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Abstract 

Aluminium is extensively used in many manufacturing processes because of its intrinsic properties like soft, ductile, high 

electrical conductivity and highly corrosion resistant. Unfortunately, pure aluminium cannot give a required tensile strength, 

whereas by adding some other materials like particles of silicon carbide can give a proper strength and converted into a 

composite with adequate properties which is most suitable in the manufacturing of some specific biomedical instruments. It is 

well known that size and spatial distributions of particles are both influential in determining the mechanical properties of 

composite materials and, therefore, statistical characterization of these distributions is of prime importance if we wish to control 

the quality of the manufacturing processes for these materials. Many researchers have considered quantitative analysis of these 

features separately, but here we investigate the relationship between size and spatial distribution of the particles over an 

aluminium matrix. We have considered the actual sizes simply as ‘large’ or ‘small’ and, consequently, the characterization of the 

particle distribution patterns in the aluminium matrix can be carried out using statistical methods based on the theory of bivariate 

spatial point processes. We have applied this statistical approach to a sample of an aluminium alloy reinforced with silicon 

carbide particles. It is shown that the methods provide a complete characterization on the spatial interaction between small and 

large silicon carbide particles and it can be successfully used in a quality control step for the production of particulate composite 

materials used in the manufacturing of biomedical instruments. 
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1. Introduction 
Aluminium alloys reinforced with silicon carbide particles (Al-SiC) constitute an aluminum-

based material with improved mechanical properties compared to traditional aluminium alloys, 

such as high strength, modulus, wear and fatigue resistances (Chawla et al., 2001; Davison, 

1993; Torralba et al., 2003). Due to these properties of the composite material, it has been one of 

the important applications in many industrial sectors, including biomedical instruments 

fabrication (Dwivedi et al., 2021; Salernitano et al., 2003). However, it is well known that there 
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is a close relationship between these mechanical properties of the composite and the spatial 

distribution of the SiC particles over the aluminium matrix (Hong et al., 2004). For example, 

there is evidence that cracking is more prevalent in composites with strongly clustered particles 

(Lewandowski et al., 1989) and ductility is inversely related to degree of clustering (Murphy et 

al., 1998). Thus, materials researchers need methods for the analysis of the spatial distribution of 

second-phase particles in composite materials. 

If the centers of particles are used as the objects of study, suitable statistical tools that 

consider the spatial distribution of particles can be based on the theory of spatial point process. 

These methods have been used in the analysis of spatial distributions of second-phase particles 

in many papers and their efficacy has been proved (Cetin et al., 2009; Ghosh et al., 1997; Pyrz, 

1994; Scalon et al., 2003; Stoyan et al., 1990). 

The sizes of the particulate phase are, however, also important. For example, increasing the 

second-phase particle size leads to worsening the mechanical properties due to lower work 

hardening and higher damage accumulations rates (Chawla et al., 2001; Davison, 1993; Fathy et 

al., 2014; Narayanasamy et al., 2009; Willians, 2002). Statistical methods have been also applied 

in the analysis of particle size distributions, with most researchers relying on descriptions of 

volume fraction, calculation of sample moments of particle sizes and visual inspection of 

histograms of the particle size distribution (Chawla et al., 2001; Spitzig et al., 1985). Scalon et 

al. (2003a) proposed and advocated the use of a more coherent statistical approach that involves 

the employment of a distribution model for particle sizes in composite materials such as the log-

skew-Laplace. 

In this paper, we consider a question of key interest in particulate composite materials: Is the 

size of the reinforcing particles related to their location? The problem is to find specific methods 

to provide a quantitative measure of the interaction between the size of the particles and their 

spatial distribution. 

Here we consider that the spatial distribution of the second-phases in particulate composite 

materials is determined by both the particle positions and their sizes and, therefore, a 

quantitative analysis of the interaction between size and spatial distributions of particles can be 

founded on marked point process theory. We advocate, initially, categorizing the sizes simply as 

‘large’ or ‘small’, so we can use the simpler bivariate point processes for describing and 

modelling the size-spatial arrangement of reinforcing particles. 

In spite of the relatively long history of marked point process theory as a useful tool in many 

areas such as ecology, forestry, epidemiology and cytology (Diggle, 2003; Baddeley et al., 

2016), its application to materials has been quite limited. Most of the studies in materials science 

rely on simply describing the interaction between the size and location of the second-phase 

particles through either mark correlation or variogram functions (Ghosh et al., 1987; Stoyan et 

al., 1990; Pegel, 2009; Stoyan et al., 1991), though model-based methods are also applied 

(Ghosh et al., 1987; Stoyan et al., 1991; Stoyan et al., 1985; Wincek et al., 1993; Derr et al., 

2000; Stoyan, 2002). To the best of our knowledge, methods based on the theory of bivariate 

point process have never been used to address the quantitative analysis of reinforcing particles in 

biocomposite materials. 

The present paper is an attempt to introduce the use of the theory of bivariate point processes 

as a simpler and yet effective tool for characterizing the size and spatial arrangement of second-

phase particles. In putting together various methods into a coherent strategy, we intend to fill 

gaps, extend ideas and contribute to the knowledge of the relationship between spatial and size 

distributions of particles in biocomposite materials. 
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2. Data Description 
The aluminium alloy reinforced with SiC particles was synthesized by spray-forming in the 

Department of Engineering Materials, University of Sheffield, Sheffield, England. The SiC particles 

represented a volume fraction of 11%. They were in contact with the semi-molten alloy metal just for a 

brief time and, therefore, chemical reactions were minimal. 

The specimen of the Al-SiC composite material was split into smaller pieces (samples) using a 

precision cut-off machine. The cutting process resulted in metallographic samples of approximately 192 

m  288 m. The samples were placed on a computer-controlled optical microscope stage analyser 

(Polyvar) which allowed fully automatic adjustment, focusing, positioning and scanning of each sample. 

The two-dimensional digital images were then analyzed using image processing techniques to extract the 

size (radius of the equivalent disc) and location (co-ordinates of the equivalent disc center) of each SiC 

particle within the image. 

We choose, randomly, only one sample to illustrate the statistical analysis. The sample mean of the 

recorded particle sizes was used as a cut-off point. Thus, if the particle size was less than or equal to the 

sample median (1.37 m), the particle was classified as being ‘small’. Otherwise, the particle was 

classified as being ‘large’. Figure 1 shows the transformation of the microscope image of the polished 

surface of the Al-SiC composite material sample to the resulting data that we shall analyze; that is, a 

bivariate point pattern. 

 

                                 

Figure 1. Microscope image of the metallographic sample with area 192  288 m (left), locations of the 730 SiC particles and their sizes, 

represented as radii of the equivalent disc (middle) and, the bivariate spatial point pattern with 435 small particles (points) and 295 large 

particles (circles) (right). 

 

We use the software R (R core team, 2022) and its library “spatstat” (Baddeley et al., 2005) 

to perform all analyses conducted in this work. Data and R codes used to perform statistical 

analyses of this paper are available upon request from the first author. 

 
3. Describing trend and interaction between small and large particles 

Exploratory statistical analysis allows a first look at the characteristics of our data. In our 

sample, we recorded 730 SiC particles, representing an estimated volume fraction of 11%. This 

value is the same as the actual volume fraction used in the process production of the material, 

supporting the hypothesis that the sample preparation and selection have been carried out 

without bias. We have computed the sample mean (me), median (md) and the standard deviation 

(sd) of the radius of the equivalent disc (sizes) for both types of particles and obtained the 

following results. Small: me = 0.73 m, md = 0.70 m, sd = 0.19 m and large: me = 1.99 m, 

md = 1.74 m, sd = 0.79 m. 
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The positive difference between the mean and the median of the particle size data, for both 

types of particles, indicates that the size distribution is skewed to the right (positive). Other 

researchers have shown clear evidence that the particle size distribution in Al-SiC composite 

material deviate from the conventional symmetric (normal) to the positive skew distribution 

(Scalon et al., 2003a). We have observed that large particles have sizes with variability greater 

than small particles. 

The nature of a spatial point pattern may be thought of as comprising two components: 

intensity and dependence (or interaction) between the points of the patterns. Thus, we have to 

describe the stochastic structure of the bivariate point process in terms of its first and second-

order properties. 

The first order property of a spatial point process describes the local intensity, or the mean 

number of particles per unit area, as a function of position. Local intensity may be modelled, 

parametrically or non-parametrically, using coordinates and/or useful covariates. If such 

covariates are not available, as in our case, it is possible to adopt the procedure of estimating 

intensity by smoothing of the available data (Diggle, 2003; Baddeley, 2016; Baddeley et al., 

2006). 

Diggle (2003) presents a non-parametric approach for obtaining a spatially smooth intensity 

of a spatial point pattern based on a quartic kernel estimator. Let x1, x2,…,xn be the spatial 

locations of n particles in a bounded study region |A|. The local intensity 𝜆𝜏(𝒖) at any location u 

is estimated by 

 

𝜆𝜏(𝒖) = ∑
3

𝜋𝜏2
(1 −

ℎ𝑖
2

𝜏2
)

2
𝑛
𝑖=1 ,                                                                                             (1) 

 

where hi is the Euclidean distance between an arbitrary point u and the observed particle at 

location xi and τ > 0 is the bandwidth that determines the amount of smoothing. We have 

adopted a bandwidth that minimizes the mean-square error of a cross-validation process (Diggle, 

2003; Baddeley et al., 2005). 

If the pattern is a realization of a homogeneous Poisson process, it is expected that the 

intensity estimate should be constant over matrix and approximately equal to the “average 

intensity” estimated by number of points/area. 

Baddeley et al. (2006) suggest using the ratio of the two univariate intensity estimates for 

verifying whether the two point processes present the same first order properties. A constant 

local ratio suggests that both small and large particles may share the same degree of 

homogeneity (or inhomogeneity) and thus, the image plot of this intensity ratio provides a first 

exploratory approach for checking the interaction between the two patterns (Baddeley et al., 

2006). Although, Cetin and Kalkanli (2009) and Scalon et al. (2003) have successfully utilized 

the kernel smoothing estimator for characterizing first order properties of univariate point 

patterns of second-phase particles in composite materials, they have not used the ratio estimator 

in such analyses. 

Figure 2 shows (right and center panels) that although the local intensity appears to be 

approximately constant over the matrix and equal to the average intensity 0.0066, it is not 

obvious that the hypothesis of stationarity is realistic for the spatial distribution of both types of 

particles. We can identify some high and reduced local concentrations. Thus, these images may 

suggest slightly non-stationarity in the spatial distribution of both small and large particles. The 

constancy of the ratio small-to-large over the sample area suggests that the same slight 

inhomogeneity may affect both types of particles. 
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Figure 2. Image plots of the intensity estimates for small (left), large (center) and ratio of small-to-large (right) particles. 

 
Once we have characterized the intensity, the next step might be to assess dependence (or 

interaction) between the points of the patterns in terms of their second-order properties. The 

simplest manifestation of such interaction consists of either attraction (aggregation or clustering) 

or repulsion (regularity) in the pattern. A standard function for exploratory analysis of the 

second-order properties of a stationary spatial point process is given by the K-function, defined 

by Ripley (1976) as 𝐾(𝑟) = 𝜆−1E[number of events within distance r of an arbitrary event], 

where λ is the intensity of the process, and E[.] denotes expectation. In practice, we do not have 

knowledge of the actual K-function of the process and, therefore, we must estimate it from the 

spatial point pattern under consideration. 

Numerous K-function estimators have been proposed for stationary spatial point patterns. 

Most of the usual estimators are weighted and renormalized empirical distribution functions of 

the pairwise distances among events (Diggle, 2003, Ripley, 1976). Unfortunately, many 

researchers ignore the fact that when the pattern is non-stationary and, the use of the usual 

estimators of the K-function is inappropriate. Since our previous analysis suggested slightly 

nonstationarity in the spatial distribution of particles, we should use an estimator that goes some 

way to alleviating this problem. 

Baddeley et al. (2000) proposed an estimator of the K-function for nonstationary point 

processes (inhomogeneous K-function), where the second-order intensity of two points is 

divided by their respective local intensity is stationary. If the process is actually stationary, then 

the local intensity is constant and the inhomogeneous K-function reduces to the usual 

(homogeneous) K-function. 

Møller et al. (2003) have extended the estimator proposed by Baddeley et al. (2000) for 

allowing estimating second-order intensity for non-stationary bivariate spatial point processes. 

Let nS and nL denote the number of particles in types small and large, respectively, in a bounded 

study region |A|, and set xS ={𝒙𝑺𝟏, … , 𝒙𝑺𝒏𝟏
} and xL ={𝒙𝑳𝟏, … , 𝒙𝑳𝒏𝟐

}, where xij denotes the 

locations (coordinates) of the jth particle for types i. Also, let ‖𝒙𝑺𝒊 − 𝒙𝑳𝒋‖ be the Euclidean 

distance between particles xSi and xLj. Then, a suitable edge-corrected unbiased estimator for the 

inhomogeneous bivariate K-function for a particular distance r is given by 

 

𝐾𝑆𝐿(𝑟) =
|𝐴|

𝑛𝑆𝑛𝐿
∑ ∑

𝐼(‖𝒙𝑺𝒊−𝒙𝑳𝒋‖≤𝑟)

𝜆̂(𝑺𝒊)𝜆̂(𝑳𝒋)𝑤𝑖𝑗

𝑛𝐿
𝑗=1 ,

𝑛𝑆
𝑖=1                                                                              (2) 

 

where the 𝜆(. ) terms are estimates of the local intensity for the patterns of small and large 

particles given by equation (1), wij is a weighting factor, proposed by Ripley (1976), that 

represents the proportion of the circumference of the circle centered at the ith small particle, 

passing through the jth large particle that lies within |A| and I(.) is an indicator function equal to 

1 if ‖𝒙𝑺𝒊 − 𝒙𝑳𝒋‖ ≤ 𝑟, and 0 otherwise. 

An analogous estimator for KLS(r) is defined by interchanging the roles played by the two 

types of particles. Theoretically, KSL(r) = KLS(r) but this will not necessarily be the case for their 

corresponding estimates and, therefore, it is prudent to combine the estimators 𝐾̃𝑆𝐿(𝑟) and 

𝐾̃𝐿𝑆(𝑟) into a single estimator. Lotwick et al. (1982) show that the most efficient estimator of the 
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bivariate K-function is the linear combination of 𝐾̃𝑆𝐿(𝑟) and 𝐾̃𝐿𝑆(𝑟). Following the same idea, 

Møller and Waagepetersen (2003) suggest an efficient estimator of the inhomogeneous bivariate 

K-function given by 

 

 𝐾̂(𝑟) = (𝑛𝑆 + 𝑛𝐿)−1{𝑛𝐿𝐾̃𝑆𝐿(𝑟) + 𝑛𝑆𝐾𝐿𝑆(𝑟)}.                                                                  (3) 

 

The basic idea in interpreting the bivariate K-function is that under the hypothesis of 

independence between the two types of particles, the locations of large particles should be 

random with respect to those of small particles, regardless of whether the spatial distribution of 

either small or large particles is clustered, regular or random when considered separately. Thus, 

if the hypothesis of independence is true, it can be shown that 𝐾𝑆𝑆(𝑟) = 𝐾𝐿𝐿(𝑟) = 𝐾𝑆𝐿(𝑟) =
𝐾𝐿𝑆(𝑟) = 𝜋𝑟2 (Baddeley et al., 2000; Møller et al., 2003; Lotwick et al., 1982). 

A well-recommended transformation of the K-function is the L-function 𝐿̂(𝑟) = √
𝐾̂(𝑟)

𝜋
− 𝑟, 

which transform the bivariate K-function to the straight horizontal line at vertical height zero. 

This transformation seems to stabilize the variance of the estimator, making graphical visual 

assessment of interactions easier (Baddeley et al., 2000; Møller et al., 2003). Values of 𝐿̂(𝑟) 

higher than zero are characteristic of positive interaction (attraction) at the distance r, whilst 

values smaller than zero are found when there are repulsion (regularity) between particles. In 

addition, pointwise simulation envelopes can be computed in order to conclude that there is a 

statistically significant difference between 𝐿̂(𝑟) and zero at any value of r. 

We calculated the simulation envelopes by generating s independent simulations under the 

null hypothesis of independence between the two patterns with the same estimated intensities in 

the study region (Diggle, 2003; BADDELEY et al., 2016). Compute the estimated L-functions 

for each of these realizations, that is, 𝐿̂(𝑘)(𝑟), for k =2,…,s. Obtain the pointwise upper and 

lower envelopes of these simulated functions, 𝑙(𝑟) = min
𝑘

𝐿̂(𝑘)(𝑟) and 𝑢(𝑟) = max
𝑘

𝐿̂(𝑘)(𝑟), 

respectively. If the data came from two independent point processes, then 𝐿̂(𝑟) and 

𝐿̂(1)(𝑟),..., 𝐿̂(2)(𝑟) are statistically equivalent and independent, thus, the probability that 𝐿̂(𝑟) is 

contained inside [l(r), u(r)] is equal to 2/(s+1) by symmetry (BADDELEY et al., 2016). Figure 3 

shows the estimated L-function against distances r together with the 99% pointwise envelopes. 

 

                      
Figure 3. Estimated L-functions (solid line) with lower and upper envelopes from 99 independent simulations under the null 

hypothesis of independence between the patterns (region between the envelopes is shaded) for small (left), large (center) and 

both small and large (right) particles. 

 

Figure 3 gives information about the spatial distribution of the particles over the matrix 

regarding not only to the behavior of each of the component patterns, but also to the interaction 

between the two types of SiC particles. Firstly, the difference between the curves corresponding 

to small and large particles suggests that, at least, with regard to second-order properties, the two 

component patterns are generated by two completely different stochastic mechanisms. More 

particularly, the values of the L-function for the large SiC particles are negative at distances up 

to 12 µm and, therefore, the curve suggests the presence of a strong regular mechanism among 
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the large SiC particles. On the other hand, examination of the values of the L-function for the 

small SiC particles reveal a hint of attraction (or clustering) at distances above 2.5 µm. Applied 

works corroborate these findings. For example, Fathy et al (2014) show that small size SiC 

particles (< 8 µm) leads to a non-homogeneous reinforcement distribution and to the formation 

of SiC clusters in a SiC-Al composite produced by a powder metallurgy technique of cold 

pressing at 500 MPa followed by hot extrusion at 580 0C. Cetin and Kalkanli (2009) and Fathy 

et al. (2014) have shown that in composites containing large SiC particles, the distribution of 

reinforcement tends to be uniform (regular) in the matrix. 

We can also observe from Figure 3 (right) that L(r) lies below the lower simulation envelope 

at short distances. Thus, the two types of particles exhibit negative association, resulting from 

repulsion between small and large particles at short distances (less than 2.8 m). We have 

observed that the nearest distance between two particles is 1.35 m. This distance is bigger than 

the radius of the equivalent discs of the smallest particles in the sample, that is, 0.52 m. Thus, 

this repulsive behavior can be interpreted as more than a consequence of the obvious 

requirement for non-overlapping particles. 

 

4. Modelling the interaction between small and large particles 
The analysis presented above indicated the presence of a repulsion mechanism (regularity), 

at small scale, between small and large reinforcing SiC particles held in the matrix of the 

biocomposite material. In order to explain the nature of this mechanism, we need a stochastic 

point process model. 

Markov (or Gibbs) point processes have proved suitable for modelling point patterns which 

display some degree of regularity (Baddeley et al., 2006; Ripley et al., 1977; Diggle et al., 

2006). These models can be constructed by writing down either their probability density or their 

conditional intensity, where the second form is considered the main tool for analyzing a Gibbs 

point processes (Baddeley et al., 2016). 

The conditional intensity of the bivariate Gibbs point process is interpreted as the 

conditional probability of finding a particle with a particular mark (m) near a location u, given 

the rest of the marked point process y. 

Let 𝐴 𝐶 𝑅2 be the study region, and M the finite set of possible marks. Then, a marked point 

pattern is a set of 𝒚 = {(𝑥1, 𝑚1), … , (𝑥𝑛, 𝑚𝑛)},     𝑥𝑖 ∈ 𝐴,      𝑚𝑖 ∈ 𝑀,     𝑛 ≥ 0 of pairs (𝑥𝑖, 𝑚𝑖) of 

locations 𝑥𝑖 with marks 𝑚𝑖. 

Since we have particles classified as small and large, we use a simplified version of these 

models called bivariate Gibbs point process that consider only pairwise interactions among 

particles and, therefore, the conditional intensity of the bivariate Gibbs point process is given by 

 

  𝜆𝜽((𝜇, 𝑚); 𝒚) =  𝛽𝑆
𝑛𝑆(𝒖)𝛽𝐿

𝑛𝐿(𝒖) ∏ ∏ ℎ𝑆𝑆(‖𝑥𝑆𝑖 − 𝑥𝑆𝑗‖)𝑖−1
𝑗=1

𝑛𝑆
𝑖=2

∏ ∏ ℎ𝐿𝐿(‖𝑥𝐿𝑖 −𝑖−1
𝑗=1

𝑛𝐿
𝑖=2

𝑥𝐿𝑗‖) ∏ ∏ ℎ𝑆𝐿(‖𝑥𝑆𝑖 − 𝑥𝐿𝑗‖)
𝑛𝐿
𝑗=1

𝑛𝑆
𝑖=1  ,                                                                                        (4) 

 

where ||.|| denotes the Euclidean distance between two particles, h(.) are functions determining 

the interaction between a pair of particles xSi e xLj of small (S) and large (L) particle types, and 

BS(u) and BL(u) determine the intensity (trend) of the process for small and large particles, 

respectively, at location u. Since our pattern presents some degree of inhomogeneity, we are 

using a first-term polynomial trend given by 𝛽𝐿
𝑛𝐿(𝒖) = 𝑏𝐿0 + 𝑏𝐿1𝑥 + 𝑏𝐿2𝑦, and 𝛽𝑆

𝑛𝑆(𝒖) =

𝑏𝑆0 + 𝑏𝑆1𝑥 + 𝑏𝑆2𝑦 for modeling trend, where bL0, bL1, bL2, bS0, bS1 e bS2 are (scalar) 

parameters to be fitted, and x and y are the Cartesian coordinates. 

There are many ways to express h(.) in order to create different kinds of interaction 

behavior. In this paper we are using 
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 ℎ(. ) = {

0   𝑖𝑓    ‖. ‖ < 𝐻

𝛾   𝑖𝑓    ℎ ≤ ‖. ‖

1   𝑖𝑓    ‖. ‖ > 𝑅

< 𝑅.  .                                                                                    (5) 

 

We are termed the conditional intensity function given by equation (4) with interaction 

function given by equation (5) as “inhomogeneous multitype Strauss-hard-core model”. The 

hard-core distance parameters (H..) specifies the radius around a particle in which no other 

particles cannot occur. The interaction distance parameters (R..) determines the radius around 

particles in which a spatial interaction occurs and must be R.. > H... The interaction parameter 

(γ..) specifies the strength and direction of the interaction. For distances between H.. and R.., the 

interaction parameter is interpreted as a positive interaction (attraction) when γ.. > 1, no 

interaction if γ.. = 1, and a negative interaction (repulsion) if 0 ≤ γ.. < 1. The hard-core distances, 

interaction distances, and interaction parameters are all symmetric, for example, γSL = γLS. 

The estimation of the model parameters (𝜽) may be difficult because we do not have an 

analytic expression in a closed form for the likelihood of equation (4). To work around this 

problem, the model given by equation (4) can be fitted by maximum pseudolikelihood. Baddeley 

et al. (2016) show that the log pseudolikelihood is 

 

  𝑙𝑜𝑔 𝑃𝐿(𝜃; 𝑦) = ∑ 𝑙𝑜𝑔((𝒙𝑖 , 𝑚𝑖); 𝒚)
𝑛(𝑦)
𝑖=1 − ∑ ∫ 𝜆𝜃((𝑢, 𝑚); 𝒚)

𝑊𝑚∈𝑀 𝑑𝒖 .                            (6) 

 

You may observe that Equation (6) is not a log of the likelihood, but the analogue of the 

score equation 
𝑑

𝑑𝜃
log 𝑃𝐿 (𝜃) = 0 is an unbiased estimating equation. Thus, Baddeley et al. 

(2006) argue that the maximum pseudolikelihood estimator is asymptotically unbiased, 

consistent and asymptotically normal under appropriate conditions. 

The main disadvantage of the maximum pseudolikelihood estimator is that the conditional 

intensity of the model 𝜆𝜃((𝜇, 𝑚); 𝒚) must be loglinear in the parameter, that is, 

𝜆𝜃((𝜇, 𝑚); 𝒚) = 𝜃𝑆(𝑢, 𝒚), where S(u,y) is a real-valuated function of locations u and 

configuration y. The problem is that some parameters of the vector 𝜽 do not appear in the 

loglinear form. They are called “irregular parameters”. For instance, in our model we have six 

irregular parameters (HSS, HLL, HLS, RSS, RLL e RLS), and nine “regular parameters” that appear in 

the loglinear form (bL0, bL1, bL2, bS0, bS1, bS2, 𝛾𝑆𝑆, 𝛾𝐿𝐿 e 𝛾𝐿𝑆). Thus, we have adopted a three-

step procedure to perform inference on the model parameters. 

In the first step, we have used the maximum likelihood method to estimate hard-core 

parameters (H..), which corresponds to the minimum observed distance between two small 

particles (Baddeley et al., 2016). 

In the second step, we have used the profile pseudo-likelihood method to estimate the 

interaction distance parameters (R..). Baddeley et al. (2006, 2016) show that this method finds 

the interaction distances with the maximum pseudo-likelihood within a set of hard-core 

distances. 

Once the estimates of the irregular parameters (H.. and R..) are set, in the third step, we have 

used the maximum pseudo-likelihood, proposed by Turner and Baddeley (2000), to perform 

inference on the regular parameters. 

By using this approach, we have got the following estimates:  𝐻̂𝑆𝑆 = 𝐻̂𝐿𝑆 = 𝐻̂𝑆𝐿 = 1.35 μm, 

 𝐻̂𝐿𝐿  =  3.08 μm, 𝑅̂𝑆𝑆 = 3.38 μm, 𝑅̂𝐿𝐿 = 3.22 μm, 𝑅̂𝑆𝐿 = 𝑅̂𝐿𝑆 = 1.36 μm, 𝑏𝐿0 = -5.118, 

𝑏𝐿1 =0.0008, 𝑏𝐿2 = 0.0001, 𝑏𝑆0 = -5.639, 𝑏𝑆1 = 0.0022, 𝑏𝑆2 = 0.0023, 𝛾𝑆𝑆 = 2.21, 𝛾𝐿𝐿 = 0.455, 

and 𝛾𝑆𝐿=0.00003. 

These results tell us that the estimated intensity of large particles in the composite would 

increase by a factor of exp(-5.118+0.008+0.0001) = 0.00604 if the slopes increased to 1. The 
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largest slope values in data are (192, 288), at which stage the predicted intensity has risen from 

0.00599 to 0.00719 particles/μm2. Basically, the same trend behavior would be observed for 

small particles and, therefore, the model managed to capture the slight non-stationarity of the 

two point processes. 

These results also show that the shortest distance between any two particles in the material 

is 1.35 μm, however allowing a radius around particles between 1.36 and 3.38 μm in which a 

spatial interaction may occur. 

Evidence for dependence between particle of different types is quantified by the interaction 

parameter (𝛾𝑆𝐿). This is near zero, suggesting a strong negative interaction (repulsion). The 

estimate of within-large particles interaction (𝛾𝐿𝐿) is below unity, suggesting inhibition. The 

estimate of within-small particles interaction (𝛾𝑆𝑆) is much greater than unity, suggesting 

aggregation. 

A more effective way to understand the fitted interaction parameters is to produce a plot of 

the fitted interaction function like shown in Figure 4. The function h(r) in each panel is the 

(exponentiated) pairwise interaction between points of the given types. 

 

  
Figure 3. Interpoint interaction functions for the non-stationary multitype Strauss-hard-core model fitted to the observed point 

pattern marked by type (small, large). 

 

The diagonal panels (large-small and small-large) of Figure 3 show evidence for 

dependence (inhibition) between particle of different types up to 1.3 μm, while the large-large 

panel suggest there is a quite strong inhibition between points of large particles up to 3 μm. The 

panel small-small suggests evidence for inhibition up to 1.3 μm and evidence for aggregation 

between 1.3 and 3.4 μm. 

From a physical point of view, this singular behavior (attraction and repulsion) can be 

interpreted as a consequence of the actual requirement for non-overlapping particles that creates 

this repulsive effect on one hand, and of a constant pressure of the small particles to fill the large 

gaps among the large particles on the other. In other words, we can say that the small particles 

are aggregated in the gaps between the large particles but they tend to repel each other when 

they are very close together. 
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5. Model validation 
Having fitted a point process model to data, it is important to validate it to check that the 

model provides a good fit to the data. Baddeley et al. (2016) argues that there is little theory 

available to support goodness-of-fit testing and model validation for a fitted Gibbs point process 

model and, therefore, goodness-of-fit methods often rely on summary functions such as F, G, J, 

K and L. 

Baddeley et al. (2016) suggests using the same Monte Carlo approach that we have applied 

to test the null hypothesis of independence between the two processes. We simply have to 

generate simulated realizations from the fitted model, compute the L-function for each simulated 

realization, and construct the pointwise upper and lower simulation envelopes. The result is 

shown in Figure 4. 

 

 
Figure 4. Estimated L-functions (solid line) with lower and upper envelopes from 99 independent simulations under the null 

hypothesis of the non-stationary (inhomogeneous) multitype Strauss-hard-core model. 

 

Figure 4 shows that the null hypothesis would be accepted at the 1% level with any choice 

of distance r and, suggests an obvious adequacy in the fit of the inhomogeneous multitype 

Strauss-hard-core model to the bivariate point pattern. 

For a more formal goodness-of-fit assessment, Diggle et al. (2006) suggest using the test 

statistic 𝑇 = ∑ [{𝐾̂𝑆𝐿(𝑟) − 𝐾̅𝑆𝐿(𝑟)} 𝑟⁄ ]
2𝑅

𝑟=1 , where 𝐾̂𝑆𝐿(𝑟) are the estimates of KSL(r) calculated 

from the data and, 𝐾̅𝑆𝐿(𝑟) the corresponding mean of estimates from s independent realisations 

from the fitted model (null hypothesis). The corresponding values of the test statistic, say Ti = 

T(x(i)) for i = 2,…,s and, the rank of T in the set of values {T1,…,Tm} ∪ {T}, that is, 𝑅 = 1 +
∑ 1{𝑇𝑖 > 𝑇}𝑚

𝑖=1  are computed. Then, under the null hypothesis, the rank R is uniformly 

distributed on {1, 2,…,s}, assuming there are no ties. Hence, the associated p-value is 𝑝 =
𝑅

𝑠+1
. 

Based on 999 simulations of the fitted model, the attained p-value of the Monte Carlo test 
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was 0.125, and also indicating a good overall fit of the inhomogeneous multitype Strauss-hard-

core model and, therefore, proving that the sizes of the second-phase reinforcing particles are 

related to their location in the biocomposite material. 

Although, we have performed our goodness-of-fit analysis using only the bivariate L-

function, it would be possible to consider nearest neighbor properties using other bivariate 

pattern descriptors such as the F, G and, J functions described by Diggle (2003) and Baddeley et 

al. (2016). We have also carried out the analysis using these functions (not shown here) and we 

have reached the same conclusions as reached by using the L-function. 

 

6. Final remarks 
 

One may argue that one sample is not enough to draw conclusions whether or not the sizes 

of the reinforcing particles are related to their location in the composite material. We certainly 

agree that it would be necessary analyzing more samples of the material for a conclusive 

characterization of the biocomposite material. Our aim here was to present a methodology that 

could be applied to many samples as necessary. In fact, we have applied to the full set of 37 

samples of this material and we have reached the same conclusions. 

Other problem related to our work would be the choice of the cut off point between large 

and small particles. It is possible that this choice would affect the results of the bivariate spatial 

analysis. We have performed the analysis using two others cut off points (not shown here), one 

smaller and the other larger than the actual cut off point used in this work. We observed that in 

both cases the analysis continued to show the same characterization of the bivariate spatial point 

pattern. The use of the smaller cut off point decreased the degree of negative association for 

short distances and increased the degree of positive association for moderate distances between 

the two types of particles. The use of the bigger cut off point produced opposite results. These 

results may suggest that the smaller the particles, the stronger the degree of positive association 

and that the larger the particles, the stronger the degree of negative association between the two 

types of SiC particles. 

We now return to our decision to consider a simplified version of the size-spatial 

relationship, focusing only on the spatial distributions of ‘large’ and ‘small’ particles instead of 

using the actual sizes of particles. Of course, the full statistical analysis of a two-phase material 

microstructure using marked point processes theory, with quantitative marks, is physically very 

appealing. In this paper, we have followed an approach based on the theory of bivariate point 

patterns because it is the simplest case of a marked point process and, therefore, we consider this 

the starting point for exploring the relationship between spatial and size distributions. Methods 

that are more sophisticated (Stoyan et al., 2002) might be carried out if the simple version 

proves inadequate. Results show that our feasible approach works appropriately. So, it may be 

possible to avoid more complex methods in many cases, depending on the objective of the 

analysis. 

It is well known that model validation to check formally that the model is a good fit to the data, 

and that all terms in the model are appropriate is of prime importance in statistical modelling. 

Unfortunately, model validation in spatial point processes is under development, and available just 

for simple models. For instance, residuals from the fitted model have recently been developed only 

for (homogeneous or inhomogeneous) Poisson processes (Baddeley et al., 2006, 2016). Statistical 

theory of parameter estimation and hypothesis testing for spatial point processes are rather limited, 

and depend on the class of models envisaged. Once more, for homogeneous (or inhomogeneous) 

Poisson processes, much of the classical theory of maximum likelihood and methods available for 

formal inference are applicable. For marked (bivariate) Gibbs processes, to the best of our 

knowledge, there is no statistical theory for hypothesis tests based on the pseudolikelihood. Thus, the 

analysis is based almost exclusively on the literal interpretation of the parameter estimates and, 

therefore, Monte Carlo tests based on simulations of summary functions are very popular (Baddeley 

et al., 2006, 2016) 
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Finally, it worst to point out that the described methods presented in this paper for 

quantitative characterization of the interaction between spatial and size distributions of second-

phases in particulate composite materials can be easily adapted to a computer system in order to 

perform quality control in the production process of particulate metal matrix composites and, 

further associate these features with the mechanical properties of the material. 

 

7. Conclusions 
We advocate in this paper that the characterization of the interaction between spatial and size 

distributions of second-phases in particulate composite material applied for manufacturing 

biomedical instruments might be carried out by using methods from bivariate spatial (marked) 

point processes theory. We perform a characterization of a specimen of an Al-SiC composite 

material by conducting four steps: exploratory analysis of the first order properties, testing the 

hypothesis of no interaction of particles, fitting an appropriate model and testing goodness-of-fit. 

This approach shows that the component patterns of small and large particles are generated by 

two completely different stochastic mechanisms. There is evidence of significant clustering 

among the small particles and, on the other hand, there is a presence of a moderately regular 

spacing among the large particles. The analysis also showed a presence of some degree of 

interaction between small and large particles, suggesting that small particles are aggregated in 

the gaps among large particles, but they tend to repel each other at small scales. 
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