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Abstract
The class of regression models incorporating Fractional Polynomials (FPs), proposed by Royston and
colleagues in the 1990’s, has been extensively studied and shown to be fruitful in the presence of non-
linearity between the response variable and continuous covariates. FP functions provide an alternative to
higher-order polynomials and splines for dealing with lack-of-fit. Mixed models may also benefit from
this class of curves in the presence of non-linearity. The inclusion of FP functions into the structure of
linear mixed models has been previously explored, though for simple layouts, e.g. a single covariate in the
random intercept model. This paper proposes a general strategy for model-building and variable selection
that takes advantage of the FPs within the framework of linear mixed models. Application of the method
to three data sets from the literature, known for violating the linearity assumption, illustrates that it is
possible to solve the problem of lack-of-fit by using fewer terms in the model than the usual approach of
fitting higher-order polynomials.
Keywords: Lack-of-fit; Longitudinal data; Random effects; Selection of variables; Transformation; Variance-
covariance structure.

1. Introduction
The linear mixed models (LMM) are extensions of the linear models capable of dealing with depen-
dent or correlated data. Correlations among observations result from the design used in observa-
tional (sampling) or experimental studies. Sampling schemes other than simple random sampling,
e.g. stratified, clustering and complex random surveys, induce grouping of correlated data just as do
blocking and randomization restrictions in the design of experiments. Correlations also arise when
several measurements are taken in the same unit under different conditions, leading to the so-called
repeated measurement and longitudinal studies. The common feature of these studies is that they
deliver clustered data in one or more levels. The flexibility of the linear mixed model for clustered
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continuous responses is that efficient and well-established estimation methods are available to model
the mean, the variance-covariance and the serial correlation structures. Furthermore interpretations
are direct for the fitted marginal and conditional models.

As in any model within the large class of generalized linear models, from which the linear is
a particular case, often, there are non-linearity issues to be taken into account in the predictor
function. The most common form of dealing with non-linearity is including conventional low-
order polynomials. However, the second-order polynomial is symmetric around the maximum or
minimum response and may not fit the data well. Higher-order polynomials may fit the data better,
but they present several stationary points and may lack interpretation. Another alternative to deal
with non-linearity is the use of splines. Yet, splines lack the global effect interpretation (Regier &
Parker, 2015), require dense data and might present other difficulties in multiple variable cases.

Royston & Altman (1994) proposed the fractional polynomial (FP) instead and demonstrated
their practical usefulness in generalized linear and proportional hazards models. By allowing power
parameters assuming non-integer values, more plausible curves or surfaces can be fitted, sometimes
of easier interpretation than higher-order polynomials. Fractional polynomials are, in fact, non-
linear functions, and to ease the burden in their fitting, the authors proposed selecting the powers
from a discrete set of rational values. Royston & Sauerbrei (2008) extended the idea to multiple linear
regression and proposed a procedure for variable selection.

FPs are also useful in generalized linear mixed models and are gaining attention recently, see
Aregay et al. (2013), Long & Ryoo (2010), and Tilling et al. (2014) for instance. However, appli-
cations are reasonably simple, e.g. just one explanatory variable requiring power transformation.
Mixed models with multiple explanatory variables have issues beyond those of variable selection in
the classic and generalized linear models since they include at least three parts that could be modeled
separately. Changes in one of them may influence the other and thus, some sound strategy is re-
quired. Our aim in this paper is to propose a strategy of model-building and variable selection in the
LMM when transformations in some continuous explanatory variables may be required. In Section
2 we present details of the FPs functions and algorithms involved and a very concise description of
the LMM. In Section 3 we present the fractional polynomial mixed model and the model-building
strategy we propose. In Section 4 we present the modeling for three data sets, all obtained from
the literature and which were modeled differently. The first one is from an observational longitu-
dinal study with only time as the explanatory. We use this example to show the flexibility of FP
functions to model a rather asymmetric curve. The second one is from an experiment, also within
the longitudinal framework with two interacting explanatory factors, one continuous and the other
binary. The last example is an observational study with multiple continuous variables measured at
two levels. To finalize, we draw our conclusions in Section 5.

2. Background
2.1 Fractional Polynomial Functions
The class of FP curves to model average relationships between a response variable and continuous
covariates were introduced by Royston & Altman (1994) as an extension of the so-called Box-Tidwell
transformations (Box & Tidwell, 1962). For a covariate x, x > 0, the FP function of degree m,
(m = 1, 2, · · · ), φm, is defined by

φm(x,β, p) = β0 +
m∑

j=1
βjx(pj), (1)
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where p = (p1, p2, · · · , pm) ∈ Rm with p1 ≤ p2 ≤ · · · ≤ pm and β ∈ Rm+1 the vector of regression
coefficients. The x(p) term obeys the Box-Tidwell transformation given by

x(p) =
{

xp if p ̸= 0,
log(x) if p = 0. (2)

For m > 1, φm follows a recursive formulae in case of powers equality (see Royston & Altman (1994)
and Royston & Sauerbrei (2007)) but, usually, for most applications, first and second degrees give
good approximations. Thus, for m = 2, with powers p = (p1, p2), x(p) is given by

x(p) = x(p1,p2) =

{
(x(p1), x(p2)) if p1 ̸= p2,
(x(p), x(p) log(x)) if p1 = p2 = p,

(3)

so that equation (1) reduces to

φ2(x,β, p) = β0 + β1x(p1) + β2x(p2), (4)

and, as p2 converges to p1 = p, we have the limiting case

φ2(x,β, p) = β0 + β1x(p) + β2x(p) log(x). (5)

For short, φm(x,β, p) will be indicated by FPm in the text such that it will be straight to relate a
function of degree one to FP1 and degree two to FP2.

Any statistical model involving a linear predictor function on continuous positive covariates may
benefit from this approach. The positivity of x is intrinsic to the definition of FP. For x ≤ 0, Royston
& Sauerbrei (ibid.) provided several useful pre-transformations, from which, the simplest, for non-
negative x, is adding a small δ > 0 (x + δ). Scaling x is also recommended for avoiding numerical
problems such as overflow or underflow. Other types of pre-transformations exist targeting, for
example, to reduce the effect of influential points (see Royston & Sauerbrei (ibid.) for details).

Allowing p ∈ Rm introduces a huge challenge for estimation and Royston & Altman (1994) pro-
posed a restrict set of powers for the search. Restricting pj ∈ S, S = {–3, –2, –1, – 1

2 , 0, 1
2 , 1, 2, 3},

simplifies the estimation burden while providing a wide class of curves. Note that such set in-
cludes the conventional polynomials, the second-order model in a transformed variable (φ2(x,β, p =
(0, 0)) = β0 + β1 log(x) + β2log(x)2), asymmetric quadratic type curves (φ2(x,β, p = (–2, 1)) =
β0 + β1x–2 + β2x) and some types of asymptotic curves. For graphical illustrations of FP curve
shapes see Royston & Altman (ibid.), Regier & Parker (2015) and Garcia (2019).

For given m, β is estimated by maximum likelihood (ML) in a grid of values for the powers. The
combination of values of p̂ and β̂ resulting in the largest likelihood value are the ML estimators. Such
model, for one covariate, has 2m + 1 degrees of freedom, one for the intercept, m for the powers and
m for the regression coefficients. For m ≤ 2, a function-selection procedure, e.g. FSP algorithm
from Ambler & Royston (2001), is then applied to compare the fitted models by using likelihood
ratio tests (LRT). Remind that the LRT is applied for nested models and its statistics can be translated
in terms of the difference between the deviance values (minus twice the log likelihood) from the
two models being compared, say model 1 and model 2. That is ∆D(1, 2) = D(df1) – D(df2) where
D(dfℓ) and dfℓ are, respectively, the deviance and the degrees of freedom of model ℓ for ℓ = 1, 2.
Asymptotically, under the simpler model (ℓ = 1), ∆D ∼ χ2 with df2 – df1 degrees of freedom.
Basically, for one covariate, the FSP procedure involves comparing up to four models at a specified
α level, the null model (dfnull = 1), the straight line on x (dfsl = 2), the FP1 on x (dfFP1 = 3) and the
FP2 on x (dfFP2 = 5). These models are compared sequentially, following the FSP algorithm:



472 Brazilian Journal of Biometrics

1. x inclusion: null model vs. the best FP2;
2. linearity: straight line vs. FP2;
3. curvature complexity: FP1 vs. FP2.

In each step, evidence for the more complex model leads to the test in the next step. Otherwise,
the simpler model in the current step is declared the best fit. The reference distribution for the
test statistics in each step is χ2 with four, three and two degrees of freedom, respectively. These are
approximations since p is estimated in the discrete set and produces conservative P-values. However,
simulation studies from Ambler & Royston (2001) indicate the approach performs reasonably well
for practical use. The procedure preserves the overall type I error probability at the chosen nominal
α level. It is possible to set different levels at step 1, say α1, and steps 2 and 3, say α2, since step 1 tests
the inclusion of x in the model, and 2 and 3 test the complexity of the functional form for x. This
would allow, for example, forcing x into the model (α1 = 1), a requirement due to study design or
problem-specific.

Royston & Sauerbrei (2008) presented extensions of the above procedure for the case of multiple
covariates, the MFP procedure, and for the inclusion of interaction terms, MFPI and MFPIGen
procedures for interaction between binary and transformed continuous and for interaction between
continuous covariates, respectively. The methods are inspired by the backward selection procedure
and effects hierarchy principle, e.g. first search for main effects, then for low-order interactions if
necessary, and so on.

For multiple continuous covariates the fractional polynomial model is a sum of FP functions.
We briefly present the MFP procedure (restricting m ≤ 2, that is the maximal model allowed is
second-degree), that combines variable selection and function selection:

1. Set α = (α1,α2) and the maximal FP degree m for each variable. As for the FSP algorithm, α1
is the significance level for inclusion of the variable (α1 = 1 forces it in the model, no variable
selection) and α2 is the level for function selection (α2 = 1 forces the most complex allowed FP
function in the model, no function selection).

2. Fit the full model (linear effects) and use the partial effects’ P-values to rank the variables from
most to least significant.

3. Apply the FSP algorithm for the first variable in the rank list, including all original covariates in
the model. The outcome is "the variable is dropped" or "no transformation is required" or "an
FP transformation is chosen".

4. Apply the FSP algorithm for the next variable in the rank list, including the remaining and the
already transformed variables in the model. Repeat this step until the last variable is visited. This
ends one cycle of the algorithm.

5. Start a new cycle from 3 where, in the initial model, the variable being visited is set to linear,
and all others enter as the FP transformed versions found in the previous cycle. Stop when two
consecutive cycles result in the same MFP model.

Usually the algorithm converges with two or three cycles.

As noted, the FP transformations might be useful in any model that includes a form of linear pre-
dictors such as generalized linear models (GLM) and survival models. Algorithms are implemented
in R (R Core Team, 2022) in the mfp package from Ambler & Benner (2022), and in commercial
statistical software (Saurbrei et al., 2006). FP transformations are likely to improve the flexibility of
LMM, which is relevant in practice since estimation in non-linear mixed models is more complex.
Besides, formulation of nonlinear models in more than one covariates is difficult.
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2.1.1 Linear Mixed Model
A mixed model includes terms that are fixed constants and terms which are random variables. Ran-
dom terms are usually present by sampling or experimental design such that observational units
exhibit some pattern of dependency or correlation. The usual LMM, using standard notation, may
be expressed as

Y = Xβ + Zb + ϵ (6)

where Y is the vector of response variable, X is the mean model matrix, β is the mean model
parameters (fixed), Z is the random effects model matrix, b ∼ N

(
0,σ2D(θb)

)
is a vector of random

coefficients, ϵ ∼ N
(
0, σ2R(θϵ)

)
is the random error vector and θ = (θ⊤

b ,θ⊤
ϵ ,σ2)⊤ is the vector

of the variance-covariance structure parameters. The model also assumes b ⊥ ϵ. D(θb) and R(θϵ)
are symmetric positive-definite matrices of dimension q × q and N × N where q and N are the
dimensions of vectors b and ϵ, respectively. Several options are allowed for the structure of these
matrices, from diagonal (for the case of uncorrelated random terms) to the so called unstructured
type (the most complex correlation pattern). For useful and popular structures see, for example,
Littell et al. (1996) and Pinheiro & Bates (2000).

The model specified in (6) is very general in the sense that several grouping patterns, as well
as regression coefficients’ heterogeneity (i.e. random slopes), can be accommodated thorough the
specification of the Z matrix.

Restricted Maximum Likelihood (REML) and Maximum Likelihood (ML) methods are the most
popular among the classical methods to estimate the parameters of model in (6). By substituting
whatever estimate of θ in the generalized least squares equation, we obtain β̂. REML estimator of
θ has better properties than ML, and we will use it generally, except when comparing nested models
for the fixed effects, in which case we will use the ML (See Demidenko (2013), Littell et al. (1996)
and Pinheiro & Bates (2000), for example).

There is a long debate about the correct approach for hypothesis testing on the LMM’s parameters
(Bates et al., 2015; Crainiceanu & Ruppert, 2004; Drikvandi et al., 2013; Littell et al., 1996). For fixed
effects the problem is that the degrees of freedom associated to t and F type statistic tests are not
known in general settings of unbalanced data. Although computationally intensive approaches exist,
the likelihood ratio test is asymptotically valid and commonly used. The problem is more serious
for testing the inclusion/exclusion of random effects because the parameter value at the usual null
hypothesis is in the boundary of the parametric region. Then, the LRT statistics does not follow a
chi-square distribution with the regular degrees of freedom. It follows, instead, a mixture of chi-
squared distributions. However, the components of the mixture may not be easily obtained. To
overcome the difficulty Lee & Braun (2012) proposed two alternative tests based on permutations,
the "Best Linear Unbiased Predictors (BLUP) based permutation test" and the "likelihood ratio based per-
mutation test". Both approaches rely on weighted marginal residuals. In the applications in Section
4, we will use the BLUP-based permutation test. For further details on the methods, see Lee &
Braun (ibid.) and Garcia (2019).

3. Materials and Methods
3.1 Fractional Polynomial Mixed Models
As with any model that includes a linear predictor, for continuous covariates, in the mixed model
represented in (6), some non-linearity may be present, and transformations might be useful. Sup-
pose X = (XL|XP) is the matrix of explanatory variables with L + P columns. The XL columns
are dummies representing the intercept and, if available, the effects of qualitative variables (main
and, possibly, interaction effects). The XP columns refer to the continuous explanatory variables
according to the FP degree each one requires. For example, suppose there are three continuous
variables such that the first one does not require transformation, the second requires a FP1 and the
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third a FP2. The i-th row of matrix XP would be (xi1, x(p2)
i2 , x(p31)

i3 , x(p32)
i3 )⊤, with relations (2) and

(3) applied as appropriate, where p2 is the transformation parameter for x2 and p31 and p32 are the
transformation parameters for x3.

Then, the LMM in (6), including FP transformations and linear by linear interaction terms, may
be written as

Y = XLβL + XPβP + (XL ⊙c XP)βLP + (XL ⊙c Z)bL + (XP ⊙c Z)bP + ϵ, (7)

where (A⊙cB) is a matrix with columns referring to the required linear-by-linear interaction effects
between variables belonging to A and B matrices (element-wise product of each pair of columns),
bL and bP are possible random effect vectors associated to the effects of XL and XP, respectively.
This parametrization carries the same assumptions for model in (6) about the random terms since
we can write b = (b⊤L , b⊤P )⊤.

Fitting (6) (or (7)) involves the modeling of three components: the mean or fixed-effects struc-
ture, the random-effects structure and the serial correlation structure. Depending on the problem
being dealt with, some terms in (7) may be unnecessary or, perhaps, some other added, for exam-
ple, higher-order interactions. The representation in (7) has solely the aim to show that we need a
model-building strategy to obtain a parsimonious fit since modeling one part may affect the mod-
eling of the other parts.

3.1.1 Model-building and Variable Selection Strategy
One of the early questions for fitting mixed models, as well as mean and variance joint models, was
from where we should start modeling since, in general, it is difficult, or perhaps, it does not make
sense to model all parts simultaneously. That is particularly true for the LMM including FPs (7). The
sequence of steps we propose is based on recommendations generally accepted as common sense,
that is, first propose a well-specified mean model, then model the variance-covariance structure
and then, with the variance-covariance model fixed, simplify the mean model. A well-specified
model alludes to the maximal, complete or saturated mean profile model. However, the concept of
a complete model is unattainable for observational studies with continuous covariates, or even for
experiments with covariate levels not obeying the same spacing. Besides, before knowing which
terms are required in XP we do not know about the necessity of modeling the slope heterogeneity
effects. Thus, the model-building strategy we propose is:

Step 1 Preliminary mean model: With a minimal random structure, i.e. Z specified for the sam-
pling or experimental design only and R = I (homogeneous and uncorrelated errors), find a
well-specified mean model by searching for the best FP transformations in XP. To achieve this
the MFP, MFPI and MFPIGen procedures are applied, as required, within the mixed model
framework. As described in sub-section 2.1, the MFP procedure occurs in cycles and follows
a backward strategy combined with the FSP algorithm. After application of MFP, the model
building goes further by including interaction terms in case interactions are thought to con-
tribute to the study at hand.

Step 2 Random terms model: With the mean model found in Step 1, search for the required random
effects apart from those given by design. In this step we have the opportunity to model slopes’
heterogeneity.

Step 3 Variance structure for ϵ: With the model built in the previous steps, search for the best
variance-covariance matrix for ϵ. In this step, the requirement of an R matrix different from
the identity is investigated.

Step 4 Model simplification: With the variance-covariance structures found in Step 2 and Step 3,
repeat the MFP procedure, re-estimating the FP transformations and reduce the mean model if
possible.
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In Step 1 and Step 4, to compare the models, we use LR type tests since comparisons concern
nested mean models. In Step 2 and Step 3 we use REML to estimate the parameters and Lee &
Braun (2012)’s BLUP-based permutation tests for the inclusion/exclusion of random effects, one at
a time. Additionally, in all steps, to guide the search for finding parsimonious models, we strongly
recommend the graphical diagnostic tools proposed by Singer et al. (2017).

The resulting model from following these steps will be denoted as FPMM1(p) for first degree
and FPMM2(p1, p2) for second degree fractional polynomial mixed models.

3.1.2 Data Sets
We applied the methods to three data sets from the literature. The first one is from a longitudinal
study on serum bilirubin levels (µ mol/L) in healthy newborns. The study was conducted at the
Escola Paulista de Medicina, UFSP and published in Rocha (2004). The sample considered here are
bilirubin levels from 89 breastfeeding newborns measured every day from day 1 to day 6, and every
other day until 12 days of age. The study aimed to develop a reference curve for bilirubin levels as a
function of age but the data showed substantial variability among babies. The data is balanced with
all subjects measured at the same time points.

The second example is from an experiment to study the relationship between the ultrafiltration
rate and the transmembrane pressure that is applied to high flux membrane dialyzers. Dialyzers
are used in hemodialyses to treat patients suffering from chronicle renal disease. Vonesh & Carter
(1992) described the experiment and modeled the data by fitting a nonlinear mixed model. Twenty
dialyzers were evaluated in vitro by using bovine blood. Two levels of blood flow rate were used, with
ten dialyzers for each. The ultrafiltration rate in each dialyzer was measured at seven transmembrane
pressure values with the set of values varying among dialyzers. This data set (Dialyzer available
from package nlme) was subsequently analyzed by Littell et al. (1996) and Pinheiro & Bates (2000)
by fitting a high-order polynomial exploring variance heterogeneity within dialyzers.

The third example is from an observational study on the relationships of willingness to pay for
improvements in air quality presented by Harrison & Rubinfeld (1978). The data comprises 92
clusters, in the Boston Metropolitan Area, each subdivided into census tracts totaling 506 of them.
Most of each cluster represents a town but Boston city is, itself, represented by 14 clusters. There
are fourteen variables, from which eight are measured at the level of the census tract, including
the outcome which is the logarithm of the median house price. The other variables are measured
at the cluster level. This data set is very rich in the sense that it allows the illustration of several
alternative methods to remedy the data violations on assumptions of the classical linear model. See,
for example, Belsley et al. (1980), Longford (1993) and Singer et al. (2017) for some accounts. There
are a few sources for the data set, with some variations. Here we use the version available from
http://lib.stat.cmu.edu/datasets/.

3.1.3 Computational Resources
We wrote R functions for estimating the parameters of the fractional polynomial mixed models in
Step 1 that wraps the lme function from the nlme package (Pinheiro et al., 2018). Steps 2 and 3
use lme and its facilities to model variance-covariance structures and R code adapted from Lee &
Braun (2012) for testing variance parameters when required. For model fitting diagnostic graph
tools we acknowledge wide use of the function lmmdiagnostic freely available for download at
http://www.ime.usp.br/~jmsinger/lmmdiagnostics.zip (see Singer et al. (2017) for guidelines for the
tools). Our R code to run each application is available at https://github.com/edijane/mixed_models_
using_fractional_polynomials.

http://lib.stat.cmu.edu/datasets/
http://www.ime.usp.br/~jmsinger/lmmdiagnostics.zip
https://github.com/edijane/mixed_models_using_fractional_polynomials
https://github.com/edijane/mixed_models_using_fractional_polynomials
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4. Results and Discussion
In this section we apply the proposed LMM model-building strategy using FP to the three examples
described in sub-section 3.1.2.

4.1 Bilirubin Concentrations in Newborns
The newborn bilirubin profiles (Figure 1) show that the relationship between concentration and
the age is nonlinear with large variability among newborns justifying a model including subjects’
random effects. Starting with the model with a minimal random structure we searched for the best

Figure 1. Bilirubin example –– Bilirubin concentrations (µ mol/L) measured at 9 different ages (days) in 89 newborns.

FPMM1(p) and FPMM2(p1, p2) that could represent the curvature along with age. That is, we fitted
the models:

yij = β0 + β1x(p)
ij + b0i + ϵij (8)

yij = β0 + β1x(p1)
ij + β2x(p2)

ij + b0i + ϵij, (9)

where yij denotes the concentration of bilirubin in the i-th newborn at the j-th age xij, b0i ∼
N (0,σ2

b ) e ϵij ∼ N (0,σ2). The distributional parameters of the random terms of (8) and (9) are not
necessarily the same, but for the sake of clean notation, this distinction will not be made explicit.

The best fittings, e.g. smallest deviance values, were given by FPMM1(2) and FPMM2(–0.5, –0.5)
for the mean model in (8) and (9), respectively. Applying the FSP algorithm, as shown in Table 1,
indicated that the FPMM2(–0.5, –0.5) is significantly better for simplifying the mean profile. The
alternative model based on a conventional polynomial leads to the cubic model. In Figure 2 we
plot the marginal fitted curves from both models from where we can see the FPMM2(–0.5, –0.5)
accommodate better the observed mean. As a side check, we also found no evidence of lack-of-fit of
the FPMM2(–0.5, –0.5) compared to the full mean profile model. We would expect that the curve
governing bilirubin concentration holds an asymptote towards zero but there are no data available
for the model to capture such behavior. Thus, we have found a well-specified model for the mean
(Step 1, see parameter estimates in Table 2) and now move to model the random part in Step 2.

As anticipated by Figure 1, there seems to be a lot of variation among individual profiles. To
take into account such heterogeneity, the models to fit in Step 2 are:

yij = β0 + β1x–0.5
ij + β2x–0.5

ij log(xij) + b0i + ϵij (10)

yij = β0 + β1x–0.5
ij + β2x–0.5

ij log(xij) + b0i + b1ix–0.5
ij + ϵij (11)

yij = β0 + β1x–0.5
ij + β2x–0.5

ij log(xij) + b0i + b1ix–0.5
ij + b2ix–0.5

ij log(xij) + ϵij (12)
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Table 1. Bilirubin example –– Application of the FSP algorithm to compare the fitted models by using generalized likelihood
ratio tests (GLRT)

Models df -2LL Power Comparison GLRT p-value
FPMM2 7 3288.088 -0.5; -0.5 FPMM2 vs Null 240.666 < 0.001
FPMM1 5 3352.211 2 FPMM2 vs LMM 84.552 < 0.001
LMM 4 3372.640 1 FPMM2 vs FPMM1 64.123 < 0.001
Null 3 3528.754 –

Figure 2. Bilirubin example –– Predicted curves for the mixed-effects fractional polynomial and the mixed-effects conven-
tional polynomial regression models.

The results from the BLUP-based permutation tests support that both coefficients related to
terms x–0.5 and x–0.5 log(x) vary between newborns, i.e. the two random effects are significant
(p-value < 0.0001), and should be included in the individual profiles. Therefore, we continue the
analysis with the model represented in (12), where

bi =

b0i
b1i
b2i

 ∼ N3

(
0,σ2D

)
, ϵij ∼ N

(
0,σ2

)
,

for unstructured D and Ri = σ2I9. The REML estimates for all parameters are presented in Table 2,
Step 2.

Residual plots (not shown) of the fitted model indicate variance heterogeneity of the measure-
ment error at the individual level. Variances are smaller at 1, 8 and 10 days and, to model the
heteroscedasticity, we grouped the age variable into two strata and fitted the model specified in
(12), however, using a variance function with different variances for each stratification level of the
age variable,

Var(ϵij) = σ2δ2
ij, (13)

where δij = δ1 = 1 for j = 1, 7, 8 (ages 1, 8 and 10 days) and δij = δ2 > 0 for j = 2, 3, 4, 5, 6, 9 (ages
2-6 and 12 days), for ∀i.

The very small p-value (< 0.0001) based on the LRT statistics indicates that the heteroscedastic
model in (13) explains the data significantly better than the homoscedastic model in (12). The REML
parameter estimates at this point are presented in Table 2, Step 3.

Diagnostic plots of the model in (13) are displayed in Figure 3. In the index plot of the modified
Lesaffre–Verbeke measure (Figure 3a) four newborns are flagged. These are the subjects whose
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bilirubin levels were still quite high at ages 10/12 days. The random effects do seem to follow a nor-
mal distribution, as depicted in Figure (3b) and the normal probability plot of the least confounded
conditional residuals (Figure 3c) show no evidence against the adopted Gaussian assumption for the
conditional error terms.
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Figure 3. Bilirubin example –– Diagnostic plots for the fitted model (13).

Now, with the variance-covariance structure settled, in Step 4 we perform a new search for the
power in the set S, in the hope of reaching some simplification for the FP function. A FPMM with
powers p1 = p2 = 0 was the one that presented the smallest deviance value (–2LL = 2777.96). The
change in the transformation from FPMM2(–0.5, –0.5) to FPMM2(0, 0) results in a more parsimo-
nious model, that is, a quadratic model in the log scale of age. Thus, the final model for the bilirubin
concentration is the FPMM2(0; 0), described in equation form as follows:

yij = β0+ β1 log(xij) + β2 log(xij)2 + b0i + b1i log(xij) + b2i log(xij)2 + ϵij,

i = 1, · · · , 89; j = 1, · · · , 9,
(14)

where

bi =

b0i
b1i
b2i

 ∼ N3

(
0,σ2D

)
, ϵij ∼ N

(
0,σ2δ2

ij

)
,

with unstructured D and δij = δ1 = 1 for j = 1, 7, 8 (ages 1, 8 and 10 days) and δij = δ2 > 0 for
j = 2, 3, 4, 5, 6, 9 (ages 2-6 and 12 days), for ∀i. The REML estimates for the parameters of model in
(14) is displayed in Table 2.

Diagnostic plots for model in (14) show no relevant changes in relation to the diagnostic plots of
the model in Step 3 (Figure 3). Furthermore, there is no evidence either of influential observations
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or units in the fitting and the modeling using FP provided a reasonably precise curve for the mean
model. It should be noted, however, that the variance component estimates, reflecting subjects
variability, were very high (shown in Table 2) indicating, perhaps, that the data fail to allow the
modeling of a reference curve of bilirubin concentrations for health babies.

Table 2. Bilirubin example –– Parameter estimate and standard errors (SE) for the model at each step of the strategy. The
mean model in all steps is FPMM2(p1, p2)

Step 1 Step 2 Step 3 Step 4
Parameter Estimate SE Estimate SE Estimate SE Estimate SE
Power
(p1; p2) (–0.5, –0.5) (–0.5, –0.5) (–0.5, –0.5) (0, 0)

Fixed effects
β0 –7.86 0.85 –7.86 1.00 –7.77 1.02 4.49 0.21

β1 12.28 0.73 12.28 1.08 12.20 1.10 2.38 0.42

β2 10.32 0.69 10.32 1.03 10.23 1.02 –1.22 0.15

Var-Cov Struct
Random effects
σ2

0 9.82 68.83 75.53 3.71

σ2
1 86.10 91.82 14.42

σ2
2 78.73 78.97 1.71

Corr(b0, b1) –0.99 –0.98 0.30

Corr(b0, b2) –0.87 –0.87 –0.43

Corr(b1, b2) 0.89 0.89 –0.95

Error
σ2 2.38 0.89 0.31 0.34

δ2 1.88 1.75

Model fitting info
AIC 3298.23 2860.04 2808.94 2805.77

BIC 3321.64 2906.86 2860.44 2857.28

Log-REML –1644.12 –1420.02 –1393.46 –1391.89
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4.2 High-Flux Hemodialyzer Ultrafiltration Rates
The design in this experiment is a balanced, completely randomized scheme at the level of experi-
mental units, the dialyzers, with the treatment, the blood flow rate, at two levels, "low" and "high"
set to 200 and 300 dl/min, respectively. The response was the ultrafiltration rate (mL/hr) measured
at each of seven sequentially increasing transmembrane pressure (dmHg) levels applied to the dia-
lyzer, characterizing a longitudinal layout concerning pressure. The pressure levels varied slightly
among dialyzers, as depicted in Figure 4. From the graphs, we also anticipate non-linearity and
the indication of the flow rate effect interacting with pressure. As mentioned in subsection 3.1.2,
Littell et al. (1996) and Pinheiro & Bates (2000) modeled the data using a fourth-order mixed model
polynomial with variance heterogeneity. Here we investigate if the FP approach provides some
simplification.
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Figure 4. Ultrafiltration Rates example –– Individuals plots.

Starting with the minimal random structure and restricting to second-degree FP functions only
since we can already be quite sure no first-order FP would be able to account for the non-linearity
present, in Step 1, we fitted the models:

yij = β0 + β1x(p1)
ij + β2x(p2)

ij + γ0wi + b0i + ϵij, b0i ∼ N
(
0,σ2

b

)
, ϵij ∼ N

(
0,σ2

)
i = 1, · · · , 20; j = 1, · · · , 7,

(15)

where wi = 0 if flow rate is low and wi = 1 if flow rate is high and p1, p2 ∈ S. The set of powers
(1, 1) gave the best model (–2LL = 837.28). Once knowing the transformations, we included the
interaction terms with the binary treatment in the mean model, e.g. we fitted

yij = β0 + (β1 + γ1wi)xij + (β2 + γ2wi)xij log(xij) + γ0wi + b0i + ϵij, (16)

which resulted in a highly significant improvement (∆D = 126.98 on 2 df ). This is the most com-
plete mean model based on FP2 we can fit with these data. Its parameter estimates are presented in
Table 3, Step 1.

The unit profiles (Figure 4) show that the modeling might benefit from random slopes’ compo-
nents, given their specific curves. With this in view, in Step 2 we start including components, first
b1i associated to the term of lowest order, fitting the model

yij = β0+ (β1 + γ1wi + b1i)xij + (β2 + γ2wi)xij log(xij) + γ0wi + b0i + ϵij

bi = (b0i, b1i)⊤ ∼ N2

(
0,σ2D

)
, ϵi ∼ N7

(
0,σ2I7

)
,

(17)
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for unstructured D and bi ⊥ ϵi. The BLUP-based permutation test showed strong evidence in
favour of this term in the model. In the next step we fitted

yij = β0+ (β1 + γ1wi + b1i)xij + (β2 + γ2wi + b2i)xij log(xij) + γ0wi + b0i + ϵij

bi = (b0i, b1i, b2i)⊤ ∼ N3

(
0,σ2D

)
, ϵi ∼ N7

(
0,σ2I7

)
,

(18)

for unstructured D and bi ⊥ ϵi, and tested the significance of variance component associated to
b2i, which was highly significant. Parameter estimates of the model are presented in Table 3, Step
2. Residual diagnostic for the fit in this step showed evidence of a relationship between conditional
error variance and the explanatory variable pressure. Thus, in Step 3 we modeled the structure in
Var(ϵi) = σ2Ri. The best variance function found was for Ri diagonal and variances governed by
the power function given by

Var(ϵij) = σ2x2δ
ij . (19)

The inclusion of error variance heterogeneity in the model resulted in good improvement of the fit.
The parameter estimates are presented in Table 3, Step 3. Diagnostic inspection of the fitted model,
in Figure 5, did not show any evidence of possible violations of assumptions.

We reached the last step of our approach, first checking if, given the variance-covariance struc-
ture well modeled, some simplification of the mean model would be recommended. Firstly, we
re-estimated the power parameters of the FP functions. In this example, no modification of the
powers was required. Then we tested the significance of the interaction terms by using the LRT
statistics which did not show evidence in favour of the inclusion of γ2 in the model. Therefore, this
term was dropped from the model.

The parameter estimates of the final model are presented in Table 3, Step 4. It is noteworthy
that the fitted mean curve using FP captures better the non-monotonic behavior present in the
data of the ultrafiltration rate for high pressures, a deficiency of both, the nonlinear and the quartic
polynomial models, recognized in Vonesh & Carter (1992) and Pinheiro & Bates (2000) (see Figure
6).

4.3 Boston Housing Values
The variables in the data set are described in the Appendix. In our analysis we decided not to
use the variable b (100 × (B – 0.63)2, where B is the proportion of black population in the town).
There are two sound justifications to exclude this variable from the modeling, the first is that the FP
approach searches for the transformation of one variable given that the remaining variables are in
the model and, it is not possible to recover back the original values of variable B, to properly account
for its relationship with the response, the logarithm of the median house price. The second is that
the background for the transformation proposed and distributed in the data set is not transparent
and objective. The issue is addressed at https://scikit-learn.org/stable/modules/generated/sklearn.
datasets.load_boston.html.

The fit of a multiple linear regression model to the response showed several violations of the
classical linear model assumptions, residuals with long-tail distribution, lack-of-fit for several co-
variates (CRIM, RM, DIS and LSTAT), asymmetry and heterogeneity of residuals when comparing
their patterns within-cluster units (graphs not shown).

A mixed model incorporating the grouping scheme of the data might remedy the problem of
extra variability and correlations for observations in the same cluster. Then, we start, in Step 1, with
the model, using standard notation, given by

Yi = Xiβ + Zib0i + ϵi, b0i ∼ N(0,σ2
0), ϵi ∼ Nni (0,σ2Ini ), (20)

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
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Figure 5. Ultrafiltration Rates example ––Diagnostic plots for the fitted model (18) with within-group variance model given
in (19).

for the i-th cluster, where ni is the number of observations in cluster i, i = 1, · · · , 92 and Zi = 1ni .
The fitting of this model produces the variable visiting order, in step 2 of the MFP algorithm, for
the search of FP transformations, that, hopefully will account for the non-linearity issues. Before
starting, three variables were pre-transformed. TAX was just scaled down by dividing by 100. For
ZN and CRIM that assume zero values we used expression in (21) as advised in Royston & Sauerbrei
(2008)

ω(x) = 0.2 + (1 – 0.2) × x – min(x)
max(x) – min(x)

. (21)

The visiting order list at the start is presented in the first column of Table 4. Thus, the first
cycle begins with variable LSTAT, then moves to RM and so on. The MFP algorithm converged in
two cycles and the final estimates are presented in Table 4, Step 1, where we see four variables were
transformed, LSTAT, RM, CRIM and DIS and other four were dropped (AGE, ZN, INDUS and CHAS) and
are not show in the Table.
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Table 3. Ultrafiltration Rates example –– Parameter estimates and standard errors (SE) for the model at each step of the
strategy. The mean model in all steps is FPMM2(1,1)

Step 1 Step 2 Step 3 Step 4
Parameter Estimate SE Estimate SE Estimate SE Estimate SE
Power
(p1; p2) (1, 1) (1, 1) (1, 1) (1, 1)

Fixed effects
β0 –21.90 1.19 –22.01 1.26 –23.74 0.96 –23.01 0.79

β1 57.36 1.22 57.47 2.06 59.80 1.78 58.23 1.35

β2 –33.18 0.88 –33.26 1.51 –35.15 1.36 –33.89 0.98

γ0 –2.07 1.19 –1.67 1.81 –1.17 1.38 –2.67 0.79

γ1 5.03 1.22 4.59 2.94 3.85 2.54 7.03 0.80

γ2 1.61 0.88 1.91 2.14 2.56 1.94

Var-Cov Struct
Random effects
σ2

0 5.58 4.49 7.30 7.56

σ2
1 27.53 27.48 28.47

σ2
2 14.78 14.93 15.57

Corr(b0, b1) –0.99 –0.87 –0.87

Corr(b0, b2) 0.94 0.79 0.80

Corr(b1, b2) –0.95 –0.95 –0.95

Error
σ2 7.16 3.94 1.59 1.59

δ 0.86 0.86

Model fitting info
AIC 726.29 685.93 647.40 650.29

BIC 749.82 723.60 687.97 688.05

Log-REML –355.14 –329.97 –309.70 –312.14

Step 2 of our modeling strategy is not relevant for this example since there are no other specific
cluster effects that could be explored in the modeling and the random cluster effect is intrinsic to
the data and should remain. Nonetheless, there is strong evidence in favour of the benefit of cluster
effects in the model showed by the BLUP-based permutation test. However, diagnostic analysis for
the fitted model indicated the random model for the error specified in (20) was not adequate, the
main concern is the same Var(ϵi) = σ2Ri = σ2Ini for all clusters. Such violation was expected since
clusters vary a lot concerning size, the smallest clusters have just one observation while the largest
has 30 observations. Intra-cluster correlations might also be cluster-specific. Thus, by inspecting
the patterns of the modified Lesaffre-Verbeke Index, as advised in Singer et al. (2017), we proposed a
stratification of clusters and incorporated the following variance-covariance structure for the errors

ϵi ∼ Nni (0,σ2δsiR(ρ)) (22)

for δ1i = 1 and δsi > 0 for s = 2, 3, 4, 5, 6, i = 1, 2, · · · , 92, that is, clusters were grouped into
six strata for variance modeling. The model also includes the extra parameter ρ ∈ (–1, 1) which is
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Figure 6. Ultrafiltration Rates example –– Predicted ultrafiltration rates versus transmembrane pressure, by subject, from
the final FPMM(1, 1) model with within-group variance model (19) and from the fourth-order polynomial with variance
heterogeneity (Pinheiro & Bates, 2000).

the intra-cluster correlation parameter. Clusters in the same stratum share the same error variance-
covariance parameters. To form the stratification we fitted several models sequentially, each time
checking clusters flagged with non-adequate structure in the diagnostic graphs. The final model
parameter estimates are presented in Table 4, Step 3. Once found a parsimonious structure, in Step
4, we updated the mean model by re-estimating the FPs. The algorithm converged in three cycles.
The resulting model and parameter estimates are presented in Table 4, Step 4, with the variable
visiting order in the second part of the Table. The diagnostic graphs for the fit of the final model is
showed in Figure 7, from where we can be assured the data is parsimoniously modelled.
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Figure 7. Housing Prices example –– Diagnostic plots for the fitted model in Step 4 with within-cluster variance-covariance
given in (22).

5. Conclusions
When modeling continuous variables we often encounter nonlinear relationships that should be
dealt with empirically mainly in the case of multiple explanatory variables because of the unknown
underlying mechanistic relations that generate the data. That is also, usually, the case of a unique
explanatory when not much governing theory exists. FP models are regression-based powerful
techniques to solve complex problems. Alternative empirical techniques to overcome non-linearity
issues are conventional polynomial expansions and splines. However, conventional polynomials may
produce fitted curves or surface hard to explain in practice and splines have their inherent issues
of interpretability and the requirement of reasonably dense data (many points with small spaced
intervals).

In this research, we explored the FP functions’ usefulness in the context of linear mixed models.
In the mixed-effects models, we have to deal with the modeling of different structures like the
mean model, the variance-covariance model and the error measurement model. We have outlined a
strategy for the application of FP in such a context. We have shown the modeling for three examples
that benefited from the FP functions and produced parsimonious fittings. As in the case of fixed-
effects models, in which FP functions extend easily for generalized linear models, our strategy is
expected to extend to generalized linear mixed models to obtain a more parsimonious model for the
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Table 4. Housing Prices example –– Parameter estimates and standard errors (SE) for the model at each step of the strategy

Step 1 Step 3 Step 4
Parameters Estimate SE Estimate SE Estimate SE
Fixed effects

Intercept 15.229 2.313 19.110 2.400 29.557 2.230

LSTAT0.5 –0.200 0.012 –0.138 0.009

RM0.5 –9.738 1.790 –13.188 1.823

RM0.5 log(RM) 2.665 0.447 3.641 0.468

CRIM–0.5 0.628 0.067 0.629 0.085

NOX –0.929 0.170 –0.562 0.155

RAD 0.022 0.004 0.017 0.003

DIS–0.5 0.698 0.137 0.278 0.108

TAX –0.070 0.019 –0.054 0.015

PTRATIO –0.029 0.008 –0.025 0.005

Visiting order for Step 4
RM–0.5 –10.192 0.538

RM–0.5 log(RM) –30.370 2.856

LSTAT0.5 –0.135 0.009

CRIM–1 0.196 0.024

RAD 0.014 0.003

PTRATIO –0.025 0.005

TAX–2 0.787 0.177

NOX –0.561 0.136

DIS –0.018 0.005

Var-Cov Struct
Random effects
σ2

0 0.013 6.283 × 10–5 2.391 × 10–5

Error
σ2 0.017 0.010 0.009

Variance function
δ2 1.697 1.672

δ3 1.803 1.845

δ4 1.865 1.977

δ5 2.809 2.799

δ6 4.307 4.720

Correlation
ρ 0.451 0.414

Model fitting info
AIC –430.358 –652.123 –673.776

BIC –379.880 –576.404 –598.057

Log-REML 227.179 344.061 354.888

marginal link function. We argue the approach we propose is of vast application to solving practical
problems of data analysis.
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Appendix
Variable labels used in Subsection 4.3 and descriptions of the variables in the Boston Housing data
set as retrieved from package mlbench: cmedv: median value of owner-occupied homes in USD
1000’s, the response variable, we used the transformation (log(cmedv)) for the modeling; CRIM: per
capita crime rate by town; ZN: proportion of residential land zoned for lots over 25,000 sq.ft; INDUS:
proportion of non-retail business acres per town; CHAS: Charles River dummy variable (= 1 if tract
bounds river; 0 otherwise); NOX: nitric oxides concentration (parts per 10 million); RM: average
number of rooms per dwelling; AGE: proportion of owner-occupied units built prior to 1940; DIS:
weighted distances to five Boston employment centres; RAD: index of accessibility to radial high-
ways; TAX: tax full-value property-tax rate per USD 10,000; PTRATIO: pupil-teacher ratio by town;
b= 1000(B – 0.63)2 where B is the proportion of blacks by town; LSTAT: percentage of lower status
of the population.
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