) distribution. The horizontal lines
represent MISE for AD and MPS estimation (continuous) and MLE (dashed) under SRS.
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Figure 10. MISE of the selected sampling designs and estimation methods for the exponential(1) distribution. The hori-
zontal lines represent MISE for AD and MPS estimation (continuous) and MLE (dashed) under SRS.
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Figure 11. MISE of the selected sampling designs and estimation methods for the Weibull(4,1) distribution. The horizontal
lines represent MISE for AD and MPS estimation (continuous) and MLE (dashed) under SRS.
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Figure 12. MISE of the selected sampling designs and estimation methods for the gamma(5,2) distribution. The horizontal
lines represent MISE for AD and MPS estimation (continuous) and MLE (dashed) under SRS.
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Figure 13. MISE of the selected sampling designs and estimation methods for the logistic(2,1) distribution. The horizontal
lines represent MISE for AD and MPS estimation (continuous) and MLE (dashed) under SRS.
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Figure 14. MISE of the selected sampling designs and estimation methods for the log-normal(4,2) distribution. The hori-
zontal lines represent MISE for AD and MPS estimation (continuous) and MLE (dashed) under SRS.
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Figure 15. MISE of the selected sampling designs and estimation methods for the normal(2,1) distribution. The horizontal
lines represent MISE for AD and MPS estimation (continuous) and MLE (dashed) under SRS.
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