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Abstract
The Negative binomial distribution is the most used distribution to model macro-parasite burden in hosts.
However, reliable maximum likelihood parameter estimation from data is far from trivial. No closed for-
mula is available and numerical estimation requires sophisticated methods. Using data from the literature,
we show that simple alternatives to negative binomial, like zero-inflated geometric or hurdle geometric
distributions, produce in some cases a better fit to data than the negative binomial distribution. We derived
simple closed formulas for the maximum likelihood parameter estimators which constitutes a significant
advantage of these distributions over the negative binomial distribution.

Keywords: Hurdle geometric distribution; Macroparasite, Maximum likelihood estimation; Negative
binomial distribution; Zero-inflated geometric distribution;

1. Introduction
Macroparasites usually present over-dispersed distributions, that is, a few hosts harbor many

parasites, while the rest of the hosts are practically free of parasites (see, for example,Crofton, 1971;
Gourbière et al., 2015; Seo et al., 1979). The most used distribution to describe the distribution of
parasites is the negative binomial (Bliss & Fisher, 1953; Shaw et al., 1998) which provides an accurate
description of the observations.

However, in many cases, the negative binomial distribution (or other similar distributions like
the log-series and Polya–Eggenberger (Crofton, 1971; Seo et al., 1979)) cannot account for the
“excess” of zeros observed. A simple solution widely used is to consider zero-inflated distributions
(Greene, 1994; Hall, 2000; Lambert, 1992).
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The negative binomial distribution, denoted in the following by NB(m, k), is a two parameters
distribution, the mean burden of parasites in the host population m and the dispersion parameter k
which is related to the degree of overdispersion of the distribution (Bliss & Fisher, 1953). Moreover,
it can be shown that the limiting distribution of the NB(m, k) distribution, as k → ∞, is a Poisson
distribution with parameter m, and NB(m, k) distribution is a geometric distribution with parameter

1
m+1 when k = 1.

One problem with the negative binomial distribution is parameter estimation from the obser-
vations. The method of moments estimation is simple but not always precise (Clark & Perry, 1989).
Maximum likelihood estimation provides one of the best parameters estimation (Piegorsch, 1990)
but for the negative binomial distribution there is no a closed formula for the parameter estimates in
terms of the observations and maximum likelihood estimates should be obtained numerically which
presents various complexities (Bandara et al., 2019; Dai et al., 2013).

In this article, we show simpler alternatives to the negative binomial distribution which de-
scribe the observations equally well, and in some cases provide a more precise description, but with
the significant advantage that exist closed-form expressions for the maximum likelihood parameter
estimators.

2. Zero-inflated (deflated) distributions and hurdle distributions
The distribution of parasites in hosts is often over-dispersed, that is, there tend to be a small

number of hosts who harbor very large burdens while the majority of hosts harbor low burdens.
It is colloquially said that parasite’s distributions follow the 20-80 rule (Woolhouse et al., 1997),
that is, 20% of the individuals account for the 80% of the parasite burden. The negative binomial
distribution offers such over-dispersed distribution, but in some cases, an excess of zeros is observed
for which the distribution fail to account. A simple and widely used solution is to consider zero-
inflated (in some cases zero-deflated, Dietz & Böhning (2000)) distribution and hurdle distribution
(Min & Agresti, 2005; Welsh et al., 1996).

2.1 Zero-inflated (deflated) distributions
A discrete random variable Y follows a zero-inflated (deflated) distribution if its probability mass

function (pmf ) is given by (Johnson et al., 2005),

P(Y = y) =

 π + (1 – π)p(y; θ) y = 0

(1 – π)p(y; θ) y ≥ 1
(1)

where p is the pmf of a given base distribution and θ is a parameters vector. For example, θ may
include the mean (µ) and variance (σ2) of the base distribution. When π < 0 we have a zero-deflated
distribution.

If G(z) is the probability generating function (pgf ) of the base distribution, then the pgf of the
corresponding zero-inflated (deflated) distribution is given by (ibid.)

F(z) = π + (1 – π)G(z) (2)

From the pgf we may obtain the mean and the variance for the distribution

E(Y) = (1 – π)µ

Var(Y) = (1 – π)σ2 + π(1 – π)µ2 (3)

where µ, σ2 are the mean and variance of the base distribution, respectively. The dispersion index,
or variance-to-mean ratio, is given by D = Var(Y)

E(Y) (Cox & Lewis, 1966), then D can be written as
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D =
σ2

µ
+ πµ (4)

where σ2/µ is the dispersion index of the base distribution. Therefore, from (4), the zero-inflated
distribution is more over-dispersed than the base distribution.

2.2 Hurdle distributions
Another common way to account for an excess of zeros is the hurdle distribution, where its pmf

is given by (Johnson et al., 2005)

P(Y = y) =


ω y = 0

(1 –ω) p(y;θ)
1–p(0;θ) y ≥ 1

(5)

and p, θ are defined as in section 2.1.
If G(z) is the pgf for the base distribution, then the pgf for the hurdle distribution is (ibid.)

F(z) = ω + (1 –ω)
G(z) – p(0; θ)

1 – p(0; θ)
(6)

and therefore, the mean and the variance of the hurdle distribution is,

E(Y) = αµ

Var(Y) = ασ2 + α(1 – α)µ2 (7)

where α = 1–ω
1–p(0;θ) , and µ, σ2 are the mean and variance of the base distribution, respectively.

Finally the dispersion index for the hurdle distribution is given by

D =
σ2

µ
+ (1 – α)µ (8)

If ω > p(0; θ) the hurdle distribution is more over-dispersed than the base distribution.

3. Parameter estimation and Maximum likelihood
A simple, but in general inaccurate, way to fit the parameters of a distribution from a sample

consist of the use of the method of moments. For example, the negative binomial distribution has
two parameters that can be expressed in terms of the two first moments. While this method is quite
simple, do not provide a reliable fit (Clark & Perry, 1989; Piegorsch, 1990). Maximum likelihood
estimation (mle) is the most reliable method (Piegorsch, 1990), but it does not always produce closed-
form expression, and the parameter estimations need to be obtained numerically, a task far from
trivial for the negative binomial distribution (Bandara et al., 2019; Bliss & Fisher, 1953; Dai et al.,
2013). In the following, we present the problem of maximum likelihood parameter estimation for
zero-inflated and hurdle distributions.

3.1 Maximum likelihood estimation for zero-inflated (deflated) and hurdle dis-
tributions
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3.1.1 Zero-inflated (deflated) distribution
As in section 2.1 we denote by θ to the vector of parameters of the base distribution, and therefore

the set of parameters for the zero-inflated (deflated) distribution is (π, θ).
Let yi denote the ith observation, i = 1, . . . , N, where N denote the total number of observations

in the sample and N0 is the number of units with zero counts, then the log-likelihood function is
given by

lnL(π, θ) =
N∑
i=1

lnP(Y = yi)

= N0 ln
[
π + (1 – π)p0

]
+ (N – N0) ln(1 – π) +

∑
yi≥1

ln pyi

(9)

where pyi = p(yi; θ). Maximizing ℓ = lnL for (π, θ) we obtain the following system of equations,

∂ℓ

∂π
=

N0(1 – p0)
π + (1 – π)p0

–
N – N0
1 – π

= 0

∂ℓ

∂θi
=

N0(1 – π)
∂p0
∂θi

π + (1 – π)p0
+
∑
yi≥1

∂pyi
∂θi

pyi
= 0

(10)

3.1.2 Hurdle distributions
The log-likelihood function for the hurdle distribution is given by

lnL(ω, θ) =
N∑
i=1

lnP(Y = yi)

= N0 lnω + (N – N0) ln
(

1 –ω
1 – p0

)
+
∑
yi≥1

ln pyi

(11)

and therefore the parameter values estimates are obtained from the following system

∂ℓ

∂ω
=

N0
ω

–
N – N0
1 –ω

= 0

∂ℓ

∂θi
=

(N – N0)
∂p0
∂θi

1 – p0
+
∑
yi≥1

∂pyi
∂θi

pyi
= 0

(12)

4. Maximum likelihood for the negative binomial distribution and
two simple alternatives.

The probability mass function for the negative binomial distribution is

P(Y = y) =
Γ (y + k)

Γ (y + 1)Γ (k)
qk(1 – q)y (13)

where 0 ≤ q ≤ 1 and k > 0.
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Suppose we have data y1, . . . , yN sampled from a negative binomial distribution (13). Differ-
entiating the log-likelihood function ℓ = lnL partially and setting them equal to zero yields the
following system of equations

∂ℓ

∂q
=

Nk
q

–
mN
1 – q

= 0

∂ℓ

∂k
=

[∑
i
ψ(yi + k)

]
– Nψ(k) + N ln q = 0

(14)

where m is the mean of model (13) and ψ(y) = Γ ′(y)
Γ (y) is the digamma function. Substituting in the

second equation q = k
m+k (obtained from the first equation) we obtain[∑

i
ψ(yi + k)

]
– Nψ(k) + N ln

(
k

m + k

)
= 0 (15)

This equation cannot be solved for k in a closed form and must be solved numerically. Iterative
techniques as Newton-Raphson method can be used, but this method may fail to find the mle value.
Finding the mle value is a challenge, since we could not obtain the root or obtain more than one
for the equation (15) (Clark & Perry, 1989; Dai et al., 2013; Piegorsch, 1990; Saha & Paul, 2005;
Willson et al., 1984).

4.1 Zero-inflated geometric distribution
The geometric distribution is a special case of the negative binomial distribution for k = 1, and

then, its pmf is given by
P(X = x) = q(1 – q)x (16)

where x = 0, 1, 2, . . . and 0 ≤ q ≤ 1. The mean is 1–q
q while the variance is 1–q

q2 .

From (1) the corresponding zero-inflated (deflated) distribution is

P(Y = y) =

 π + (1 – π)q y = 0

(1 – π)q(1 – q)y y ≥ 1
(17)

Mean and variance are given by (3),

E(Y) = (1 – π)
(1 – q)

q

Var(Y) = (1 – π)
(1 – q)

q2 [1 + π(1 – q)].
(18)

The dispersion index for the zero-inflated (deflated) geometric distribution is always greater than
one, and therefore this distribution is always over-dispersed.

4.1.1 Maximum likelihood estimation
The system of likelihood equations, according to (10), is given by

∂ℓ

∂π
=

N0(1 – q)
π + (1 – π)q

–
N – N0
1 – π

= 0

∂ℓ

∂q
=

N0(1 – π)
π + (1 – π)q

+
N – N0

q
–

mN
q

= 0
(19)
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Therefore, the maximum likelihood estimators for π and q are

π̂ =
mN0 – N + N0
mN – N + N0

q̂ =
N – N0

mN

(20)

which is expressed in terms of the observed sample mean m, the sample size N and the number of
zeros in the sample N0.

4.2 Hurdle geometric distribution
The hurdle distribution for the geometric distribution is given by

P(Y = y) =


ω y = 0

(1 –ω) q(1–q)y
1–q y ≥ 1

(21)

Mean and variance are obtained from (7)

E(Y) =
(1 –ω)

q

Var(Y) =
(1 –ω)

q2
[
1 + (ω – q)

] (22)

The dispersion index for the hurdle geometric distribution is always greater than one, and therefore
this distribution is always over-dispersed.

4.2.1 Maximum likelihood estimation
According to (12) the system of likelihood equations is given by

∂ℓ

∂ω
=

N0
ω

–
N – N0
1 –ω

= 0

∂ℓ

∂q
= (N – N0)

(
1

1 – q
+

1
q

)
–

mN
1 – q

= 0
(23)

therefore, the maximum likelihood estimators for ω and q are given by

ω̂ =
N0
N

q̂ =
N – N0

Nm

(24)

Like in the previous case, maximum likelihood estimators are expressed in terms of the observed
sample mean m, the sample size N and the number of zeros in the sample N0.

Note that by the reparameterizationω = π+ (1 –π)q, the probability mass functions of the zero-
inflated geometric and hurdle geometric models coincide. On the other hand the pair

(
ω̂–q̂
1–q̂ , q̂

)
is a maximum of the log-likelihood function (9). Therefore we can obtain that the corresponding
Akaike’s information criterion values of both models will be the same.

Due to these facts, the fit of the data by both models will be the same.
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5. Applications
5.1 Study of frequency distribution of Ascaris lumbricoides infection

The nematode Ascaris lumbricoides is one of the most common intestinal parasites of humans. It
is prevalent in tropical and temperate populations where poverty and lack of sanitation is common
(Pullan & Brooker, 2012).

Burden of infestation is computed using the number of parasites in each host of the sample. At
the present time, this type of study is no longer conducted and we will use the results from Seo et al.
(1979). He studied six rural populations in Korea where an endemic situation was observed.

The samples obtained from each rural population were denoted by A, B, C, D, E and F re-
spectively. These samples are over-dispersed (see Table 1) and can be fitted by a negative binomial
distribution (see Figure 1).

Figure 1. Fitting the parasite counts data (black) by NB (red) and ZIG (blue) distribution for Seo et al. (ibid.) data set. Except
in the first case, the simple zero-inflated geometric distribution fit the data as well as the negative binomial distribution
(see Table 1).

In Figure 1 we show the observed (black) and expected values of the fitted models (negative bi-
nomial and zero-inflated geometric). In addition, Table 1 includes the maximum likelihood estima-
tions, the chi-squared statistics for goodness-of-fit (D’Agostino, 2017), their corresponding p-values,
and Akaike’s information criterion (AIC) (Konishi & Kitagawa, 2008). As we see, the zero-inflated
geometric distribution fit the data as well as the negative binomial distribution in most cases. The
AIC results show that the negative binomial and zero-inflated geometric models produce a similar
fit. Indeed, the fit in Figure 1 improves the results obtained by negative binomial distribution in
samples E and F. On the other hand, using the AIC, the geometric zero-inflated model showed the
best performance in samples C, E and F. Hence, the zero-inflated geometric distribution, ZIG(π, q),
is a suitable candidate model to fit such data.
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Table 1. Parameters of NB and ZIG distributions calculated from observed Seo et al. (1979) data and results of chi-squared
test and AIC

Samples
Theoretical
distribution

Calculated
parameters

A B C D E F

(n = 540) (n = 136) (n = 32) (n = 47) (n = 39) (n = 59)

m 1.0167 2.8235 2.3125 2.5106 6.6410 4.6102
k 0.3546 0.4240 0.5761 0.5893 0.8726 0.6193

NB chi-squared statistic 50.0660 25.8883 6.8092 17.4885 15.6914 11.2927
p-value <0.0001 0.0556 0.8699 0.3547 0.4747 0.7911

AIC 1438.0235 574.5621 131.7761 198.1410 235.0388 310.0239

π 0.3653 0.2687 0.2011 0.1819 0.0971 0.1581
q 0.3843 0.2057 0.2568 0.2458 0.1197 0.1544

ZIG chi-squared statistic 213.1743 43.2591 6.8197 22.2336 14.4552 10.6473
p-value <0.0001 0.0003 0.8693 0.1358 0.5648 0.8307

AIC 1458.0335 579.2921 131.5360 198.1585 233.3277 308.9315

df 16 16 12 16 16 16
dispersion index 4.7973 7.5077 4.6992 5.9204 5.8447 6.5972

5.2 Parasite distribution in crabs
Crofton (Crofton, 1971) contributed significantly to the study of parasite distributions in hosts.

In his works he observed that over-dispersion is one of the main characteristics of parasite-host
distributions.

Analyzing data from Hynes & Nicholas (1963) of six samples (A to F) of the parasitic infection
of the crustacean Gammarus pulex, by the parasite acanthocephalan Polymorphus minutus, Crofton
showed that the negative binomial distribution provides a good fit to the data.
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Figure 2. Fitting the parasite counts data (black) by NB (red) and ZIG (blue) distribution for data in parasite in crabs (Crofton,
1971). Zero-inflated (deflated) geometric distribution fit the data as well or better than the negative binomial distribution
(see Table 2).

In Figure 2 we compare the fit to the data analyzed by Crofton using the negative binomial dis-
tribution and the zero-inflated (deflated) geometric distribution. In most cases our simple proposal
provides a better fit than the negative binomial distribution.

Based on the chi-square goodness-of-fit test and the AIC reported in Table 2 we conclude that
the zero-inflated (deflated) geometric distribution provides a fit of the data as good as the negative
binomial distribution.
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Table 2. Parameters of NB and ZIG distributions calculated from observed of parasite in crabs data (Crofton, 1971) and
results of chi-squared test and AIC

Samples
Theoretical
distribution

Calculated
parameters

A B C D E F

(n = 549) (n = 509) (n = 633) (n = 486) (n = 276) (n = 191)

m 2.2732 1.4165 0.6003 1.3189 0.8913 0.2670
k 1.2564 1.5837 0.2974 3.0544 1.2679 0.6069

NB chi-squared statistic 20.6558 3.1086 10.5075 2.9993 2.3843 0.2776
p-value 0.0081 0.8748 0.0621 0.8089 0.6655 0.8704

AIC 2211.4460 1662.1623 1279.5742 1506.5751 724.9286 252.4139

π -0.0256 -0.1304 0.4875 -0.3313 -0.1020 0.2195
q 0.3109 0.4438 0.4605 0.5023 0.5528 0.7451

ZIG chi-squared statistic 23.4185 6.0467 6.5825 8.6706 2.1793 0.4542
p-value 0.0029 0.5343 0.2536 0.1930 0.7028 0.7969

AIC 2215.4026 1665.9254 1274.8293 1514.0280 724.8346 252.4989

df 8 7 5 6 4 2
dispersion index 2.4235 1.8340 2.5774 1.4125 1.6757 1.4464

6. Discussion and Conclusions
The Negative binomial distribution is widely used to describe parasite burden in populations

because this distribution often provides a good fit of the observations which can be improved by the
corresponding zero-inflated (deflated) distribution (Crofton, 1971; Seo et al., 1979).

However, parameters estimation is far from trivial, and maximum likelihood estimates must be
found always numerically. Simple numerical methods (as the Newton method, Atkinson (2008)) are
not easy to implement as there is not a closed expression for the derivative of the Gamma function
and generally fail if the starting value is not chosen appropriately (Bandara et al., 2019).

The Negative binomial distribution may also fail to fit the zero counts (Crofton, 1971). This
issue may be overcome using the zero-inflated negative binomial distribution, however, parameters
estimation by maximum likelihood is even more complex and also the AIC criteria penalize models
with a larger number of parameters.

However zero-inflated geometric or hurdle geometric models are simpler alternatives to the
negative binomial distribution, for which we found simple formulas for the maximum likelihood
parameter estimates.

In the examples analyzed in this work zero-inflated geometric or hurdle geometric models
present, in most cases, a similar fit to the data than the negative binomial model, and in some cases
these models significantly improve the fit.

The AIC results show that the models are similar performance in both datasets.
However the major advantage of these models is not a little improvement in the data fitting but

the fact that these models are simpler and with maximum likelihood parameter estimates easier to
obtain than the negative binomial model.

For most of the sample considered, observations in the tail of the distribution may look too far
from the expected values. However this fact does not necessarily indicates the need to consider other
distributions. Since the samples are small, rare events in the tail, when observed acts like outliers
given too much weight to this rare observation. The simulations presented in the Appendix are
consistent with this explanation.
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Appendix
As we show in Figure 1, some observations are not close to the predicted value obtained from

the best fitted negative binomial distribution. Here we show that even for the case of the two largest
samples (n = 540 and n = 136, see Table 1) the observations are compatible with a negative binomial
distribution. In each case, we produced 1000 simulated samples of sizes n = 540 and n = 136, drawed
from the best fitted negative binomial.

The simulation results are shown in Figure 3 where the simulated samples are in black dots and
the Seo et al. (1979) samples in red diamonds.

Figure 3. A and B samples of Seo et al. (ibid.) in red diamonds and the simulated samples in black dots.
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