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Abstract
Mortality, a key outcome variable in many population studies and studies of healthcare and its interven-
tions, is commonly analysed by regression of the survival status on a set of relevant background variables.
We describe an alternative based on the potential outcomes framework, in which we ask how a particular
group of subjects, or a population, whose outcomes were realised in one condition, would have fared had
they been treated or cared for in different circumstances. The method is applied to neonatal mortality in
the operational delivery networks in England and Wales. The performance of a network is assessed by
the difference of the mortality rates of the network and of a matched set of babies drawn from the entire
domain of the study. The outlier status of a network is established by a decision-theoretical approach.

Keywords: Causal analysis; Clinical audit; Decision theory; Indirect standardisation; Neonatal mortality;
Potential outcomes.

1. Introduction
Mortality rate is defined as the probability of dying in a specified set of conditions or circum-

stances. For example, infant mortality in a particular country and a year is defined as the fraction
(percentage or rate) of children born in the country in the given year who do not survive till the age
that delimits infanthood. Estimates of mortality rates are used mainly for comparing them across a
factor, such as countries, time (years or seasons), socio-demographic categories and sex. Straightfor-
ward comparisons of sample or population proportions are problematic because the groups involved
may differ in their distributions of background variables. Such variables may provide an alternative
explanation for the observed differences. The established method of dealing with such confound-
ing is by regression, adjusting for the background variables regarded as important or selected by
comparing the fits of alternative models (Alexandrescu et al., 2014; Kristoffersen et al., 2018).
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A problem in this approach is model validity, which is addressed by model selection. A class
of models is considered and one of them is selected according to a rule or criterion related to how
well the model fits the data. Although this approach is regarded as satisfactory by many, its distinct
weakness is the failure to account for model uncertainty. Established model selection methods deal
with the two kinds of error (failure to exclude a redundant covariate and exclusion of an important
covariate from the model) by controlling the rate of the first kind; eliminating errors in selection
is not possible. No model selected by a fallible criterion is valid and parsimonious with certainty,
yet the conventional statements (e.g., concerning the absence of bias) and evaluations (e.g., standard
errors) are predicated on such certainty. They are therefore optimistic, more so when the selection
involves many models. This issue is analysed in detail by Claeskens & Hjort (2008) and Longford
(2017) but no solution has been adopted in practice.

Another weakness of modelling is the standard assumptions, such as normality, linearity and
homoscedasticity in ordinary regression, and their counterparts in generalised linear models. Di-
agnostic procedures may find contradictions with them, but cannot confirm these properties. We
regard them as a distraction in our goal of comparing outcomes across contexts, in our case, mor-
tality rates in the neonatal networks in England and Wales.

We apply an alternative in which comparisons of mortality rates (or of another outcome) are
made without intermediation of any model fitted to the outcomes. To reduce the abstraction of
our discourse, we refer to a specific problem addressed in Section 5. Mortality during neonatal care
is one of the audit items in the National Neonatal Audit Programme, an annual assessment of the
neonatal units in the United Kingdom. These units are organised in 12 networks in England, and
Wales and Scotland are regarded as a separate network each. The networks have between 5 and 22
units. Northern Ireland does not participate in the Audit and Scotland is not included in the analysis
of mortality.

The purpose of the Audit is to assess the performance of each network and unit on key process-
related and outcome variables. It is not meant to be a contest in which there are winners and losers,
or where a league table is formed, but a comparison of each network and unit with a standard. A
report is compiled for each network and unit, summarising its performance in the past year or a few
years. Its intent is to assist in identifying potential for improvement. The overall (national) rate in
the current year is adopted as the standard. For most audit items, analyses are conducted and their
results reported for networks and units but mortality is reported only for networks.

In the last few years, mortality was analysed in the Audit by fitting a logistic regression and
evaluating the fitted probabilities in each network. The main objection of some of the parties with
a stake in the results has been that the estimation process is not transparent. For instance, (slightly)
different models are sometimes selected in the annual analyses even though they cover three years,
and so datasets for consecutive analyses have about two-thirds overlap. The models considered
focused on ‘explanation’ of the mortality in terms of a list of obvious background variables and their
interactions, to the detriment of attention to the process of assignment to the networks.

In the method we propose, we ask the question

What would be the mortality rate of the babies included in the analysis from a network
if they were cared for not in the network but in the entire domain of the Audit?

This entails a separate analysis for each network. In what follows, the network that is subject to
this analysis is called the focal network. The question implies a hypothetical experiment in which
babies are assigned to the focal network or to the entire domain (the country) at random. Such an
experiment cannot be implemented but, if it could be, its analysis would be straightforward because
the effect of all confounding variables would have been eliminated by design. This approach can be
characterised as switching our statistical faith from modelling to design. We seek in the data a subset
that has all the features of a dataset collected in a (hypothetical) experiment with random assignment
of babies to the network and the domain, as two alternative treatments. Arguments that promote



Brazilian Journal of Biometrics 313

this general idea are often formulated in the context of causal analysis within the potential outcomes
framework (Rubin, 2008; Rosenbaum, 2017).

The quoted question corresponds to a comparison of a network with the country on terms of
the network, because the comparison is based on the babies from the network. Such a comparison
is known as indirect standardisation. In direct standardisation, a synthetic set of babies is compiled,
defined by their backgrounds. This set is referred to as the reference set or template. The counterpart
of the quoted question is

How would the babies in the template fare if they were assigned to (and treated by) a
given network?

Direct standardisation is unquestionably fair because it assesses the performance of each network
on the same clinical task defined by the template. Such an assessment, by the estimated rates of
mortality of the template, is suitable for compiling a league table, if this were desirable and issues of
sampling variation were satisfactorily resolved. Its drawback is that the template is unevenly relevant
for the networks. It is least relevant for a network in which many babies in the template would be
atypical patients. In contrast, indirect standardisation is indisputably relevant to the focal network
because it refers to the background of its babies. It can be used only for comparing the network with
the country, but that is exactly the remit of the Audit. We compare each network with the entire
domain, not with its complement in the domain. In the latter case, each network would have a
different comparator, an undesirable iniquity. An unusual feature of the experiment for comparing
a network and the domain is that a subject may end up in the focal network even when assigned to
the entire domain.

The next section gives details of the outcome, mortality, as defined in the Audit, and discusses
some related issues. Section 3 gives the details of the potential outcomes framework for our ap-
proach. Section 4 describes the propensity score analysis used for finding a matching group for the
babies from a network. Section 5 discusses selection of the background variables for the analysis,
highlighting the role of the linked (hypothetical) experiment and its relation to what the Audit in-
tends to assess. Section 6 gives details of the analysis in which the results based on different sets of
background variables, related to different perspectives that a neonatal audit might have, are con-
trasted. A decision-theoretical approach is applied to classify the networks into a set of ordered
categories. Section 7 discusses assessment of the balance of the matched groups, the principal diag-
nostic of propensity score analysis. The concluding section summarises the issues raised in the article
and outlines a wider range of applications of the proposed approach. There is no linkage between
the propensity score analysis and the decision-theoretical method of classification applied in Section
6; that is, the sole assumption of the latter is that the estimates of the treatment effects are unbiased
and that their sampling variances are estimated without bias; the effects may be estimated by any
method, although (more) efficient estimators are preferred. The propensity score matching method
applied can be replaced by an alternative, such as caliper matching.

Further details of the National Neonatal Audit Programme and its context, together with a
similar application, are given by Longford (2020). Propensity score matching has been applied to
clinical audit in neonatal research in the past, for instance, by Silber et al. (2016), although in a
different context (the perspective of the health insurance industry in the U.S.A.), and with a dif-
ferent emphasis (contest-like comparison of neonatal units by direct standardisation). Theoretical
background is developed and examples given in Rosenbaum (2017). There is a vast literature on
propensity score matching; see Austin (2011) for an introduction, Stuart (2010) for a wide-ranging
review, and Austin & Fine (2019) for some recent developments. Yu, Silber & Rosenbaum (2020)
discuss matching algorithms with a focus on very large datasets. Helenius et al. (2019) and Gale et
al. (2021) present applications of propensity score matching to comparing alternative treatments in
neonatal care.
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2. Definition of mortality
Mortality would seem to have a clearcut and uncontentious definition and interpretation. In

neonatal medicine, this is not the case. First, neonatal mortality is affected by attitudes to and avail-
ability of abortion, as well as the legal code. Next, it refers to deaths in neonatal units. They exclude
stillbirths and deaths immediately after birth (failures to resuscitate), which occur in labour wards,
before the baby’s transfer to the (adjacent) neonatal care unit. Further, the period of time at risk
may be till discharge from the neonatal unit, which is in a wide range, from a few weeks to several
months. Delays in reporting are avoided by truncating this period at a certain postnatal age, such
as 30 days. We adhere to the definition of mortality as death in a neonatal care unit at or before 44
weeks of postmenstrual age. Babies discharged alive earlier are classified as survivals.

This definition is problematic in some secondary aspects. Babies in neonatal care are under close
supervision, and they rarely die unexpectedly and all of a sudden. Often they die after a decision,
arrived at in consultation with the parents, to stop the treatment because the baby’s chances of cure
and prospects of longer-term survival are negligible. A baby may be discharged alive to a hospice
(or to home), but with an expectation that it would die within a short time — any further clinical
treatment would be futile. The database we use, the National Neonatal Research Database, does not
collect information about babies after their discharge. In summary, mortality is affected by attitudes
and ambitions of clinical staff and parents, which are not recorded, and would be very difficult to
elicit and code. In the following sections we take the adopted definition at face value.

There are annually about 660 000 live births in England and Wales (Office for National Statistics,
2021), and about 10% of the newborn are detained in a neonatal unit immediately after birth. The
main causes are poorly developed vital organs owing to preterm birth, congenital anomalies and
injuries sustained during the birth. For mortality, the Audit is concerned only with very preterm-
born babies, born between 24 and 31 completed weeks of gestational age (GA), that is, 24+0 –31+6 in
the notation used in neonatal literature. All such very preterm born babies are admitted to neonatal
care as a matter of course. An analysis is conducted also on the subset of extreme preterm born babies,
born earlier than 28 weeks GA. The analysis is conducted only for the networks. The mortality rate
in England and Wales in 2017 – 19 among babies born earlier than 32 weeks GA is estimated by 6.6%
(1454 deaths among 22 126 babies); in the subset of extreme preterm born, it is 15.7% (1001 deaths
among 6381 babies). These two rates exceed by 0.09% and 0.05% their respective counterparts for
years 2016 – 18.

3. Potential outcomes framework
In the potential outcomes framework for two alternative treatments A and B, we consider out-

comesYi(A) andYi(B) for subjects i = 1, . . . , I. The observed outcome isYi = (1–Zi)Yi(A)+ZiYi(B),
where Zi is the indicator of receiving treatment B; Zi = 1 if subject i receives B and Zi = 0 if he/she
receives A. In our application for a network, A stands for assignment to this (focal) network and B
stands for assignment to the domain, that is, to a randomly selected network. For each subject from
the focal network, Yi(A) is observed and Yi(B) is not.

The (individual) treatment effect on subject i is defined as ∆i = Yi(A) – Yi(B), and the average
treatment effect, ∆, as the average of the individual treatment effects in the relevant set of subjects,
those assigned to the focal network in our case. For outcomes other than binary, the difference in
∆i can be replaced by another contrast, such as the difference of transformed values of Y, and the
arithmetic average in ∆, the default choice, by the median, geometric mean and the like. The values
of a set of background variables Xi are available for each subject i. Potential values are well defined
for every variable, not only the outcome(s). A variable is called background if its potential values
coincide for each subject; that is, Xi(A) = Xi(B), so that the argument, treatment A or B, can be
dropped from X.
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We make the assumption of stable unit-treatment variable assignment, SUTVA (Rubin, 1980),
according to which the observed outcome Yi depends only on the treatment assigned to subject i,
and never on the treatment assigned to any other subject. SUTVA is violated when subjects confer,
adjust their conduct according to some shared expectations or when, in a clinical setting, carers
adapt the care temporarily with intent to achieve an outcome they or someone else expects.

We also make the assumption of strong ignorability (Rosenbaum & Rubin, 1983), that the as-
signment Z depends on the outcomes only through the background variables and each probability
of assignment differs from both zero and unity. This is commonly interpreted as having a suffi-
ciently rich set of background variables and that each subject could have received either treatment.
Redundant variables in this set generate no problems, in contrast to the approach based on mod-
elling. Strong ignorability enables us to conduct the analysis in two stages which correspond to the
processes of assignment and application of the assigned treatment.

Of the two potential outcomes only one is observed. This problem is addressed by matching,
finding for each subject i who received treatment A a subject i′ with a similar background who
received treatment B, and adopting Yi′ = Yi′ (B) as the substitute for Yi(B), or its estimate. This
can be interpreted as a task of imputing I values, relating the problem to methods for dealing with
missing data. Instead of forming matched pairs, inverse propensity weighting (IPW) can be applied.
Matching is associated with a dichotomy of inclusion or not in a match. In IPW, the weight replaces
this dichotomy with a continuous scale for a subject’s contribution to the comparison of the two
groups. We apply matching, so that, at least in principle, the records of the two matched sets of
babies could be compared by experts.

4. Propensity score matching
The method we apply is adapted from its textbook exposition in Imbens & Rubin (2015). Other

methods of propensity score matching can be applied instead, as well as methods that do not use
propensity for matching. For a given set of background variables, the sole criterion of appropriate-
ness of such a method is the quality of the match described later in this section.

We have an extensive list of background variables for matching, and propensity score analysis
reduces the intractable multivariate problem to matching on a single (constructed) variable, the
fitted propensity score. The propensity is defined as the probability of assignment to one of the
networks, as a function of the background variables. The propensity score is a strictly monotone
transformation of the fitted propensity. The logit transformation is commonly used. The propensity
is based on a model for the treatment indicator (assigned to the network vs. to the entire domain) in
terms of the background variables. Model selection is applied, with the purpose of finding a model
which, after matching, yields a good balance on all the background variables for subsets of babies
from the network and the domain. Quality of the model fit is of no concern because the model has
no interpretation nor any inferential value. It is merely a device for finding matched subsets that
could then be analysed by a method that would be appropriate if these subsets were observed in a
perfectly conducted clinical trial. In our setting, the two treatments are

• A — assigned for care in the focal network;
• B — assigned for care in a randomly selected network.

A separate analysis is conducted for each network. Suppose the Audit includes Nk babies from
network k and N = N1 + · · · + NK babies from the entire domain (England and Wales). Then the
propensity score analysis for network k is based on Nk + N records; the Nk babies from network
k appear in the analysis twice each, (Z = 1) and once for the entire domain (Z = 0). Logistic
regression is fitted to this binary variable Z in terms of the background variables, including some of
their interactions. Babies from the network are then matched (paired up) with babies from the entire
domain on the fitted propensities, forming up to Nk matched pairs. We do not permit a baby from
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the network to be paired with its copy in the domain. This analysis does not involve the mortality
status, nor any other variable that may be affected by the (hypothetical) assignment to the network
or the entire domain.

We apply the following procedure for matching. Propensity groups of babies are formed ac-
cording to cutpoints set by adaptive splitting (Imbens & Rubin, 2015; Section 13.6). Starting with
the entire set of Nk+N fitted propensities as a single group, a propensity group is divided to two sub-
groups separated by its median propensity until the subgroups are either too small or are sufficiently
well balanced across the two treatment groups (the network and the domain). Every subgroup has
to contain at least 15 babies from either treatment group. Background groups may be defined for
one or a few categorical (or categorised) variables that are known to be strongly associated with the
outcome. The algorithm can be applied separately in each background group. Gestational age and
sex are the obvious choices in our case.

There is a vast array of algorithms for matching and IPW, without any one being transpar-
ently superior to the others, not even in a narrow range of problems. For example, mipmatch
(Zubizarreta, 2012), sbw (Zubizarreta, 2015) and rcbalance (Pimentel, 2016), are packages imple-
mented in R. However, there is a wide agreement that the quality of the match is to be assessed by
the scaled differences of the treatment-group means. This is the only criterion by which a matching
exercise is to be judged. In the adaptation to our problem, a set of 13 × 2 propensity score analy-
ses, we placed an emphasis on automation, to reduce the amount and complexity of interventions
with the computational process, and on uniformly high quality of the match. The algorithm was
fine-tuned on a dataset from the past, so that it could be applied, together with other analyses and
procedures, within a strict timeline.

The 20 babies (0.1%) with sex not determined are arbitrarily recoded as female. This group
is too small to be treated as a separate category in the matching process. As an alternative these
babies could be dropped from the analysis. For the network with most such babies, seven (0.3%),
we applied this alternative. The model-selection algorithm yielded a different model but very similar
propensity for every baby. Similar conclusion was arrived at when all these babies were recoded as
male.

We define three GA categories, born at 26 weeks or earlier, at 27 or 28 weeks, and at 29 – 31
weeks; crossed with sex, they define six background groups. Table 1 gives the counts of babies
within GA weeks and sex. The entire Audit involves N = 22 126 babies. Further details of the data
are given in Section 6.

Table 1. Babies in the Audit for neonatal mortality, by sex and gestational age; births in years 2017 – 19

Gestational age (weeks)

Sex 24 25 26 27 28 29 30 31 Total
Male 630 753 857 1200 1569 1745 2328 3048 12 130
Female 546 607 839 947 1244 1425 1960 2408 9976
Not determined 1 1 0 0 1 6 4 7 20

The propensity groups defined within the background groups are called matching cells. Suppose
one such cell comprises n1 babies from the focal network and n2 babies from the domain, and let
n = min(n1 , n2). By construction, n ≥ 15. Since maxkNk ≪ N, in all but a few exceptional cases
n1 < n2 . We select, without replacement, a random sample of size n from both treatment groups
within this cell. Usually, when n = n1 , it contains all the babies from the network, and a sample of n
babies from the domain; some babies in the latter set may be from the network. How the n pairs of
babies are formed from these n + n babies is immaterial. The sets of matched pairs in all the cells are
collated into a (matched) dataset of 2Mk babies, which is then analysed by a method appropriate for a
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randomised experiment. In particular, the background variables have no role in this analysis — their
(potential) confounding has been diminished by matching. The analysis concludes by classifying
each network to one of three ordinal groups (unsatisfactory, satisfactory and excellent) by a method
based on decision theory; see Section 6.1.

Imbalance of a background variable h in the two assignment groups is defined as the scaled
difference of the within-group means. Let µ1h and µ2h be the sample means (or expectations) of
the respective groups 1 and 2 and σ2

h be their pooled variance. Then the imbalance for this variable
is defined as bh = (µ2h – µ1h)/σh . The (summary) imbalance for a set of variables h = 1, . . . ,H in
the two groups is defined as the average of the absolute values of the imbalances for the variables;
B = 1

H (|b1| + · · · + |bH |).
Informally, imbalance is sufficiently low if it is lower than what the imbalance would be in a

linked randomised trial of Mk + Mk babies with background profiles like the matched groups. Both
imbalances are subject to uncertainty, and so their evaluation has to be averaged over replications.
The balance of two matched groups is regarded as sufficiently tight if |bh | < 0.1 for every variable h.
In our experience, this is easy to achieve with large-scale data, and the upper bound can be reduced
somewhat. The summary imbalance B is another criterion; it should be smaller than 0.05, so that
a set of imbalances is unsatisfactory when many of them are close to ±0.1, even if every one has
absolute value below 0.1.

Forming a pair of matched groups is motivated as post-observational design (Rosenbaum, 2017).
A key feature common to matching and design is that they do not involve any outcomes. Propensity
score analysis and matching entail modelling of the treatment assignment process in terms of the
background. It can be interpreted as a search for an experiment within the realised observational
study.

Inverse probability weighting is an alternative to one-to-one matching. The contrasts of the
mean outcomes within the propensity cells are pooled across the cells with weights proportional to
the number of matched pairs that could be formed in the cell. These weights can be used also in the
evaluation of the imbalance. The weights can be interpreted as the likelihood of being involved in
a matched pair. Their application entails no uncertainty, and therefore requires no replications.

Caliper matching is another alternative to matching within propensity groups or cells. It involves
forming pairs of subjects, one from each assignment group, that are in a distance shorter than an
upper limit called the caliper width. A subject can be present in at most one (matched) pair. A
reasonable choice of the caliper width is 0.1 on the logit-propensity scale. It can be combined with
exact matching on the background group. Instead of propensity score differences, the background-
distance of a pair of babies can be defined from the background variables directly, for instance,
by the Mahalanobis distance, with an appropriate arrangement to reflect the relative importance
of the variables. These computations are not very demanding, and so they can be conducted for
several caliper widths. Tighter caliper results in fewer matched pairs but the match usually has
smaller imbalance. The choice of the caliper can be improvised, so long as it is not influenced by
the outcomes. Details of propensity score matching can also be set after establishing the number of
matched pairs and inspecting the balance on the background variables because, not involving the
outcomes, they are an integral part of the post-observational design.

5. Background variables
In the analysis of another audit item, bronchopulmonary dysplasia (Longford, 2020), back-

ground included all variables defined prior to the first admission to a neonatal unit, when the ad-
mitted baby is not more than an hour old. All variables related to antenatal care, which takes place
between a few days and minutes prior to delivery, are regarded as background. This reflects a
healthcare model in which neonatal care starts at the first admission, and exercises no influence on
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the care the mother and baby (or fetus) received earlier. That is, the assessment by the Audit covers
the period between the first admission and the final discharge, permitting transfers between units.

In one perspective, the linked randomised trial would apply the intervention at the moment of
the first admission, and so details of resuscitation, including mode of delivery, Apgar scores at one
and five minutes, administration of antenatal steroids and magnesium sulphate and level of the unit
(1 — local, 2 — specialised, 3 — intensive care) are background variables. We refer to this view as
perspective O (original).

Another perspective was formulated after the original analysis of bronchopulmonary dysplasia.
In it, antenatal care is an integral part of the neonatal care for the (mother and) baby, and therefore
these variables have to be excluded from the list of background variables. For example, the level
of the unit is under control of the network management. The guidelines in force state that a baby
born at 27 weeks GA or earlier should be delivered in a hospital with a neonatal intensive care
unit (NICU). A network’s ability to adhere to this guideline depends on the capacity of its NICUs
and systems of ‘early warning’ that an extreme preterm delivery is likely. We refer to this view
as perspective R (revised). We sidestep the arbitration as to which perspective, O or R, represents
the Audit more faithfully because it requires a refined elucidation of the purpose of the Audit. We
highlight the urgency of such elucidation by showing that the two perspectives lead to different
conclusions about the networks.

In the potential outcomes framework, the processes of treatment assignment and treatment effect
are dealt with separately, by matching and analysis of matched subsets, respectively, or their IPW
counterparts. We argue that this separation and conceptual clarity of the framework contribute to
the understanding of the issue of delineating the background by stakeholders with only rudimentary
or no understanding of the statistical and computational details of the methods.

6. Analysis
Table 2 lists the background variables in two blocks. The first block is common to the two

perspectives, O and R, and the second is for variables in perspective O that were discarded by the
revision. The estimand is the difference of the mortality rate in the focal network and the hypo-
thetical rate that would be realised if the caseload of this network were dispersed throughout the
domain. The latter rate is estimated by the mortality rate of the matched babies (the matched rate).
The estimands under the two perspectives differ because they refer to different hypothetical exper-
iments; in perspective R, the network has a wider control over perinatal care, and therefore the
background comprises fewer variables.

Table 3 presents the sample rates p̂k and matched rates p̃(H)
k estimated according to the perspec-

tives H = O, R. The numbers of babies in the networks are also listed. The smallest network, Wales,
has 978 babies (4.4%) and the largest, North West, 2910 babies (13.2%). The (estimated) treatment

effect is defined as the difference ∆̂k = p̂k – p̃(H)
k ; negative values of ∆k indicate better performance

than the domain. The sample rates are in a wide range, 4.5 – 9.7%. Their sampling variances are in
the range (0.50, 0.80), indicating that there are substantial network-level differences in the under-
lying rates pk .

In perspective R, the matched rates are in a narrow range, 5.6 – 7.1%, suggesting that the net-
works have little advantage or handicap that could be attributed to their casemix, and the differences
among them are to a large extent due to the differences in their clinical performance. The sample
(that is, crude) and matched rates are only weakly related. For example, West Midlands Neonatal
Network has the highest sample rate but its matched rate is below the overall rate. Conversely, Lon-
don North Central and North East (London NC&NE) has the lowest sample rate but its matched
rate is above the overall rate. Wales has the lowest matched rate but its sample rate is around the
overall rate; South East has the highest matched rate but its sample rate is near the overall rate.



Brazilian Journal of Biometrics 319

Table 2. List of the background variables

Name Type Categories Limits Missing

Both perspectives O and R
GA weeks Continuous 24+0 – 31+6

Birthweight (kg) Continuous 4 st. dev.s
within
GA weeks

Sex Binary Female/Male

Birth year Continuous 0.0 – 3.0

Fetuses Categorical 1, 2, 2+

Mother age (years) Continuous 16 – 50

Ethnicity Categorical White
Black & mixed Included
Asian & mixed in cat. 4
Other and misc.

Previous pregnancies Binary None/Some ∗
MedProbPregn 30–32† Binary No/Yes

Placental abruption Binary No/Yes

Smoking in pregnancy Binary No/Yes ∗
Onset of labour Binary Spont./Other
Index of deprivation Continuous 0 – 10
(LSOA decile)

Perspective O only
Mode of delivery Binary Vaginal/

Caesarian

Apgar score 1min Continuous 0 – 10 ∗
Apgar score 5min Continuous 0 – 10 ∗
Cord pH (arterial) Categorical Low (< 6.9)

Medium (6.9 – 7.0) ∗
High (> 7.0)

Medical problems (mother) Binary None/Some ∗
Pyrexia Binary No/Yes

Antenatal steroids Binary No/Yes ∗
Antenatal antibiotics Binary No/Yes ∗
Level of unit Binary Other/NICU

Notes: ∗ — indicator for missing value is used; † — at least one of codes 30: Pregnancy induced hyper-
tension; 31: Preeclampsia; 32: Haemolysis, elevated liver enzymes.
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Table 3. Sample rates p̂k , matched rates p̃(H)
k , estimated treatment effects (∆̂k) and two-sided p values in perspectives H =

R, O

Perspective R Perspective O

Network p̂k p̃(R)
k ∆̂

(R)
k St. err. p value p̃(O)

k ∆̂
(O)
k St. err. p value Nk

London NC&NE∗ 4.48 6.95 –2.46 0.53 <0.001 5.43 –0.95 0.60 0.113 1651
East of England 4.48 6.25 –1.77 0.52 0.001 5.17 –0.70 0.55 0.203 1874
Thames Valley 5.42 6.40 –0.98 0.56 0.082 6.06 –0.64 0.54 0.236 1901
South West 5.98 6.18 –0.20 0.73 0.781 6.56 –0.58 0.67 0.387 1421
London NW 6.00 6.91 –0.91 0.86 0.286 6.40 –0.39 0.82 0.634 1083
London South 6.01 6.67 –0.65 0.77 0.397 5.68 0.33 0.73 0.651 1464
South East 6.56 7.10 –0.54 0.58 0.353 6.55 0.01 0.61 0.987 1662
Wales 6.65 5.64 1.01 0.81 0.212 6.22 0.42 0.84 0.617 978
Northern 6.69 6.77 –0.08 0.82 0.924 7.17 –0.48 0.78 0.538 1046
East Midlands 7.32 6.04 1.28 0.71 0.072 6.56 0.76 0.64 0.235 1476
Yorks & Humber 7.38 6.38 1.00 0.58 0.085 6.91 0.47 0.58 0.418 2262
North West 7.59 6.97 0.62 0.48 0.196 7.30 0.29 0.47 0.537 2910
West Midlands 8.97 6.35 2.62 0.61 <0.001 8.72 0.25 0.55 0.649 2398

England & Wales 6.57 0.17 22,126

Notes: ∗ — London North Central and North East. All numerical entries are in percentages, except for the p
values (two columns) and Nk (numbers of babies).

Using the established practice of highlighting networks with treatment effects significantly dif-
ferent from zero, the former two networks and East of England would be flagged. We apply an
alternative based on decision theory (Longford 2020), described in Section 6.1. For an elemen-
tary introduction to decision theory with an orthodox Bayesian viewpoint, see Lindley (1985). An
approach applicable in both Bayesian and frequentist paradigms is developed by Longford (2021).

In perspective O, the matched rates are in nearly as wide a range, (5.2, 8.7)%, as the sample rates,
and the estimated treatment effects are in a narrow range, (–1.0, 0.8)%. The matched rates imply
that West Midlands has a high mortality rate because its casemix is more challenging; the mortality
rate of this casemix is high also in the whole domain. London NC&NE and East of England, which
have the lowest sample rates, also have the lowest matched rates, suggesting that their mortality rates
are low because of a more favourable casemix. Their estimated treatment effects are negative (that
is, they are estimated to have performed better than the standard), and are the smallest of all the
networks, but are not as pronounced as in perspective R.

The results for the two perspectives are presented in Figure 1. Black discs mark the sample
rates of the networks, and the arrows aim at the matched rates, in perspective R (in the top panel)
and perspective O (bottom). The 95% confidence limits for the matched rates, conditional on the
observed rates, are indicated by shading. The 95% confidence limits for the treatment effects are
printed at the bottom of the plot.

The diagram confirms the observations made in Table 3. In fine-tuning of the algorithm for
propensity score matching, described in Longford (2020), we applied several alternatives, including
different propensity grouping (stratification), one-to-two matching, one-to-five matching, stop-
ping the search for a propensity model earlier, and several versions of caliper matching. Overall,
poorer balance was obtained by each of these algorithms or methods, although not uniformly so.
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However, the estimates of the treatment effects differed from the adopted estimates by less than
0.08 for all networks in all instances, except for a few methods where unacceptably poor balance
was obtained. For example, imbalances exceeded 0.1 in absolute value in up to four instances with
caliper matching using caliper widths 0.05, 0.08, 0.1, 0.12 and 0.15 logits, with all five widths in the
match for Thames Valley. The matched rates were in the range 6.03 – 6.26%, all of them smaller

than the matched rate p̃(R)
k = 6.40% reported in Table 3. In contrast, by stopping the search for

interactions in the propensity model earlier, omitting one or two interactions, and continuing the
search, including one or two additional interactions, yielded satisfactory balance in all four cases.

The corresponding matched rates were between 6.36% and 6.41%, very close to p̃(R)
k = 6.40%. In

brief, the treatment effect estimates are stable across propensity methods that yield good balance of
the matched groups.

Figure 2 displays the corresponding results for the extreme preterm born babies. They are based
on propensity score analysis and matching applied to this subset of babies. The same standards for
the balance of the matched groups are applied as in the analysis of all babies. Within the networks,
extreme preterm born babies form 25 – 33% of the caseloads but account for a majority of the deaths
(59 – 76%). The networks’ mortality rates are in the range 9.5 – 21.0%. Only a small fraction of this
variation can be attributed to sampling variation; the standard errors of the sample rates are in the
range 1.5 – 2.3%. The overall mortality rate is 15.9% (horizontal dashes).

The same features are observed in Figures 1 and 2. First, the same networks have extreme
observed rates. (London NC&NE and East of England have the lowest and West Midlands the
highest rates.) In perspective R, the matched rates are in a very narrow range, 14.1 – 16.5%, except
for London North West, 17.5%. In perspective O, the estimated treatment effects are in a narrow
range, (–2.2, 1.7)%, except for 4.0% for Yorkshire and Humber.

6.1 Classification of the networks
The Audit has to classify the networks into three categories: unsatisfactory (U), satisfactory (S)

and excellent (X). This can be accomplished by funnel plots (Spiegelhalter, 2005). We prefer an
alternative based on decision theory, in which the consequences (ramifications) of incorrect classi-
fications are specified and incorporated directly.

We define by cutpoints T1 and T2 the categories that separate the values of the treatment ef-
fects ∆k . These cutpoints have no counterparts in the established methods, in which category S is
regarded as the default and U or X is selected when there is sufficient evidence to support such a
selection. Such a procedure is iniquitous because the networks have different probabilities of the
error of the second kind (for failure to highlight). We also object to the selection of category S
when, having failed to reject the null hypothesis, there is no evidence to support such a selection.
In hypothesis testing, category S is ill-defined by reference to the value ∆k = 0 because any partic-
ular value of ∆k , such as zero, represents a poor bet, given the uncountably many alternatives to it,
uncountably many of them arbitrarily close to this value.

In our proposal, the cutpoints T1 and T2 are set on either side of zero which, on the scale used
for the treatment effect, corresponds to the standard. The obvious choices are such that T2 = –T1 ;
our method is not constrained to this condition. The half-width of category S, δ = 1

2 (T2 – T1), is
referred to as the leeway. A network with a positive or negative treatment effect is regarded as S,
so long as |∆k | < δ. Such a network would be classified by the funnel plot as either X or U if its
caseload Nk were sufficiently large. The caseloads are not under any control, and they vary across
the networks, so the chances of being classified as S, even with ∆k fixed, depend on Nk , a quantity
supposed to be incidental to the classification. For all the evaluations, we require only the estimates
and standard errors of the treatment effects, assuming that the estimators are normally distributed.

We set δ = 1% for the principal analysis and δ = 2% for the subset analysis (babies born at less
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Figure 1. Network-level matched rates in perspectives R (top panel) and O (bottom). The arrows aim from the sample rates
(black discs) to the matched rates (tips of the arrows, or circles where an arrow would not fit). The shading covers the 95%
confidence limits for the matched rates. The 95% confidence intervals for the treatment effect are printed at the bottom of
each panel.

than 28 weeks GA). Further, we set the loss matrix; its elements are the losses for the various kinds
of incorrect classification. We use the setting of Longford (2020),

L =

(
0 1 8
2 0 2
16 5 0

) (
X
S
U

)
,

common to all the networks and both analyses. The rows of L correspond to verdicts (our choices):
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Figure 2. Network-level matched rates in perspectives R (top panel) and O (bottom) for babies born earlier than at 28 weeks
GA. The arrows aim from the sample rates (black discs) to the matched rates (tips of the arrows, or circles where an arrow
would not fit). The shading covers the 95% confidence limits for the matched rates. The 95% confidence intervals for the
treatment effect are printed at the bottom of each panel.

X in row 1 for θk < T1 , S for T1 < θk < T2 , and U for θk > T2 . The columns of L are for
the corresponding states (the would-be classification if ∆k were known). The diagonal of L cor-
responds to the correct verdicts, and is associated with no loss. The entries below the diagonal are
for underrating the network, such as L32 = 5 for verdict U for a network that belongs to S. The
entries above the diagonal are smaller — overrating a network has consequences that are less grave
than the corresponding underrating; compare L32 = 5 with L23 = 2, the latter for verdict S when
the network belongs to U. The gross errors, confusing U with X, are associated with losses greater
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than the sum of losses for the two minor errors they entail; L31 > L21 + L32 and L13 > L12 + L23 .
The values of L31 and L13 turn out to be unimportant because, owing to the large caseloads Nk and
moderate leeway δ, such errors are highly unlikely. Matrix L quantifies the ethos of the Audit and
in particular the desire to err on the side of positive verdicts, to retain a strong committment of all
the neonatal units to the Audit and the entire reporting system. The choice of leeway δ, to define
S, is based on clinical judgement of what kind of deviation from the overall standard is regarded as
acceptable or unexceptional.

We recognise that the two inputs, thresholds T1 and T2 (or δ when T1 = –δ and T2 = δ) and
loss matrix L, are subject to contention, uncertainty and ambivalence. They are meant to quantify
the perspective of the stakeholders who represent a heterogeneous body (hence the contention or
disagreement), have difficulty in quantifying their perspectives in an elicitation exercise (hence the
uncertainty), and may not grasp the essential role that these inputs have in the analysis (ambivalence).
We respond to these issues by a sensitivity analysis in which we find the deviations from the setting
of δ and L that lead to a change in the verdict for one of the networks. If such settings are implausible,
the verdict about the network is said to be unequivocal, requiring no qualification. Otherwise we
arrive at an impasse.

For each network k and verdict X, S and U, we evaluate the expected loss, and elect the verdict
for which the expected loss is smallest. The expected loss for a verdict is evaluated as the expectation
of the loss over the fiducial, or posterior, distribution of each state. For example, the expected loss
with verdict X for network k is QkX = L12 P(S; ∆̂k , τ2

k) + L13 P(U; ∆̂k , τ2
k) , where, for instance,

P
(

S; ∆̂k , τ2
k

)
=
∫ T2

T1

φ
(
y; ∆̂k , τk

)
dy

=
∫ zk2

zk1

φ(z) dz = Φ(zk2) – Φ(zk1) ,

φ(y; ∆̂k , τk) is the density of the normal distribution with mean ∆̂k and variance τ2
k , with the con-

vention that φ(y) = φ(y; 0, 1); zkh = (Th – ∆̂k)/τk , h = 1, 2; and Φ is the distribution function of the
standard normal. In this notation, we have dropped the subscript (R or O) for the perspective.

Evaluation of the vectors of expected losses Qk = (QkX ,QkS ,QkU )⊤ is simple, involving linear
combinations of probabilities, because the losses in L are constant. Well-motivated alternatives in
some applications are linear and quadratic loss functions; the calculus involved is only slightly more
involved (Longford 2013 and 2018). Denote by pk the vector of fiducial (or posterior) probabilities
of the three states;

pk = (1 – Φ (zk2) , Φ (zk2) – Φ (zk1) , Φ (zk1) )⊤ .

Then the vector of expected losses is Qk = Lpk , and we elect the verdict with the smallest expected
loss. Table 4 lists these triplets of values. The networks are sorted by the estimated treatment effect
∆̂k and are split to blocks according to the elected verdict.

Four networks are classified as X (only two of them would be found outlying by the funnel plot)
and only one as U. This asymmetry is mainly due to our aversion to underrating, as codified by the
loss matrix L: a false U is regarded as a graver error than a false X. That is why we are more liberal
in issuing verdict X.

6.2 Sensitivity analysis
London NC&NE and East of England have only minute expected losses with verdict X, much

smaller than the expected losses for the other two verdicts. In contrast, the verdict for London South
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Table 4. Expected losses for the verdicts X (excellent), S (satisfactory) and U (unsatisfactory); based on perspective R

Network ∆̂k τ̂k QkX QkS QkU Nk

Verdict X
London NC&NE –2.46 0.53 0.00 1.99 15.97 1651
East of England –1.77 0.52 0.07 1.86 15.22 1874
Thames Valley –0.98 0.56 0.52 0.97 10.33 1901
London NW –0.91 0.86 0.63 0.94 9.98 1083

Verdict S
London South –0.65 0.77 0.79 0.69 8.52 1464
South East –0.54 0.58 0.81 0.44 7.35 1662
South West –0.20 0.73 1.21 0.37 6.26 1421
Northern –0.08 0.82 1.53 0.45 5.96 1046
North West 0.62 0.48 2.52 0.43 3.92 2910
Yorkshire & Humber 1.00 0.58 4.52 1.01 2.49 2262
Wales 1.01 0.81 4.52 1.02 2.55 978
East Midlands 1.28 0.71 5.57 1.31 1.74 1476

Verdict U
West Midlands 2.62 0.61 7.97 1.99 0.02 2398

is S by a narrow margin (0.69 vs. 0.79 for X). The verdict for London North West is X by a margin
of 0.31 (0.63 vs. 0.94 for S). The verdict of U for West Midlands is by a wide margin. Here we use
the qualifiers ‘narrow’ and ‘wide’ for the margins of our verdicts (decisions) informally. Rigour is
added by exploring how much the parameters T1 , T2 and the six entries of L have to be altered to
change one or a few of the 13 verdicts.

Widening the interval (T1 ,T2) expands category S and makes verdict S more attractive for every
network. By setting T1 = –1.26 and T2 = 1.26, increasing the leeway δ by only 0.26%, we reach a
stalemate for London North West, where now QkX = QkS = 0.696. This undermines the credibility
of the original verdict for London North West, when thresholds ±1.26 are plausible.

The funnel plot would highlight only London NC&NE and East of England as X. The verdict
for East of England would be changed from X to S only if the threshold were widened to ±2%.
So, with the adopted matrix L, funnel plot and our decision rule would agree for T1 in the range
around (1.25, 2)%. Although the t ratio for Thames Valley, –0.96/0.56 = –1.71 is in absolute value
greater than for London North West (–1.06), Thames Valley would be reclassified to S for lower
threshold of T1 , namely 1.22 (< 1.26). This example shows that there is no simple relationship
between our decision rules and the funnel plot. Similar exploration and intuition show that the
funnel plot has some affinity to decision rules with symmetric matrices L, and in particular those
with L12 = L21 = L23 = L32 , which are in discord with the ethos of the Audit.

By increasing an off-diagonal entry of L we increase the aversion to the corresponding error.
For example, by increasing L21 from 2 to 3, the expected loss QU for verdict S for London South
is increased from 0.69 to 1.01, so verdict U would then be issued. We do not know which is the
right answer, and so no direct validation of the verdict is possible. However, the strength of our
approach is in its flexibility and capacity to reflect the value judgements, purposes and remits of the
stakeholders.

In a more formal approach, we specify plausible ranges for the thresholdsT1 andT2 , and evaluate
the expected losses and establish the verdicts for values of T1 and T2 on a fine grid in the plausible
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range. For example, if we adhere to symmetry (in general, we do not have to), then we establish
the verdicts on a fine grid of values of T1 in (T1– ,T1+). This is in fact not necessary. It suffices to
establish the verdicts for the limits T1– and T1+ . If they coincide, then the same verdict would be
issued for any plausible value T1 ∈ (T1– ,T1+) accompanied with T2 = –T1 . Otherwise we arrive at
an impasse, a verdict that requires qualification.

We would prefer to set the plausible range for T1 (and its mirror image, T2) by elicitation,
prior to data collection and inspection. The wider the plausible range, the greater the likelihood of
impasse. Therefore, a patient elicitation that results in a narrower plausible range may be rewarded
by fewer instances of impasse. At the same time, the elicitation has to have integrity — it has to resist
the natural urge to set the plausible range narrower than is justified by the perspective. Integrity
cannot be confirmed empirically because the Audit’s perspective cannot be codified with any rigour.
We have not conducted such an elicitation exercise because of the inertia of the established practices
and the reluctance to deviate from the guidelines under which the Audit operates.

Suppose the plausible range for the leeway δ is (0.7, 1.4), so that the narrowest plausible range
(T1 ,T2) is (–0.7, 0.7) and the widest is (–1.4, 1.4). Then impasse is arrived at for Thames Valley,
London North West, London South, South East and East Midlands. The former four are classified
as X with δ = 0.7 and as S with δ = 1.4; East Midlands is classified as U with δ = 0.7 and as S with
δ = 1.4. Impasse for five out of the 13 networks is perhaps too many — the plausible range for δ is
too wide. For δ = (0.8, 1.25), impasse is reached only for Thames Valley, London South and East
Midlands. Narrower plausible range for δ is rewarded by fewer instances of impasse. However, the
plausible range must not be reduced so much that some values outside it could not be ruled out.

Sensitivity of the verdicts with respect to alterations of the off-diagonal entries of L is explored
similarly, although this is more difficult to formalise because five parameters are involved. (Since L
and dL are equivalent loss structures for any constant d > 0, no generality is lost by constraining one
of the off-diagonal entries of L to unity.) For example, suppose the entries of L above the diagonal
are fixed, but the entries below the diagonal have plausible ranges that are between 0.7- and 1.5-
multiples of the original entries. Increasing the entries below the diagonal increases our aversion
to underrating, so it makes better rating more attractive, and decreasing them makes lower rating
more attractive. Therefore, we have to establish the verdicts only for the extreme factors, 0.7 and
1.5. The pairs of verdicts coincide for every network, so they are unequivocal for all of them. By
increasing the factor beyond 1.5, the first change in the verdict occurs for South East, from S to X
at 1.73. By decreasing the factor below 0.7, no changes occur for well beyond 0.5, so the verdicts
are very insensitive to the corresponding uncertainty about L. This suggests, with the benefit of
hindsight, that reducing the likelihood of impasse may be easier to achieve in (further) elicitation
by paying more attention to the plausible range of the leeway δ than to the entries of L.

6.3 Subgroup analysis
In this section, we summarise the results for the subset of extreme preterm born babies, born

before reaching 28 weeks GA. The results are presented in Table 5 using the same layout as Table
4. See also Figure 2. The same networks appear at the top (London NC&NE and East of England)
and the bottom (East Midlands and West Midlands) of the list but the classification for the subgroup
differs substantially from the classification in Table 4. The classification is more divisive, assigning
only four networks to category S, although a network each is classified as X (South West) and U (East
Midlands) by a narrow margin. The borderline value of the leeway δ at which the verdict switches
for South West from X to S is 2.06%, where QkX = QkS = 0.87, and for East Midlands from U to
S it is 2.02%, where QkU = QkS = 1.47. The classification for Thames Valley switches from S to
X for δ = 1.88%. We regard the classification of these three networks as equivocal (impasse). The
classification is quite insensitive for the other ten networks.

In practice, sensitivity analysis is a much more elaborate exercise, in some of its aspects rather
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Table 5. Expected losses for the verdicts X, S and U for extremely preterm born babies (< 28 weeks GA); based on perspective
R

Network ∆̂k τ̂k QkX QkS QkU Nk

Verdict X
London NC&NE –6.66 1.50 0.00 2.00 15.99 508
London NW –4.35 2.10 0.14 1.74 14.55 327
East of England –3.57 1.47 0.14 1.71 14.42 534
London South –1.91 1.80 0.63 0.99 10.20 466
South East –1.84 1.61 0.60 0.94 10.03 548
South West –1.53 2.02 0.87 0.90 9.29 382

Verdict S
Thames Valley –1.36 1.70 0.81 0.76 8.77 515
Wales 1.11 2.60 3.45 0.96 4.44 250
North West 1.13 1.30 2.76 0.52 3.82 884
Northern 2.07 2.46 4.53 1.12 2.98 303

Verdict U
East Midlands 3.36 2.24 6.09 1.47 1.45 384
Yorkshire & Humber 3.92 1.85 6.95 1.70 0.76 604
West Midlands 6.08 1.75 7.93 1.98 0.05 676

tedious but very useful for gauging the influence of the various parameters and gaining a feel for
their scales. The feedback it provides may be constructive in revising and narrowing the plausible
ranges for the key parameters in future elicitation.

7. Diagnostics
Propensity matching has a single diagnostic that has to be checked, namely, tight balance of

the within-treatment distributions of all the background variables. For a categorical background
variable, this reduces to small differences of its within-treatment proportions. For ordinal variables
the balance is summarised by the difference of the within-treatment means. These differences are
divided by the pooled standard deviations, to set them on a scale on which they can be compared.
These summaries are compactly presented in a set of balance plots, one for each network. For greater
detail, the within-treatment standard deviations of the ordinal variables, or their log-ratios, can also
be evaluated, although it is difficult to set them on a scale comparable to the scaled differences.
The contributed function loveplot in R, based on Love (2004), implements plots that convey this
information in a similar layout.

Figure 3 displays the balance plots in separate panels for the networks. In the plot for one net-
work, each background variable h is represented by a horizontal segment that extends from the
imbalance Bhk evaluated for the original unmatched values (Nk babies for network k vs. N for the
domain) to its negative, –Bhk , which represents the same extent of imbalance. The imbalance for the
matched subsets is marked by a black disc and is indicated by a solid segment that connects this im-
balance with its negative. In the bottom right-hand corner of each panel, the network’s imbalances
are summarised by their smallest (‘Low’) and largest (‘High’) values, and the average of the absolute
values (‘Ave’). To conserve space, the values are multiplied by 1000 and rounded. For example, East
Midlands has all its imbalances in the range (–0.073, 0.087), and the mean of the absolute values
of the imbalances is 0.028. The grey strip, extending from –0.10 to +0.10, indicates the range of



328 Brazilian Journal of Biometrics

East Midlands

B
a

c
k
g

ro
u

n
d

 v
a

ri
a

b
le

s GAwks

Bweight

Sex

BirthYr

FetusN

MotherAge

Ethni2

Ethni3

Ethni4

PrevPregY

PrevPregM

MPP30.32

Pl.abrupt

SmokePrgY

SmokePrgM

Low   −73
High   87

Ave
28

East of England

B
a

c
k
g

ro
u

n
d

 v
a

ri
a

b
le

s GAwks

Bweight

Sex

BirthYr

FetusN

MotherAge

Ethni2

Ethni3

Ethni4

PrevPregY

PrevPregM

MPP30.32

Pl.abrupt

SmokePrgY

SmokePrgM

Low   −73
High   47

Ave
25

NC&NE London

B
a

c
k
g

ro
u

n
d

 v
a

ri
a

b
le

s GAwks

Bweight

Sex

BirthYr

FetusN

MotherAge

Ethni2

Ethni3

Ethni4

PrevPregY

PrevPregM

MPP30.32

Pl.abrupt

SmokePrgY

SmokePrgM

Low   −61
High   58

Ave
19

North West London

B
a

c
k
g

ro
u

n
d

 v
a

ri
a

b
le

s GAwks

Bweight

Sex

BirthYr

FetusN

MotherAge

Ethni2

Ethni3

Ethni4

PrevPregY

PrevPregM

MPP30.32

Pl.abrupt

SmokePrgY

SmokePrgM

Low   −65
High   36

Ave
20

North West
B

a
c
k
g

ro
u

n
d

 v
a

ri
a

b
le

s GAwks

Bweight

Sex

BirthYr

FetusN

MotherAge

Ethni2

Ethni3

Ethni4

PrevPregY

PrevPregM

MPP30.32

Pl.abrupt

SmokePrgY

SmokePrgM

Low   −81
High   29

Ave
19

Northern

B
a

c
k
g

ro
u

n
d

 v
a

ri
a

b
le

s GAwks

Bweight

Sex

BirthYr

FetusN

MotherAge

Ethni2

Ethni3

Ethni4

PrevPregY

PrevPregM

MPP30.32

Pl.abrupt

SmokePrgY

SmokePrgM

Low   −56
High   51

Ave
17

South East Coast

B
a

c
k
g

ro
u

n
d

 v
a

ri
a

b
le

s GAwks

Bweight

Sex

BirthYr

FetusN

MotherAge

Ethni2

Ethni3

Ethni4

PrevPregY

PrevPregM

MPP30.32

Pl.abrupt

SmokePrgY

SmokePrgM

Low   −17
High   30

Ave
10

South London

B
a

c
k
g

ro
u

n
d

 v
a

ri
a

b
le

s GAwks

Bweight

Sex

BirthYr

FetusN

MotherAge

Ethni2

Ethni3

Ethni4

PrevPregY

PrevPregM

MPP30.32

Pl.abrupt

SmokePrgY

SmokePrgM

Low   −96
High   66

Ave
26

South West

B
a

c
k
g

ro
u

n
d

 v
a

ri
a

b
le

s GAwks

Bweight

Sex

BirthYr

FetusN

MotherAge

Ethni2

Ethni3

Ethni4

PrevPregY

PrevPregM

MPP30.32

Pl.abrupt

SmokePrgY

SmokePrgM

Low   −70
High   65

Ave
31

Thames Valley & Wessex

B
a

c
k
g

ro
u

n
d

 v
a

ri
a

b
le

s GAwks

Bweight

Sex

BirthYr

FetusN

MotherAge

Ethni2

Ethni3

Ethni4

PrevPregY

PrevPregM

MPP30.32

Pl.abrupt

SmokePrgY

SmokePrgM

Low   −57
High   59

Ave
30

Wales

B
a

c
k
g

ro
u

n
d

 v
a

ri
a

b
le

s GAwks

Bweight

Sex

BirthYr

FetusN

MotherAge

Ethni2

Ethni3

Ethni4

PrevPregY

PrevPregM

MPP30.32

Pl.abrupt

SmokePrgY

SmokePrgM

Low   −69
High   35

Ave
18

West Midlands

B
a

c
k
g

ro
u

n
d

 v
a

ri
a

b
le

s GAwks

Bweight

Sex

BirthYr

FetusN

MotherAge

Ethni2

Ethni3

Ethni4

PrevPregY

PrevPregM

MPP30.32

Pl.abrupt

SmokePrgY

SmokePrgM

Low   −76
High   51

Ave
26

Yorkshire & Humber

B
a

c
k
g

ro
u

n
d

 v
a

ri
a

b
le

s GAwks

Bweight

Sex

BirthYr

FetusN

MotherAge

Ethni2

Ethni3

Ethni4

PrevPregY

PrevPregM

MPP30.32

Pl.abrupt

SmokePrgY

SmokePrgM

Low   −81
High   63

Ave
25

Figure 3. Balance plots for the networks. In a panel, the imbalance for the entire (unmatched) data is marked by a solid
tick connected by thin line with its negative. The imbalance on the matched data is marked by a black disc, connected
by solid line to its negative. Vertical dashes indicate perfect balance and the shaded strip covers the range of acceptable
imbalances, (–0.1, 0.1). The lowest and highest imbalance is printed at the bottom right, and the average of the absolute
imbalances at the centre; the numeric values are multiplied by 1000. See Table 2 for information about the variables.
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acceptable imbalances. All the 15×13 values of the imbalances are within this range — all the black
discs are within the grey strips. The extreme imbalances are –0.096 and 0.087, and the mean of the
absolute values is 0.022. The corresponding values for the unmatched samples are –0.874, 0.307 and
0.097. In the diagram, the segments are trimmed at ±0.2. The average absolute imbalances for the
matched samples are between 0.010 (South East Coast) and 0.031 (South West).

The propensity models on which the estimates of the treatment effects are based were selected
by a semi-automated procedure. For a few networks, we continued with the search for a model
that yields tighter balance, with a focus on reducing the largest imbalances. Although we succeeded
in this effort, and reduced also the average absolute imbalance, for instance, from 0.31 to 0.27 for
South West, we obtained estimates nearly identical to the values ∆̂k displayed in Table 3.

8. Discussion
Our analysis of the mortality rates by propensity matching shows that the perspective to which

we refer for arbitration as to which variables are background, has a strong impact on the results.
We see this as an advantage of the potential outcomes framework over adjustment by regression in
which several background variables would be excluded from the model either a priori or by model
selection, with no regard for the perspective. In propensity matching, we include every variable that
qualifies as background because we want to ensure that the matched subgroups are tightly balanced
on all of them. The simplicity of the part of the analysis that involves the outcomes is an often
unappreciated strength of matching and IPW. The outcomes enter it only once. In contrast, they
are involved in every step of model selection in a regression analysis.

As for the decision-theoretical aspects of classification, the difficulties with setting the thresholds
T1 ,T2 and the off-diagonal elements of the loss matrix L should be attributed in equal measure to
the analyst who facilitates the quantification, and the stakeholders who are reticent to participate in
elicitation and prefer to delegate the responsibility to colleagues with more experience in statistical
issues. The parameters involved, and the related concepts, are evidently important and we want to
accommodate them in the analysis instead of taking them into account informally after the analysis,
by a less transparent process.

We do not want to impose any particular perspective, quantified by δ and L, but emphasise that
it can be incorporated in the analysis with integrity, not only when there is an agreement about
it and the elicitation of the related parameters concludes with their values, but also when there is
contention, uncertainty or ambivalence about them. Of course, constructive efforts to reduce them
are likely to result in fewer equivocal verdicts. Methods based on hypothesis testing can be described
as forcing a universal perspective on all applications, with the drawback that this perspective does
not have a simple non-technical characterisation, and remains obscure even to many statisticians.

Mortality is analysed in populations other than newborns. Our approach is applicable to other
contexts in which a comprehensive set of background variables is recorded. Regional and interna-
tional comparisons are facilitated by population registers and harmonisation in their construction,
definitions used and standards applied in their maintenance and data flow. Adjustment by regres-
sion would seem to be less demanding on data needed for a credible analysis. This view prevails
only until more details of the assumptions and of the perspective on which the analysis is based are
elaborated. In the language of causal analysis, two processes are at work, resulting in treatment
assignment and the effects of the assigned treatment. In adjustment by regression, the two processes
are intermingled in the analysis or the former effect is ignored. That is appropriate only when we
are in control of this assignment or we set the values of the background variables, as is assumed in
the (correct) textbook treatment of regression models.

The main contribution of this article is not in any particular empirical finding but in an ap-
proach to assessing (health-care or other service) providers that is responsive to the perspectives,
value judgements and remits of the stakeholders. The various difficulties related to elicitation of
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these positions, including reluctance to formulate and quantify them, can themselves be accommo-
dated in the analysis by a sensitivity analysis. Our approach implies a critique of hypothesis testing
and related methods that they are oblivious to the consequences (ramifications) of the errors that
are inevitable in the presence of statistical uncertainty (Longford, 2021). A key to the validity of
the method is a declaration and quantification of these positions well in advance of data collection
because the greater flexibility of the method opens up a scope for abuse that is wider than with less
flexible methods.

The data analysed in this article are available by application to the Neonatal Data Analysis Unit,
Imperial College London, United Kingdom.
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