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1. Introduction 
Ecosystems are the result of interactions between the environment and communities. In 

an ecosystem, a food chain plays a vital role in guaranteeing the stability of the population 

(Saijnders & Bazin, 1975). The best method to understand the dynamics and behavior of 

ecological interactions between prey and predator populations is to utilize a mathematical 

model. A simple model of prey-predator interactions was proposed separately by Lotka and 

Volterra, but the model is now known as the Lotka – Volterra model (Lotka, 1926; Volterra, 

1926). In the literature, Paine (1966) investigated and analyzed the first simple mathematical 

model of two prey and one predator in terms of predicting their dynamics. Subsequently, 

researchers studied numerous properties, such as coexistence, persistence, stability and 

extinction (Abakumov & Izrailsky, 2022; Gard & Hallam, 1979; Shireen Jawad, 2022; 

Shireen Jawad, Sultan & Winter, 2021; Mortoja, Panja & Mondal, 2018; Paine, 1966; Xue et 

al., 2015; Dawud & Jawad, 2022). In addition to the above, used Holling type-I functional 

response in a system consisting of two prey-one predators. (Elettreby, 2009; Colucci, 2013) 

explored the difficulties in the dynamic behavior of two prey-one predator systems following 

a Holling type II functional response with an influence impulsive. 
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In this paper, we study the incorporation of the commensalism interaction and harvesting on the Lotka–Volterra food 
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the stability of the proposed system. 
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Moreover, Ali (2016) analyzed the local and global stability of the prey-predator model, 

including Holling type I functional response and the implications of group help. Further, 

Tolcha, Bole & Koya (2020) considered the interaction between two mutualistic prey and a 

predator population. In addition, the proportional harvesting function is taken into account in 

his model when these species interact. The stability of his model has been established for the 

positive equilibrium point.  

The mathematical study of changes in a family's qualitative or topological structure, such 

as the integral curves of a family of vector fields or the solutions to a family of differential 

equations, is known as bifurcation theory. A bifurcation happens when a system's behaviour 

abruptly changes in a "qualitative" or topological way due to a tiny, gradual change in its 

parameter values (the bifurcation parameters), a term most frequently used to describe the 

mathematical study of dynamical systems (Place, 2017). The term "bifurcation" was initially 

used by Poincaré (Poincaré, 1885) in 1885 in the first mathematical article to demonstrate 

this phenomenon. He also went on to describe and categorize several sorts of stationary 

points. Many scholars examined the bifurcation analysis on their model's behaviour 

(Collings, 1995; Guckenheimer & Holmes, 2013; hubard, Gong & Ruan, 2013; kar, 2009; 

Poincaré, 1885; Rong, 1996). For example,  Perko (2013) recognized saddle-node, 

transcritical and pitchfork bifurcation conditions in his work. 

On the other hand, species must be harvested in order to provide people with a resource. 

Numerous researchers have already looked into how harvesting affects the population system 

(Hu & Cao, 2017; Shireen Jawad, 2022; Kar & Pahari, 2007; Mandal et al., 2021; Al Nuaimi 

& Jawad, 2022; Perko, 2013). In ecosystems, there are three different harvesting types: 

constant, linear, and nonlinear. In general, harvesting might cause the system to behave in 

complicated, dynamic ways. For instance, Idlango, Shepherd & Gear (2017) showed that the 

logistic model with a Holling type II harvesting element could accept zero, one, or two 

positive equilibria. 

In this paper, we consider the interaction among four populations: two prey and two 

predators. The first prey is assumed to help the second, whilst the latter is harvested. The first 

predator can attack the first prey, while the second predator (top predator) can only attack the 

first predator, according to the type I functional response. The local stability property of the 

equilibria of the proposed system is investigated. Then local bifurcation conditions are 

explored. Finally, some numeric simulations are presented to show the feasibility of the main 

results. We end this paper with a brief discussion. 

 

2.  Assumptions of the Model 
 

Suppose a food chain contains the following species: prey, a predator and a top predator, with 

the mathematics beings based on the following assumptions. 𝑛1(𝑡) is the density of the first prey 

(the first species in the food chain), 𝑛2(𝑡) is the density of the second harvested prey, which has 

a positive effect on the first prey, whilst 𝑛3(𝑡) and 𝑛4(𝑡) are the densities of the predator and top 

predator species, respectively. Under the above assumptions, the model can be presented by the 

following system of differential equations: 
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𝑑𝑛1

𝑑𝑡
= 𝑟𝑛1 (1 −

𝑛1

𝑘
) − 𝛽1𝑛1𝑛3 + 𝑎𝑛1𝑛2 = 𝑛1𝑓1(𝑛1, 𝑛2, 𝑛3, 𝑛4)

𝑑𝑛2

𝑑𝑡
= 𝑠𝑛2 (1 −

𝑛2

𝑙
) − 𝑞𝐸𝑛2 = 𝑛2𝑓2(𝑛1, 𝑛2, 𝑛3, 𝑛4)                                                                            (1)

𝑑𝑛3

𝑑𝑡
= 𝛽2𝑛1𝑛3 − 𝛽0𝑛3 − 𝛾1𝑛3𝑛4 = 𝑛3𝑓3(𝑛1, 𝑛2, 𝑛3, 𝑛4)

𝑑𝑛4

𝑑𝑡
= 𝛾2𝑛3𝑛4 − 𝛼𝑛4 = 𝑛4𝑓4(𝑛1, 𝑛2, 𝑛3, 𝑛4).

 

 

All parameters of the system (1) are assumed to be positive and described as: 𝑘 and 𝑙, are the 

carrying capacities of the first and second prey, respectively, with intrinsic growth rates r and s; 

𝑎 is the positive effect on the first prey by the second prey; 𝐸, 𝑞 are the effort and the catchability 

rate applied on the second prey, i.e., 𝑞𝐸 represents the harvesting rate of the second prey; 𝛽1 and 

𝛾1are the attack rate coefficient of the first prey and first predator species due to the first predator 

and top predator, respectively;  𝛽0 and 𝛼 represent the first and the second predator's natural death 

rates, respectively. The flow chart of the proposed system is shown in the following block 

diagram. 

 

 
Figure 1.  Block diagram for the model given by system (1). 

 

3. Existence of Equilibria 
 

The harvested food chain prey-predator model with a mutual interaction given by the system 

(1) has eight non-negative equilibrium points, namely: 

1. 𝐼1 = (0,0,0,0), always exists. 

2. 𝐼2 = (𝑘, 0,0,0), always exists. 

3. 𝐼3 = (0,
𝑙

𝑠
(𝑠 − 𝑞𝐸), 0,0), exists when s > qE.                                                               

4. 𝐼4 = (�̅�1, �̅�2, 0,0), where �̅�1 =
𝑘

𝑟
[𝑟 + 𝑎�̅�2] and �̅�2 =

𝑙

𝑠
(𝑠 − 𝑞𝐸), exists when  𝑠 > 𝑞𝐸.                                                               

5. 𝐼5 = (�̈�1, 0, �̈�3, 0), where �̈�1 =
𝛽0

𝛽2
  and �̈�3 = 𝑟 (

𝛽2𝑘−𝛽0

𝛽1𝛽2𝑘
), exists 𝛽2𝑘 > 𝛽0. 

6. 𝐼6 = (�̂�1, �̂�2, �̂�3, 0), here �̂�1 =
𝛽0

𝛽2
, �̂�2 =

𝐿

𝑠
(𝑠 − 𝑞𝐸) and �̂�3 =

𝑟𝑠 (𝛽2𝑘−𝛽0)+𝑎𝑙𝑘𝛽2(𝑠−𝑞𝐸)

𝛽1𝛽2𝑘𝑠
, 

which exists when 𝑟𝑎𝑙𝑘𝛽2(𝑠 − 𝑞𝐸) > 𝑠 (𝛽0 − 𝛽2𝑘).                                        

7. 𝐼7 = (𝑛1, 0, 𝑛3, 𝑛4), here 𝑛1 =
𝑘

𝑟
(

𝑟𝛾2−𝛼𝛽1

𝛾2
), 𝑛3 =

𝛼

𝛾2
 and 𝑛4 =

(𝑟𝛾2−𝛼𝛽1)𝛽2𝑘−𝛽0𝑟𝛾2

𝑟𝛾1𝛾2
, which 

exists when  𝑘𝛽2(𝑟𝛾2 − 𝛼𝛽1) > 𝛽0𝑟𝛾2. 
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8. 𝐼8 = (𝑛1
∗ , 𝑛2

∗ , 𝑛3
∗ , 𝑛4

∗), 𝑛1
∗ =

𝑘[𝑟𝑠(𝛾2−𝛼𝛽1)+𝑎𝑙𝛾2(𝑠−𝑞𝐸)]

𝛾2𝑠𝑟
,𝑛2

∗ =
𝐿

𝑠
(𝑠 − 𝑞𝐸), 𝑛3

∗ =
𝛼

𝛾2
 and 𝑛4

∗ =

𝛽2𝑛1
∗−𝛽0

𝛾1
, which exists when 𝑎𝑙𝛾2(𝑠 − 𝑞𝐸) > 𝑟𝑠(𝛼𝛽1 − 𝛾2) and 𝛽2𝑛1

∗ > 𝛽0.         

 

4. Local Bifurcation Analysis 
 

This section studies the local bifurcation conditions near the equilibrium points of the system 

(1) using Sotomayor's theorem (Hubbard & West, 2013).  

Now, define system (1) as:   

 

                                                         
ⅆ𝑁

ⅆ𝑡
= 𝐹(𝑁),                                                                                       (2) 

 

where, 𝑁 = (𝑛1, 𝑛2, 𝑛3, 𝑛4)
𝑇and 𝐹 = (𝑛1 𝑓1,  𝑛2𝑓2, 𝑛3𝑓3, 𝑛4𝑓4). 𝑓𝑖: 𝑖 = 1,2,3,4 represent the 

right-hand side functions of the system (1). The Jacobian matrix of the system (1) at each of the 

fixed points is given by: 

 

     𝐽 =

[
 
 
 
 𝑟 −

2𝑟𝑛1

𝑘
− 𝛽1𝑛3 + 𝑎𝑛2 𝑎𝑛1        −𝛽1𝑛1                   0

0 𝑠 −
2𝑠𝑛2

𝑙
− 𝑞𝐸               0                       0

𝛽2𝑛3

0
0
0

𝛽2𝑛1 − 𝛽0 − 𝛾1𝑛4

𝛾2𝑛4

−𝛾1𝑛3

𝛾2𝑛3 − 𝛼]
 
 
 
 

.              (3) 

 

 For nonzero vector 𝑈 = (𝑢1, 𝑢2, 𝑢3, 𝑢4)
𝑇: 

 

𝐷2𝐹(𝑈,𝑈) =  

[
 
 
 
 
 −2𝑢1 (

𝑟

𝑘
𝑢1 − 𝑎𝑢2 + 𝛽1𝑢3)

−2𝑠

𝑙
𝑢2

2

2𝑢3(𝛽2𝑢1 − 𝛾1𝑢4)
2𝛾2𝑢3𝑢4 ]

 
 
 
 
 

, 

and, 𝐷3𝐹(𝑈,𝑈, 𝑈) = (0,0,0,0)𝑇, So, according to Sotomayor theorem, the pitchfork 

bifurcation does not occur at each point 𝐼𝑖 , 𝑖 = 1,2, . . . , 8. 

 

     The following theorem determines the saddle-node bifurcation of the system (1) at 𝐼1. 

 

Theorem 1 For the parameter value 𝑠∗ = 𝑞𝐸, system (1), at the equilibrium point 𝐼1 has a saddle-

node bifurcation. 

 

Proof According to the  𝐽(𝐼1), system (1), at the equilibrium point 𝐼1, has a zero eigenvalue, say 

𝜆12, at 𝑠∗ = 𝑞𝐸, and the Jacobian matrix 𝐽∗(𝐼1) = 𝐽(𝐼1, 𝑠
∗), becomes: 

 

𝐽∗(𝐼1) = [

𝑟 0 0        0
0 𝑠∗ − 𝑞𝐸  0        0
0
0

0
0

−𝛽0

0
   

0
−𝛼

]. 

 

 Now, let 𝑈[1] = (𝑢1
[1]

, 𝑢2
[1]

, 𝑢3
[1]

, 𝑢4
[1]

)
𝑇

 be the eigenvector corresponding to the eigenvalue 
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𝜆12 = 0. Thus (𝐽∗(𝐼1) − 𝜆12𝐼)𝑈
[1] = 0, which implies: 𝑢1

[1]
= 𝑢3

[1]
= 𝑢4

[1]
= 0  and 𝑢2

[1]
 

represents any nonzero real number. That means 𝑈[1] = (0, 𝑢2
[1]

, 0,0)
𝑇

. 

 Let 𝛹[1] = (𝛹1
[1]

, 𝛹2
[1]

, 𝛹3
[1]

, 𝛹4
[1]

)
𝑇

 be an eigenvector associated with the eigenvalue 𝜆12 

of the matrix 𝐽1
∗𝑇. Then (𝐽1

∗𝑇 − 𝜆12𝐼)𝛹
[1] = 0. By solving this equation for 𝛹[1], 𝛹[1] =

 (0,𝛹2
[1]

, 0,0)
𝑇

is obtained, where 𝛹2
[1]

 is any nonzero real number. 

 Now, to check that the conditions of Sotomayor's theorem for transcritical bifurcation are 

satisfied, the following is measured: 

𝜕𝐹

𝜕𝑠
=  𝐹𝑠(𝑁, 𝑠) =  (

𝜕𝑓1
𝜕𝑠

,
𝜕𝑓2

𝜕𝑠
,
𝜕𝑓3

𝜕𝑠
,
𝜕𝑓4
𝜕𝑠

)
𝑇

= (0,
𝑙 − 𝑛2

𝑙
, 0, 0)

𝑇

. 

 

 So, 𝐹𝑠(𝐼1, 𝑠
∗) =  (0,1,0,0)𝑇 and hence (𝛹[1])

𝑇
𝐹𝑠(𝐼1, 𝑠

∗) = 𝛹2
[1]

≠ 0. So transcritical 

bifurcation cannot occur whilst the first condition of the saddle-node bifurcation is met. Now,  

𝐷2𝐹𝑠(𝐼1, 𝑠
∗)(𝑈[1], 𝑈[1]) = (0,−

2𝑞𝐸 [𝑢2
[1]

]
2

𝑙
, 0,0)

𝑇

. 

     Hence,  

(𝛹[1])
𝑇
[𝐷2𝐹𝑠(𝐼1, 𝑠

∗)(𝑈[1], 𝑈[1])] = (0,𝛹2
[1]

, 0,0)(0,−
2𝑞𝐸 [𝑢2

[1]
]
2

𝑙
, 0,0)

𝑇

 

=
−2𝑞𝐸𝛹2

[1]
[𝑢2

[1]
]
2

𝑙
≠ 0. 

 This means the second condition of saddle-node bifurcation is satisfied. Thus, according to 

Sotomayor's theorem, system (1) has saddle-node bifurcation at 𝐼1 with the parameter 𝑠∗ = 𝑞𝐸. 

 

     The next theorem determines the saddle-node bifurcation of the system (1) at 𝐼2. 

 

Theorem 2 For the parameter value 𝛽0
∗ = 𝑘𝛽2, system (1), at the equilibrium point 𝐼1 has a 

saddle-node bifurcation. 

 

Proof According to 𝐽(𝐼2), system (1), at 𝐼2, has a zero eigenvalue, say 𝜆23, at 𝛽0
∗ = 𝑘𝛽2 and the 

Jacobian matrix 𝐽∗(𝐼2) = 𝐽(𝐼2, 𝛽0
∗), becomes: 

 

𝐽∗(𝐼2) = [

−𝑟 𝑎𝑘 −𝛽1𝑘 0
0 𝑠 − 𝑞𝐸 0 0
0 0 0 0
0 0 0 −𝛼

]. 

 Now, let 𝑈[2] = (𝑢1
[2]

, 𝑢2
[2]

, 𝑢3
[2]

, 𝑢4
[2]

)
𝑇

 be the eigenvector corresponding to the eigenvalue 

𝜆23 = 0. Thus (𝐽∗(𝐼2) − 𝜆23𝐼)𝑈
[2] = 0, which gives: 𝑈[2] = (𝑢1

[2]
, 0,

−𝑟

𝑘𝛽1
𝑢1

[2]
, 0)

𝑇

, and 𝑢1
[2]

 is 

any nonzero real number. 

 Let 𝛹[2] = (𝛹1
[2]

, 𝛹2
[2]

, 𝛹3
[2]

, 𝛹4
[2]

)
𝑇

 be the eigenvector associated with the eigenvalue 

𝜆23 = 0 of the matrix 𝐽2
∗𝑇. Then (𝐽2

∗𝑇 − 𝜆23𝐼)𝛹
[2] = 0. By solving this equation for 𝛹[2], 𝛹[2] =
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(0,0,𝛹3
[2]

, 0)
𝑇

is obtained, where 𝛹3
[2]

 is any nonzero real number.  

 Now, to confirm whether the conditions of Sotomayor's theorem for saddle-node 

bifurcation are satisfied, the following is considered: 

 

𝜕𝐹

𝜕𝛽0
= 𝐹𝛽0

(𝑁, 𝛽0) =  (
𝜕𝑓1

𝜕𝛽0
,
𝜕𝑓2

𝜕𝛽0
,
𝜕𝑓3

𝜕𝛽0
,
𝜕𝑓4

𝜕𝛽0
)

𝑇

= (0, 0,−1, 0)𝑇. 

 

 So, 𝐹𝛽0
(𝐼2, 𝛽0

∗) = (0, 0,−1, 0)𝑇 and hence (𝛹[2])
𝑇
𝐹𝛽0

(𝐼2, 𝛽0
∗) = 𝛹3

[2]
≠ 0. Therefore, 

transcritical bifurcation cannot occur whilst the first condition of the saddle-node bifurcation is 

met. Now,  

𝐷2𝐹𝛽0
(𝐼2, 𝛽0

∗)(𝑈[2], 𝑈[2]) = (0,0,
−2𝑟𝛽2[𝑢1

[2]
]
2

𝛽1
, 0)

𝑇

, 

     hence, it is obtained that: 

(𝛹[2])
𝑇
[𝐷2𝐹𝛽2

(𝐼2, 𝛽2
∗)(𝑈[2], 𝑈[2])] =

−2𝑟𝛽2𝛹3
[2]

[𝑢1
[2]

]
2

𝛽1
≠ 0. 

 

 This means the second condition of saddle-node bifurcation is satisfied. Thus, according to 

Sotomayor's theorem, system (1) has saddle-node bifurcation at 𝐼2 with the parameter 𝛽0
∗ =

𝑘𝛽2. 

 

 The next theorem determines the saddle-node bifurcation of the system (1) at the 

equilibrium point 𝐼3. 

 

Theorem 3 For the parameter value 𝛽0
∗ = 𝑘𝛽2, system (1), at the equilibrium point 𝐼3 has a 

saddle-node bifurcation. 

 

Proof According to  𝐽(𝐼3), system (1), at the equilibrium point 𝐼3, has a zero eigenvalue, say 𝜆32, 

at 𝑠# = 𝑞𝐸, and the Jacobian matrix 𝐽3
# = 𝐽(𝐼3, 𝑠

#), becomes: 

 

𝐽3
# = [

𝑟 + 𝑎�̇�2 0      0         0
0 0     0        0
0
0

0
0

−𝛽0

0
  
   0
−𝛼

]. 

 Now, let 𝑈[3] = (𝑢1
[3]

, 𝑢2
[3]

, 𝑢3
[3]

, 𝑢4
[3]

)
𝑇

 be the eigenvector corresponding to the eigenvalue 

𝜆32 = 0. Thus (𝐽3
# − 𝜆32𝐼)𝑈

[3] = 0, which gives: 𝑈[3] = (0, 𝑢2
[3]

, 0,0)
𝑇

, and 𝑢2
[3]

 is any nonzero 

real number.  

 Let 𝛹[3] = (𝛹1
[3]

, 𝛹2
[3]

, 𝛹3
[3]

, 𝛹4
[3]

)
𝑇

 be the eigenvector associated with the eigenvalue 

𝜆32 = 0 of the matrix 𝐽3
#𝑇 . Then, (𝐽3

#𝑇 − 𝜆32𝐼)𝛹
[3] = 0. By solving this equation for 𝛹[3], 

𝛹[3] = (0,𝛹2
[3]

, 0,0)
𝑇

is obtained, where 𝛹2
[3]

 is any nonzero real number. 

 Now, to confirm whether the conditions of Sotomayor's theorem for saddle-node 

bifurcation are satisfied, the following is considered: 

 

𝜕𝐹

𝜕𝑠
= 𝐹𝑠(𝑁, 𝑠) =  (

𝜕𝑓1

𝜕𝑠
,
𝜕𝑓2

𝜕𝑠
,
𝜕𝑓3

𝜕𝑠
,
𝜕𝑓4

𝜕𝑠
)

𝑇

= (0,
𝑙−𝑛2

𝑙
, 0,0)

𝑇

. 
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 So, 𝐹𝑠(𝐼3, 𝑠
#) =  (0,1,0,0)𝑇 and hence (𝛹[3])

𝑇
𝐹𝑠(𝐼3, 𝑠

#) = 𝛹2
[3]

≠ 0. 

 Therefore, transcritical bifurcation cannot occur whilst the first condition of the saddle-

node bifurcation is met. Now,  

𝐷2𝐹𝑠(𝐼3, 𝑠
#)(𝑈[3], 𝑈[3]) = (0,−

2𝑞𝐸 [𝑢2
[3]

]
2

𝑙
, 0,0)

𝑇

 

 Hence, it is obtained that: 

(𝛹[3])
𝑇
[𝐷2𝐹𝑠(𝐼3, 𝑠

#)(𝑈[3], 𝑈[3])] = −
2𝑞𝐸𝛹2

[3]
[𝑢2

[3]
]
2

𝑙
≠ 0. 

 This means the second condition of saddle-node bifurcation is satisfied. Thus, according to 

Sotomayor's theorem, system (1) has saddle-node bifurcation at 𝐼3 with the parameter 𝑠# = 𝑞𝐸. 

 

 The next theorem determines the saddle-node bifurcation of the system (1) at the 

equilibrium point 𝐼4. 

 

Theorem 4 For the parameter value 𝛽2
# =

𝛽0

𝑛1
, system (1), at the equilibrium point 𝐼4 has a saddle-

node bifurcation. 

 

Proof According to the  𝐽(𝐼4) system (1), at the equilibrium point 𝐼4, has a zero eigenvalue, say 

𝜆23, at 𝛽2
# =

𝛽0

𝑛1
And the Jacobian matrix 𝐽4

# = 𝐽(𝐼4, 𝛽2
#), becomes: 

 

𝐽4
# = [

−(𝑟 + 𝑎�̅�2) 𝑎�̅�1 −𝛽1�̅�1         0

0 −(𝑠 − 𝑞𝐸)        0             0
0
0

0
0

0
0

  
 0
−𝛼

]. 

 

 Now, let 𝑈[4] = (𝑢1
[4]

, 𝑢2
[4]

, 𝑢3
[4]

, 𝑢4
[4]

)
𝑇

 be the eigenvector corresponding to the eigenvalue 

𝜆43 = 0. Thus (𝐽4
# − 𝜆43𝐼)𝑉

[4] = 0, which gives: 𝑈[4] = (𝑢1
[4]

, 0,
−(𝑟+𝑎𝑛2)

𝛽1𝑛1
𝑢1

[4]
, 0)

𝑇

, and 𝑢1
[4]

 is 

any nonzero real number. 

 Let 𝛹[4] = (𝛹1
[4]

, 𝛹2
[4]

, 𝛹3
[4]

, 𝛹4
[4]

)
𝑇

 be the eigenvector associated with the eigenvalue 𝜆43 =

0 of the matrix 𝐽4
#𝑇 . 

 Then, (𝐽4
#𝑇 − 𝜆43𝐼)𝛹

[4] = 0. By solving this equation for 𝛹[4], 𝛹[4] = (0,0,𝛹3
[4]

, 0)
𝑇

 is 

obtained, where 𝛹3
[4]

 is any nonzero real number. 

Now, to confirm whether the conditions of Sotomayor's theorem for saddle-node bifurcation are 

satisfied, the following is considered: 

 

𝜕𝐹

𝜕𝛽2
= 𝐹𝛽2

(𝑁, 𝛽2) =  (
𝜕𝑓1

𝜕𝛽2
,
𝜕𝑓2

𝜕𝛽2
,
𝜕𝑓3

𝜕𝛽2
,
𝜕𝑓4

𝜕𝛽2
)

𝑇

= (0,0, 𝑛1, 0)𝑇. 

 

 So, 𝐹𝛽2
(𝐼4, 𝛽2

#) =  (0,0, �̅�1, 0)𝑇 and hence (𝛹[4])
𝑇
𝐹𝛽2

(𝐼4, 𝛽2
#) = �̅�1𝛹3

[4]
≠ 0. Therefore, 

transcritical bifurcation cannot occur whilst the first condition of the saddle-node bifurcation is 

met. Now,  
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(𝛹[4])
𝑇
[𝐷2𝐹𝛽2

(𝐼4, 𝛽2
#)(𝑈[4], 𝑈[4])] =

2𝛽0

𝑛1
𝑢1

[4]
𝑢3

[4]
𝛹3

[4]
≠ 0. 

 

 This means the second condition of saddle-node bifurcation is satisfied. Thus, according to 

Sotomayor's theorem, system (1) has saddle-node bifurcation at 𝐼4 with the parameter 𝛽2
# =

𝛽0

𝑛1
. 

 

 The next theorem determines the saddle-node bifurcation of the system (1) at the 

equilibrium point 𝐼5. 

 

Theorem 5 For the parameter value 𝛽2
# =

𝛽0

𝑛1
, system (1), at the equilibrium point 𝐼5 has a 

saddle-node bifurcation. 

 

Proof According to  𝐽(𝐼5), system (1), at the equilibrium point 𝐼5, has a zero eigenvalue, say 𝜆54, 

at 𝛾2
∗ =

𝛼

�̈�3
And the Jacobian matrix 𝐽5

∗ = 𝐽(𝐼5, 𝛾2
∗), becomes: 

 

𝐽5
∗ =

[
 
 
 
 
−𝑟𝛽0

𝑘𝛽2

𝑎𝛽0

𝛽2

−𝛽0𝛽1

𝛽2
        0

0 𝑠 − 𝑞𝐸        0             0
𝛽2�̈�3

0
0
0

           
0
0

  
−𝛾1�̈�3

0 ]
 
 
 
 

. 

 

 Now, let 𝑈[5] = (𝑢1
[5]

, 𝑢2
[5]

, 𝑢3
[5]

, 𝑢4
[5]

)
𝑇

 be the eigenvector corresponding to the eigenvalue 

𝜆54 = 0. Thus (𝐽5
∗ − 𝜆54𝐼)𝑉

[5] = 0, which gives:   𝑈[5] = (𝑢1
[5]

, 0,
−𝑟

𝑘𝛽1
𝑢1

[5]
,
𝛽2

𝛾1
𝑢1

[5]
)

𝑇

, where 𝑢1
[5]

 is 

any nonzero real number. Let 𝛹[5] = (𝛹1
[5]

, 𝛹2
[5]

, 𝛹3
[5]

, 𝛹4
[5]

)
𝑇

 be the eigenvector associated with 

the eigenvalue 𝜆54 = 0 of the matrix 𝐽5
∗𝑇 . Then (𝐽5

∗𝑇 − 𝜆54𝐼)𝛹
[5] = 0. By solving this equation 

for 𝛹[5], 𝛹[5] = (0,0,0,𝛹4
[5]

)
𝑇

 is obtained, where 𝛹4
[5]

 is any nonzero real number. 

      Now, consider: 

 

𝜕𝐹

𝜕𝛾2
= 𝐹𝛾2

(𝑁, 𝛾2) =  (
𝜕𝑓1

𝜕𝛾2
,
𝜕𝑓2

𝜕𝛾2
,
𝜕𝑓3

𝜕𝛾2
,
𝜕𝑓4

𝜕𝛾2
)

𝑇

= (0,0,0, 𝑛3)
𝑇. 

 

 So, 𝐹𝛾2
(𝐼5, 𝛾2

∗) =  (0,0,0, �̈�3)
𝑇and hence (𝛹[5])

𝑇
𝐹𝛾2

(𝐼5, 𝛾2
∗) = �̈�3𝛹4

[5]
≠ 0. Therefore, 

transcritical bifurcation cannot occur whilst the first condition of the saddle-node bifurcation is 

met. Now,  

 

(𝛹[5])
𝑇
[𝐷2𝐹𝛾2

(𝐼5, 𝛾2
∗)(𝑈[5], 𝑈[5])] = 2𝛾2

∗𝑢3
[5]

𝑢4
[5]

𝛹4
[5]

≠ 0. 

 

 This means the second condition of saddle-node bifurcation is satisfied. Thus, according to 

Sotomayor's theorem, system (1) has saddle-node bifurcation at 𝐼5 with the parameter 𝛾2
∗ =

𝛼

�̈�3
. 

 

 The next theorem determines the saddle-node bifurcation of the system (1) at the 

equilibrium point 𝐼6. 
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Theorem 6 For the parameter value 𝛽2
# =

𝛽0

𝑛1
, system (1), at the equilibrium point 𝐼6 has a 

saddle-node bifurcation. 

 

Proof According to  𝐽(𝐼6), system (1), at the equilibrium point 𝐼6, has a zero eigenvalue, say 𝜆64, 

at 𝛾2
# =

𝛼

𝑛3
And the Jacobian matrix 𝐽6

∗ = 𝐽(𝐼6, 𝛾2
#), becomes: 

𝐽6
# =

[
 
 
 
 −

𝑟𝑛1

𝑘
𝑎�̂�1 −𝛽1�̂�1         0

0 −(𝑠 − 𝑞𝐸)        0             0
𝛽2�̂�3

0
0
0

           
0
0

  
−𝛾1�̂�3

0 ]
 
 
 
 

. 

 

 Now, let 𝑈[6] = (𝑢1
[6]

, 𝑢2
[6]

, 𝑢3
[6]

, 𝑢4
[6]

)
𝑇

 be the eigenvector corresponding to the eigenvalue 

𝜆64 = 0. Thus (𝐽6
# − 𝜆64𝐼)𝑉

[6] = 0, which gives: 𝑈[6] = (𝑢1
[6]

, 0,
−𝑟

𝑘𝛽1
𝑢1

[6]
,
𝛽2

𝛾1
𝑢1

[6]
)
𝑇

, where 𝑢1
[6]

 is 

any nonzero real number. 

 Let 𝛹[6] = (𝛹1
[6]

, 𝛹2
[6]

, 𝛹3
[6]

, 𝛹4
[6]

)
𝑇

 be the eigenvector associated with the eigenvalue 

𝜆64 = 0 of the matrix 𝐽6
#𝑇 . Then (𝐽6

#𝑇 − 𝜆64𝐼)𝛹
[6] = 0. By solving this equation for 𝛹[6], 

𝛹[6] = (0,0,0,𝛹4
[6]

)
𝑇

is obtained, where 𝛹4
[6]

 is any nonzero real number. Now, consider: 

 

𝜕𝐹

𝜕𝛾2
= 𝐹𝛾2

(𝑁, 𝛾2) =  (
𝜕𝑓1

𝜕𝛾2
,
𝜕𝑓2

𝜕𝛾2
,
𝜕𝑓3

𝜕𝛾2
,
𝜕𝑓4

𝜕𝛾2
)

𝑇

= (0,0,0, 𝑛3)
𝑇. 

 

 So, 𝐹𝛾2
(𝐼6, 𝛾2

#) =  (0,0,0, �̂�3)
𝑇 and hence (𝛹[6])

𝑇
𝐹𝛾2

(𝐼6, 𝛾2
#) = �̂�3𝛹4

[6]
≠ 0. Therefore, 

transcritical bifurcation cannot occur whilst the first condition of the saddle-node bifurcation is 

met. Now,  

 

(𝛹[6])
𝑇
[𝐷2𝐹𝛾2

(𝐼6, 𝛾2
#)(𝑈[6], 𝑈[6])] = 2𝛾2

#𝑢3
[6]

𝑢4
[6]

𝛹4
[6]

≠ 0. 

 

 Thus, according to Sotomayor's theorem, system (1) has saddle-node bifurcation at 𝐼6 with 

the parameter 𝛾2
# =

𝛼

𝑛3
. 

 

The next theorem determines the saddle-node bifurcation of the system (1) at the equilibrium 

point 𝐼7. 

 

Theorem 7 For the parameter value 𝛽2
# =

𝛽0

𝑛1
, system (1), at the equilibrium point 𝐼7 has a saddle-

node bifurcation. 

 

Proof According to  𝐽(𝐼7), system (3.1), at the equilibrium point 𝐼7, has a zero eigenvalue, say 

𝜆72, at �̃� = 𝑞𝐸, and the Jacobian matrix �̃�7 = 𝐽(𝐼7, �̃�), becomes: 
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�̃�7 = [

−(𝑟 − 𝛽1�̃�3) 𝑎�̃�1 −𝛽1�̃�1         0

0 0        0             0
𝛽2�̃�3

0
0
0

           
0

𝛾2�̃�4
  
    −𝛾1�̃�3

0

]. 

 

 Now, let 𝑈[7] = (𝑢1
[7]

, 𝑢2
[7]

, 𝑢3
[7]

, 𝑢4
[7]

)
𝑇

 be the eigenvector corresponding to the eigenvalue 

𝜆72 = 0. Thus (�̃�7 − 𝜆72𝐼)𝑈
[7] = 0, which gives: 𝑈[7] = (

𝛾1

𝛽2
𝑢4

[7]
,
(𝑟−𝛽1𝑛3)𝛾1

𝑎𝑛1𝛽2
𝑢4

[7]
 ,0, 𝑢4

[7]
)

𝑇

, where 

𝑢4
[7]

 is any nonzero real number. Let 𝛹[7] = (𝛹1
[7]

, 𝛹2
[7]

, 𝛹3
[7]

, 𝛹4
[7]

)
𝑇

 be the eigenvector 

associated with the eigenvalue 𝜆72 = 0 of the matrix �̃�7
𝑇 . Then (�̃�7

𝑇 − 𝜆72𝐼)𝛹
[7] = 0. By 

solving this equation for 𝛹[7]: 𝛹[7] = (0,𝛹2
[7]

, 0,0)
𝑇

is obtained, where 𝛹2
[7]

 is any nonzero real 

number. 

     Now, consider: 

 

𝜕𝐹

𝜕𝑠
= 𝑓𝑠(𝑁, 𝑠) =  (

𝜕𝑓1

𝜕𝑠
,
𝜕𝑓2

𝜕𝑠
,
𝜕𝑓3

𝜕𝑠
,
𝜕𝑓4

𝜕𝑠
)

𝑇

= (0,
𝑙−𝑛2

𝑙
, 0,0)

𝑇

. 

 

     Then, 𝐹𝑠(𝐼7, �̃�) =  (0,1,0,0)𝑇 and hence (𝛹[7])
𝑇
𝐹𝑠(𝐼7, �̃�) = 𝛹2

[7]
≠ 0. Therefore, 

transcritical        bifurcation cannot occur whilst the first condition of the saddle-node bifurcation is 

met.  

      Now,  

 

(𝛹[7])
𝑇
[𝐷2𝑓𝑠(𝐼7, �̃�)(𝑈[7], 𝑈[7])] =

−2𝑞𝐸

𝑙
𝛹2

[7]
≠ 0. 

 

 Thus, according to Sotomayor's theorem, system (1) has saddle-node bifurcation at 𝐼6 with 

the parameter �̃� = 𝑞𝐸. 

 

 The next theorem determines the saddle-node bifurcation of the system (1) at the 

equilibrium point 𝐼8. 

 

Theorem 8 For the parameter value 𝑠∗ = 𝑞𝐸, system (1), at the equilibrium point 𝐼8 has a 

saddle-node bifurcation. 

 

Proof According to  𝐽(𝐼8), system (1), at the equilibrium point 𝐼8, has a zero eigenvalue, say 𝜆82, 

at 𝑠∗ = 𝑞𝐸, and the Jacobian matrix 𝐽8
∗ = 𝐽(𝐼8, 𝑠

∗), becomes: 

 

𝐽8
∗ =

[
 
 
 
 𝑟 −

2𝑟𝑛1
∗

𝑘
− 𝛽1𝑛3

∗ + 𝑎𝑛2
∗ 𝑎𝑛1

∗ −𝛽1𝑛1
∗         0

0 0        0             0
𝛽2𝑛3

∗

0
0
0

           
0

𝛾2𝑛4
∗   

    −𝛾1𝑛3
∗

0 ]
 
 
 
 

. 

 

Now, let 𝑈[8] = (𝑢1
[8]

, 𝑢2
[8]

, 𝑢3
[8]

, 𝑢4
[8]

)
𝑇

 be the eigenvector corresponding to the eigenvalue 𝜆82 =
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0. Thus (𝐽8
∗ − 𝜆82𝐼)𝑈

[8] = 0, which gives: 𝑈[8] = (𝑢1
[8]

,
−(𝑟−

2𝑟𝑛1
∗

𝑘
−𝛽1𝑛3

∗+𝑎𝑛2
∗)

𝑎𝑛1
∗ 𝑢1

[8]
, 0,

𝛽2

𝛾1
𝑢1

[8]
)

𝑇

, 

where 𝑢1
[8]

 is any nonzero real number. Let 𝛹[8] = (𝛹1
[8]

, 𝛹2
[8]

, 𝛹3
[8]

, 𝛹4
[8]

)
𝑇

 be the eigenvector 

associated with the eigenvalue 𝜆82 = 0 of the matrix 𝐽8
∗𝑇 . Then (𝐽8

∗𝑇 − 𝜆82𝐼)𝛹
[8] = 0. By solving 

this equation for 𝛹[8], 𝛹[8] = (0,𝛹2
[8]

, 0,0)
𝑇

 is obtained, where 𝛹2
[8]

 is any nonzero real number.  

     Now,  

 

𝜕𝐹

𝜕𝑠
=  𝑓𝑠(𝑁, 𝑠) =  (

𝜕𝑓1
𝜕𝑠

,
𝜕𝑓2

𝜕𝑠
,
𝜕𝑓3

𝜕𝑠
,
𝜕𝑓4
𝜕𝑠

)
𝑇

= (0,
𝑙 − 𝑛2

𝑙
, 0,0)

𝑇

 

 

     So, 𝐹𝑠(𝐼8, 𝑠
∗) =  (0,1,0,0)𝑇 and hence (𝛹[8])

𝑇
𝐹𝑠(𝐼8, 𝑠

∗) = 𝛹2
[8]

≠ 0. 

     Therefore, transcritical bifurcation cannot occur whilst the first condition of the saddle-

node bifurcation is met. Now,  

 

(𝛹[8])
𝑇
[𝐷2𝑓𝑠(𝐼8, 𝑠

∗)(𝑈[8], 𝑈[8])] =
−2𝑞𝐸

𝑙
[𝑢2

[8]
]
2

𝛹2
[8]

≠ 0. 

 

 Thus, according to Sotomayor's theorem, system (1) has saddle-node bifurcation at 𝐼8 with 

the parameter 𝑠∗ = 𝑞𝐸. 

 

5. Numerical Simulation and Discussion 
 
This section aims to find the system's critical parameters that affect the behaviour of the 

proposed system by using numerical simulations. The dynamics of system (1) are obtained by 

solving system (1) numerically and then drawing the time series of the solutions of system (1) for 

different sets of parameters. Now, for the following set of parameters: 

 

𝑟 = 1, 𝑘 = 5, 𝑎 = 0.4, 𝛽1 = 2, 𝑎 = 0.4, 𝛼 = 0.2, 𝑞𝐸 0.4, 𝑠 = 0.9, 𝑙 = 4,  𝛽2 = 1.25, 𝛾1 =

0.6, 𝛾2 = 0.54, 𝛽0 = 1,                                                                                                                (4) 

 

     The equilibrium point 𝐼8 exists, and it is given by (𝑛1
∗ , 𝑛2

∗ , 𝑛3
∗ , 𝑛4

∗) = (3.88, 2.22, 0.74, 4.76).  

 

 
Figure 2. Dynamics of the four species with the data given by Eq. (4). 
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 Figure 3 explains the system's dynamics with the data given by Eq. (4) with different values of  𝑎 

(the positive effect rate on the first prey by the second prey). It illustrates the solution of system (1) settling 

down    to  𝐼8 for different values of 𝑎. This means that all species survive for a long time, and therefore, 

no bifurcation might occur. 

 

 
Figure 3. Dynamics of the four species with the data given by Eq. (4) with (a) a=2, system (1) converges to (23.8, 2.2, 0.7, 29.7) 

(b) a=0.0001, system (1) converges to (1.6, 2.2, 0.7, 2). 

  Figure 4 studies the dynamics of the system (1) with the data given by Eq. (4) with different values 

of 𝛽1 (the attack rate coefficient of the first prey due to the first predator). It shows the second predator 

becomes zero when 𝛽1 ≥ 2.1. Furthermore, the first predator faces extinction when 𝛽1 ≤ 0.01. On the 

other hand, the solution of the system (1) approaches to  𝐼8 when 0.01 < 𝛽1 < 2.1. This shows that the 

bifurcation occurred when 𝛽1 ∈ {0.01, 2.1}.  
 

 
Figure 4. Dynamics of the four species with the data given by Eq. (4) with (a) 𝛽1 =2.1, system (1) converges to (0.06, 2.2, 0.6, 0). 

(b) 𝛽1 =0.01, system (1) converges to (11.5, 4.6, 0, 48.9). 

 

Figure 5 illustrates the dynamics of the system (1) with the data given by Eq. (3) with different 

values of  𝛽2. It shows the first predator becomes zero when 𝛽2 ≥ 1.97. Moreover, the second predator 

faces extinction when 𝛽2 ≤ 0.026. On the other hand, the solution of the system (1) approaches to  𝐼8 
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when 0.026 < 𝛽2 < 1.97 that leads to the occurrence of local bifurcation when 𝛽2 ∈ {0.026, 1.97}. 
   

 
Figure 5. Dynamics of the four species with the data given by Eq. (4) with (a) 𝛽2=1.97, system (1) converges to (4.3, 4.6, 0, 40). 

(b) 𝛽2=0.026, system (1) converges to (1.9, 2.2, 1.1, 0). 

 

Figure 6 explains the system's dynamics (1) with the data given by Eq. (4) with different values 

of 𝑞𝐸 (harvesting rate). It illustrates the solution of system (1) settling down to 𝐼7 in the Int. 𝑅+(𝑛1𝑛3𝑛4)
3  

when 𝑞𝐸 ≥ 0.9. While all species keep surviving for 𝑞𝐸 < 0.9. That means system (1) faces a 

bifurcation at 𝑞𝐸 = 0.9. 

 

 
Figure 6. Dynamics of the four species with the data given by Eq. (4) with (a) 𝑞𝐸=0.9, system (1) converges to (1.6, 0, 0.7, 2). 

(b) 𝑞𝐸=0.00004, system (1) converges to (5.6, 3.9, 0.7, 6.9). 

 

Figure 7 explains the system's dynamics with the data given by Eq. (3) with different values of 𝑠 

(intrinsic growth rate of second prey). It illustrates the solution of system (1) settling down to 𝐼7 in the Int. 

𝑅+(𝑛1𝑛3𝑛4)
3  when 𝑠 ≤ 0.39. While the system (1) keep persists for 𝑠 > 0.39. This shows that the bifurcation 

occurred when 𝑠 = 0.39.  
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Figure 7. Dynamics of the four species with the data given by Eq. (4) with (a) s=0.39, system (1) converges to (1.6, 0, 0.7, 2). (b) 

s=2, system (1) converges to (2.8, 3.2, 0.7, 6). 

 

6. Discussion 
 

This study proposes one commensalism prey, one harvested prey, predator and super predator model. 

The goal was to comprehend how this kind of interaction affected the prey–predator system dynamics. 

The system experienced theoretical and numerical analysis. The system was shown to have eight 

equilibrium points. These equilibrium points show local stability under certain conditions. 

The system has a stable point attractor that may transfer to being unstable at the bifurcation point. 

Further, the local stability conditions have been violated at the bifurcation points. However, the numerical 

simulation achieved for the chosen hypothetical data set revealed a rich dynamical behaviour that may 

be summed up in the next section. 

 

 

7. Conclusion 
 

A commensalism ecological model, which describes predation and harvesting on the 

dynamical behaviour of a food chain prey-predator model with a Lotka-Volterra type of functional 

response, has been suggested and studied. The mathematical analysis has shown that system (1) 

has eight non-negative equilibrium points. The conditions that guarantee the occurrence of local 

bifurcation of system (1) around each equilibrium point have been introduced. System (1) has 

been solved numerically to approve the analytical results. The impact of various parameters on 

the dynamic behaviour of the given system has been investigated, with the following results being 

found. 

 

1. The first prey species 𝑛1 is survived under all conditions. 

2. It is detected that the system keep persists if the parameter 𝑎 is varied. 

3. The most critical parameter that affects the system's behaviour is 𝑠 − 𝑞𝐸 (the relation 

between the intrinsic growth rates s and the harvesting rate 𝑞𝐸). The paper shows that most 

of the equilibrium points' existence and stability relies on the relationship between these two 

parameters. 

 Overall, the system with a positive effect on the first prey and harvesting restriction stabilizes 

the ecosystem.
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