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1. Introduction 
It is possible that two samples are chemically different in formulation, but these differences 

are imperceptible to humans. In these situations, discrimination sensory tests can be used to 

determine whether there are sensory differences between two or more samples. Particularly, when 

we test the assessor's response to certain doses of an ingredient, we have a so-called dose-response 

experiments or trials. 

In this situation, the higher the concentration or dose of the ingredient, the more noticeable it 

becomes. We can fit a model that gives us information about the effect of the ingredient 

concentration on the assessor's response. An interesting measure is the detection threshold which 

represents the lowest perceptible concentration. 

The American Society for Testing and Materials (1978) provides the following definition for 

a detection threshold: "There is a concentration below which the taste of a substance will not be 

detectable under any practical circumstances, and above which individuals with a normal palate 

would detect promptly the presence of the substance". 
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Abstract 

Sensory discrimination tests often consider the possibility that each assessor performs a test more than once, that is, they 

are performed with replications. However, these experiments are generally analyzed as if there were no repetitions or as 

if all judgments came from different assessors, which the usual analysis assumes that the probability of success is the 

same for all of them. It is emphasized the importance of considering possible differences in the perception of the assessors, 

which is consistent with Thurstone's psychological ideas about perception and decision processes. In this article it is 

suggested a mixed generalized linear model that considers the random effect of the assessor. Particularly in dose-response 

experiments it is showed that this model allows estimating detection thresholds for several treatments simultaneously. 

The results allowed to conclude that the proposed model presents good results and can be used in the analysis of replicated 

sensory tests. We will assume that the variation in the assessor' responses can be modeled as a random effect in a mixed 

generalized linear model. This model should be able to produce a better analysis, with the ability to detect differences 

between treatments with greater power and produce narrower confidence intervals for the estimates. 
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Lawless & Heymann (2010) present several practical techniques for measuring thresholds 

such as the forced-choice limits method based on the ASTM E-679 standard method3 and an 

alternative graphical solution that will be described next, in Section 2. 

Discrimination sensory tests are often conducted with replications to the assessors in order, 

for example, to increase power without increasing the number of assessor (Brockhoff, 2003; 

Meyners & Brockhoff, 2003). These tests consider the possibility that each assessor performs a 

test more than once and are generally analyzed as if there were no repetitions, that is, as if all 

judgments were from different assessors. The number of correct answers is compared to a 

tabulated value. If the number of correct answers is greater than or equal to the table, it is 

concluded that there is a significant difference to the level of probability observed (Roessler et 

al., 1978). 

However, Thurstone (1927) concluded that the discrimination process corresponding to a 

given stimulus is not fixed. Perceptions are momentary because they are assumed to vary from 

judgment to judgment and thus can be represented as random variables. Thurstonian modeling 

considers this relationship by approaching two ideas: variation of perception and the concept of 

decision rule. 

The first idea considers that variations in the neural mechanism of the assessor cause the 

intensity of the perception to the product not to be constant during the test. The second idea is 

based on the concept of a decision rule or cognitive strategy which is a rule applied by the assessor 

to produce an answer about the perception of the samples. For the same assessor, this rule is 

independent of the stimulus involved, that is, in a discrimination test, regardless of the number of 

repetitions, the decision rule of a specific assessor will always be the same. Decision rules among 

assessors may be different and due to this fact, some decision rules may be more efficient than 

others and thus, some assessors may perform better (Meilgaard, Carr & Civille, 2006). 

This kind of situations is common in experiments involving sensory analysis, hence the need 

to improve data evaluation techniques presenting these characteristics. It is important to correctly 

deal with the possible differences in the perception of the assessors, considering the psychological 

ideas about the perception and decision processes (Brockhoff & Christensen, 2010; Kunert & 

Meyners, 1999). 

This article focuses on problems of variability in detection and the challenges this poses for 

researchers who use thresholds as a measure of the sensitivity of individuals to a given stimulus. 

Several methods have been proposed for the analysis of replicated discrimination tests. The 

variable of interest is often the detection (yes or no) of a given ingredient in the product. The 

binomial distribution is commonly used in the analysis of these tests under the assumption that 

the assessors’ choices are independent, and the probabilities of success do not vary from trial to 

trial. Harris & Smith (1982); Ennis & Bi (1998) address violations of the last assumption and the 

two-parameter-indexed Beta-Binomial model is used to explain this overdispersion (Skellam, 

1948). The model assumes that the individual hit probabilities are randomly distributed according 

to the beta distribution and that the binomial distribution is valid considering the repetitions of a 

given assessor.  

A variant of the beta-binomial model is proposed in Bi & Ennis (1998) in which the beta-

binomial model is combined with a Thurstonian psychometric function and used to obtain 

estimates of sensory differences. 

Hunter et al. (2000) as cited in Duineveld & Meyners (2008) suggest the use of a mixed 

generalized linear model with an overdispersion factor to model the number of correct responses. 

The analysis extends the usual model to binomial repeated measures considering the sensory 

distances of the Thurstonian approach and the random effects of individual thresholds. In 

Brockhoff & Muller (1997) this model is discussed in a sensorial context and they propose an 

approach to dose-response assays with replication based on a random effects threshold model. 

The focus of the work is the study of individual thresholds. In the model it is assumed that the 

responses observed in the test are determined by specific thresholds of the randomly distributed 
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subjects among others. 

In Kunert (2001) a binomial mixture model was suggested for analyzing discrimination 

tests, assuming that the population of assessors consists of two types: non-discriminating and 

discriminating. Discriminators are those that have a higher probability of being right than the 

probability of being right by chance, considering some discrimination ability. 

Comparisons between these models, beta-binomial models, mixed generalized linear 

model, and binomial mixture model, were presented in Brockhoff (2003), in addition to corrected 

versions of the beta-binomial model and the mixed generalized linear model. 

Bi (2003) understands that the difficulties in the methodology of discrimination tests reside 

in the assumption that subjects have the same ability to respond correctly to the test, which 

conflicts with psychological ideas about the processes of perception and decision. Thus, the author 

suggests that a Bayesian approach can overcome these difficulties by treating the proportion 

parameter as a random variable. This was probably the first time that a Bayesian framework was 

used for the analysis of discrimination tests, deriving a posteriori credibility interval for the 

proportion, and using so-called Bayes factors to decide on alternative hypotheses. However, the 

author still does not explore the possible replications commonly used in discrimination tests. 

The purpose of our research is to adjust a mixed model that incorporates the random effect 

of the assessor to estimate the global detection thresholds. To estimate these thresholds, we will 

use the graphic technique presented by Lawless & Heymann (2010). 

Initially, the ideas of Kunert & Meyners (1999), which consider the skills of the assessor, 

are considered. 

Several authors applied the graphical technique to estimate detection thresholds. Ziegler 

et al. (2019), for example, applied detection thresholds to assess the impact of compounds (TDN) 

that impart an off-flavor to gasoline in wines. However, the analyzes did not considered the 

random effect of the assessor. 

Lima Filho et al. (2015) present the idea that when a sample is less preferred than the other, 

it does not mean that it is sensorially rejected and, therefore, they argue that acceptance tests are 

more indicated when one wants to investigate the point at which the product sensory rejection 

begins to occur. The authors propose a new methodology for determining two sensory thresholds: 

the compromised acceptance threshold (CAT), which represents the stimulus intensity in which 

the acceptance of the product becomes significant, and the hedonic rejection threshold (HRT), 

referring to the point of transition between sensory acceptance and rejection. The approach uses 

a 9-point hedonic scale to assess the samples. The results are submitted to a paired t test (using 

scores from the control sample and scores from the adulterated sample) and are adjusted to 

regression models, allowing the identification of the intensity of the stimulus from which 

significant changes in sensory acceptance (CAT) and rejection (HTM) of the product occur.  

Although for years, there have been studies that propose models considering the possible 

random effect of the assessor, even today the usual analysis of detection thresholds in food 

science, in general, does not consider this idea.  

The model proposed in this article allows the analysis of detection thresholds in replicated 

discrimination tests. The example presents simulated data from a replicated triangular test; 

however, our considerations can be extended to other discrimination tests. 

Basically, we will assume that the variation in the assessor' responses can be modeled as a 

random effect in a mixed generalized linear model. This model should be able to produce a better 

analysis, with the ability to detect differences between treatments with greater power and produce 

narrower confidence intervals for the estimates. 

Once the importance is justified, the aim of this research is to present a model applied to 

the analysis of detection thresholds considering the random effect of the assessor in replicated 

discrimination tests. We will present an application of this technique using simulated data from a 

replicated triangular test. 

In section 2, the suggested methodology and the data that will be used to illustrate this 
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methodology are established. In section 3 we present the results and discussion obtained are 

presented and, in turn, section 4 presents the conclusion. 

 

2. Materials and Methods 
 

In this section we explain the suggested methodology and describe the data that will be used to 

illustrate the methodology. These are simulated data from a replicated triangular test. 

 

2.1 Data 
The data used in this work were simulated considering a replicated triangular discrimination 

test conducted in a factorial scheme to evaluate the addition of different types and concentrations of 

an ingredient in samples of a given product. 

Triangular tests are discrimination tests in which three coded samples are presented to the 

assessor, two of which are the same and one different (Kemp, Hollowood & Hort, 2009). These tests 

are often conducted in a factorial scheme to evaluate the addition of different concentrations of 

ingredients to some product. The panelist performs a triangle test (or more in the case of replicate tests) 

for each combination of adulterated versus control (unadulterated) product.  

The factors studied in the simulation were: ingredient types at two levels (A and B) and 

ingredient concentration at six levels (5%, 10%, 15%, 20%, 25% and 30%). We consider that the 

experimental design was conducted in randomized blocks, with each of the 30 assessors considered 

constituting a block. In the simulation, each assessor had five chances for each combination of factors 

(treatments) and should have identified, in each trial, the sample that he considers different from the 

others. In this case, the specific qualities of each sample do not matter, but the difference between them 

does. 

In total there are 12 treatments (combination of 2 ingredients and 6 concentrations) that were 

compared with the control (unadulterated samples). In the test, the assessor is compelled to make the 

choice even though no difference is perceived.  

Figure 1 presents the scheme of the experiment simulated in this work to illustrate the proposed 

methodology. The scheme is presented to only one assessor; however, it is extended to all other 

assessors. 

 

Figure 1. Scheme of the simulated experiment used to illustrate the proposed methodology. 

2.2 Detection Thresholds 
In replicated discrimination tests, it is possible to calculate the average proportion of correct 

responses by the group for each ingredient at each concentration and plot a graph of the observed 
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average proportion of hits versus ingredient concentration. As concentration increases, the average hit 

ratio of the group should go from a level close to random hit to close to 100% correct. 

In general, the higher the concentration of the ingredient, the more noticeable it becomes. These 

experiments are known as dose-response experiments or assays. The dose-response curve described 

has the mathematical properties of an accumulated continuous distribution function and exhibits a 

sigmoid or S-shape. The logistic distribution is frequently used in this type of analysis (Altshuler, 

1981; Coleman & Marks, 1998). 

From the data of the simulated experiment described in Section 2.1 we can fit a model that 

provides information about the effect of the concentration of the ingredient on the assessor's response. 

The threshold of detection is an interesting measurement commonly used and is defined as the level 

below which no sensation emerges from a stimulus and above which a sensation reaches the assessor’s 

consciousness. 

For each ingredient, there will be a distinct adjusted dose-response curve at which the detection 

threshold will be estimated, that is, the point at which the assessors change their response. Up to a 

certain concentration, they did not detect the presence of the ingredient, and after a certain point, they 

started to detect it. 

In practice, it appears that there is a variability at the point which the assessors change their 

answers. In a test sequence, the switching point may be different from one assessor to another. This 

led to the establishment of common rules for defining the detection threshold, such as the level that 

corresponds to 50%, on average, of correct answers (Lawless & Heymann, 2010).  

The dose-response curve is applied to model the relationship between ingredient concentration 

and the probability of correct responses. As justified in other sections, it is important to consider the 

random effect of the assessor. In this sense, the variation of assessors is considered and modeled as a 

random effect in a mixed generalized linear model. 

 
2.3 Logistic regression 

In this section, the structure of the generalized linear model is extended by adding the effect of 

the assessors as a random component. Therefore, this section considers a mixed model with fixed 

ingredient and concentration effects, as well as a random assessor effect. 

Given a random effects vector (assessor), the number of hits, y, in a repeated trial, are (conditionally) 

independent binomial variables, 

 

yij ∣ 𝐛  ∼  binomial (πij, mij),                                    (1) 

  

where yij the number of hits by assessor 𝑗 in treatment 𝑖, where i = 1, … , I, j = 1, … , J e mij the number 

of repetitions of assessor 𝑗 in treatment 𝑖 being m = 1, … , M. In the simulation used in this article, we 

considered that each assessor had five chances to perform the test (𝐼 = 12, 𝐽 = 30, 𝑀 = 5). However, 

it is common in practice for assessors not to participate in all replications of a treatment and the number 

of repetitions varies from one assessor to another. 

Furthermore, we assume that πij, the probability of correctness of assessor 𝑗 in treatment 𝑖 is 

independent of the session and that 𝐛 ∼ N(0, 𝐆), where the covariance matrix 𝑮 may depends on an 

unknown vector of variance components. 

The conditional mean μij = E(𝑦𝑖𝑗|𝐛) is associated with the linear predictor 

 

 η𝑖𝑗 = 𝑥𝑖𝑗
′ 𝜷 + 𝑧𝑖𝑗

′ 𝒃,                                                     (2) 

 

where xij and zij are known and β a vector of unknown parameters (the fixed effects), through a known 

link function g(⋅) such that 
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 g(πij) = ηij.                                                (3) 

 

The model proposed by Kunert & Meyners (1999), a variation of the model proposed by 

Brockhoff & Schlich (1998), considers 

 

 πij = g−1(ηij) = c + (1 − c)pij,                          (4) 

 

where  πij is the probability of correctness of assessor j in treatment i; c is the probability of hitting at 

random and pij is the probability associated with the skill of the assessor, that is, the probability of the 

assessor 𝑗  identifying the different sample in treatment 𝑖 and not just guessing. 

Thus, if the assessor has no ability to detect the difference between the products, we have pij =

0  and πij = c. If he knows, or has any discernment, this corresponds to pij > 0 and πij > 𝑐.. Often, 

pij is represented by the logistic function 

 

 π𝑖𝑗 = 𝑐 + (1 − 𝑐) (
𝑒

η𝑖𝑗

1+𝑒
η𝑖𝑗

).                                       (5) 

 

The detection threshold corresponds to 𝑝𝑖 = 50% of correct answers, that is, it is the 

concentration obtained by doing 

 

 
e

ηij

1+e
ηij

= 0,5,                                                  (6) 

 

or even η = 0. In particular, for the triangular test, we have c =
1

3
  and the detection threshold will be 

the concentration associated with 67% correct responses in the graph, 

 

 πij =
1

3
+ (1 −

1

3
) 0,5 = 0,67                                    (7) 

At this point, we have the greatest slope of the curve, that is, where there is greater variability 

in the responses. Figure 2 exemplifies the estimation of the detection threshold based on the graph of 

the proportion of correct responses as a function of the concentration of the ingredient or stimulus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2. Percentage of correct responses as a function of adulterant concentration indicating the detection threshold. 

 

The regression models up to the fifth degree presented in equations (8-12) were adjusted for 

each ingredient to verify which one best explains the behavior of the response variable. The variable 
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x represents the concentration of the ingredient. 

 

𝜂 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥² + 𝛽3𝑥³ + 𝛽4𝑥4 + 𝛽5𝑥5                                                                                   (8) 

𝜂 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥² + 𝛽3𝑥³ + 𝛽4𝑥4                                                                                                (9) 

 

𝜂 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥² + 𝛽3𝑥³                                           (10) 

 

𝜂 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥²                                                                                                                        (11) 

 

𝜂 = 𝛽0 + 𝛽1𝑥                                                                                                                                     (12) 

 

 

Although maximum likelihood and restricted maximum likelihood methods have become 

standard procedures in mixed linear models, likelihood-based inference in generalized linear mixed 

models (MLGM) is still a computational challenge. For this reason, several approaches to inference 

about MLGM have emerged, trying to solve, or avoid, the computational difficulties. 

The likelihood function in an MLGM does not normally have a closed form expression (with, 

of course, the exception of the normal case). In fact, such a probability may involve high-dimensional 

integrals that cannot be evaluated analytically. Thus, an approximation becomes one of the natural 

alternatives. We will use the glmer function from the lme4 package of R for inference which applies 

Laplace approximation and adaptive Gauss-Hermite quadrature (Bates et al. 2015; R Core Team, 

2020). Here the percentage of correct answers is converted into a probability measure πij
∗  that follows 

the logistic model for implementing the algorithm. 

 

 πij
∗ =

3

2
πij −

1

2
=

e
ηij

1+e
ηij

,                                             (13) 

 

where πij = Cij/Mij, where Cij  is the number of correct answers and  Mij is the number of repetitions 

of assessor 𝑗 in treatment 𝑖. So, 

 π𝑖𝑗
∗ =

3𝐶−𝑀

2𝑀
=

𝑒
η𝑖𝑗

1+𝑒
η𝑖𝑗

.                                                (14) 

 

Meilgaard (1991) shows that this conversion can generate probabilities π𝑖𝑗
∗  equal to 0%, 100% 

or even negative. The model does not accommodate probabilities equal to 100% and 0% and certainly, 

no results less than 0%. For tuning in computer programs, the authors suggest arbitrarily manipulating 

these probabilities and replacing them with 99.5%, 0.5% and 0.1%, respectively. 

 
3. Results and Discussion 

 

3.1 Descriptive data analysis 
In this section, an exploratory analysis of the data described in section 2.1 is presented. Table 

1 presents the average proportion of hits observed for each ingredient. 
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Table 1. Average proportion of hits for each ingredient (A and B) at each concentration 

 

 

 

 

 

 

 

 

 

Overall, the average hit ratio seems to increase as the concentration of the ingredient in the 

sample is also increased. Ingredient B seems to be the most easily detectable, starting at 15% almost 

all assessors already detect the difference. 

 

3.2 Adjustment 
For each ingredient, it is possible to adjust regression models in order to verify which one best 

explains the behavior of the response variable. The models represent the relationship between the linear 

predictor (η) and concentrations of ingredients. 

In the simulated example, the first-degree regression model presented the lowest Akaike 

information criterion (AIC), being, therefore, the model that best fitted the data for all ingredients. 

Table 2 presents the mean estimates, 95% confidence intervals, standard error and p-value for 

the coefficients of the fixed (for comparison purposes) and mixed models, that is, for the models that 

do not consider and those that consider the effect assessor randomness, respectively. 

 
Table 2. Estimates of means, 95% confidence intervals (Lower limit-LL and upper limit-UL), standard error (SE) and p-

value for the coefficients of the regression model 

 

Modeling the assessor random effect produced a better analysis, with a lower value of the 

Akaike criterion and the ability to detect differences between treatments with greater power. Peltier et 

al. (2014) highlight that considering a assessor as a fixed effect can lead to the conclusion that the 

differences in treatments are greater than they really are.  

This means that not considering the random effect of the assessor may overestimate the 

detection threshold estimates, that is, with this model it can be wrongly concluded that ingredients are 

detected at certain concentrations when they will actually be detected at lower concentrations. 

Figures 3 and 4 illustrate the observed mean proportions of hits (points) and the adjusted mean 

curves (fixed and mixed models) for the proportion of hits for ingredients A and B respectively. 

 

 

 

 

 

 

 

 Average proportion of hits observed 

Ingredient concentration A B 

5% 0.3733 0.3200 

10% 0.3666 0.5333 

15% 0.3866 0.9533 

20% 0.7000 1.0000 

25% 0.9533 1.0000 

30% 1.0000 1.0000 

  Fixed Model Mixed Model 

 coef LL mean UL SE p-value LL mean UL SE p-value 

A 𝛽0 -6.1748 -4.1989 -2.3709 0.9658 <0.0001 -8.1553 -6.1997 -4.6204 0.8940 <0.0001 

𝛽1 0.1504 0.2031 0.2634 0.0286 <0.0001 0.2385 0.3173 0.4148 0.0445 <0.0001 

B 𝛽0 -6.6294 -4.5779 -2.6944 0.9979 <0.0001 -9.3022 -6.8962 -5.0325 1.0776 <0.0001 

𝛽1 0.1960 0.2599 0.3355 0.0353 <0.0001 0.3157 0.4267 0.5719 0.0646 <0.0001 
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Figure 3. Average proportions of observed hits (points) and fitted curves (fixed and mixed models) for adulterant A.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 4. Average proportions of observed hits (points) and fitted curves (fixed and mixed models) for adulterant B. 

 

 
3.3 Thresholds 

The detection thresholds associated with ingredients A and B can be graphically interpolated 

through the fitted curves or estimated through the regression equations by making η = 0  which is 

equivalent to π = 0,67 as seen in equation (7) of Session 2.3, 

 

ηÂ = β0̂ + β1̂x = −6,1997 + 0,3173x,                  (15) 

 

      ηB̂ = β0̂ + β1̂x = −6,8962 + 0,4267x.                   (16) 

 

Table 3 presents the estimates of detection thresholds (x in %) for ingredients A and B. 

 

 
Table 3. Estimates of detection thresholds (%) for adulterants A and B 

 

 

 

 

Ingredients Threshold (%) 

A 19.54 

B 16.16 
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Overall, as the ingredient concentration increases, the easier it is to detect the difference. For 

both ingredients, the curves showed a good fit compared to the observed data, with ingredient B being 

more easily detectable than ingredient A, with a detection threshold around 16% and as the ingredient 

concentration approaches 30%, the hit probability for both ingredients approach 100%. 

The curve associated with ingredient A showed a slightly smoother behavior, with this 

ingredient being more difficult to detect, with a detection threshold around 20%. 

In this work we analyzed simulated data from a replicated triangular test and it was applied the 

graphical approach (or regression model fitting) to estimate the group detection thresholds for each 

ingredient. This technique has been frequently used, however, in general, works do not fit models that 

consider the random effect of the assessor. 

The incorporation of the random effect was considered by Linander et al. (2019) when fitting 

a model to analyze data from a paired comparison test. However, the analysis focused on interpreting 

estimates of underlying sensory differences rather than detection thresholds. 

The main concern on our work was to obtain information about sensory differences between 

products. However, when there is interest in obtaining information on preference between products, it 

has been noticed in the literature the use of preference tests as discussed by Prescott et al. (2005) , 

which considers the analysis of rejection thresholds. 

In this sense, Murray et al. (2019) used a graphical approach to estimate detection thresholds 

to determine the acceptability of new bioactive compounds added to milk-based beverages considering 

a 2-AFC forced choice test. In this context, Lima & Filho et al. (2015) also apply the graphical 

approach to estimate detection thresholds, suggesting, however, that acceptance tests are more 

indicated than preference tests, since one sample is less preferred than the other, it does not mean that 

it is sensorially rejected. The analysis uses a 9-point hedonic scale to evaluate the samples and the 

results are fitted to regression models, allowing the identification of the transition point between 

sensory acceptance and rejection. 

These authors fit regression curves and use interpolation to obtain detection thresholds, as we 

suggested in this work. However, the analyzes still do not consider the random effect of the assessor. 

The model proposed in this article should be able to produce a better analysis, that is, more accurate 

estimates for the detection thresholds. In addition, the model can also be apllied to estimate individual 

detection thresholds. 

Brockhoff & Muller (1997) carried out this study, however, not taking into account the random 

effect of the assessor. They consider that individual thresholds are randomly distributed among 

individuals. The model takes into consideration the sensory distances of the Thurstonian approach and 

considers the random effects of individual thresholds. 

Duineveld & Meyners (2008), in their study on discrimination rates, concluded that to obtain 

reliable conclusions about the distribution of discrimination rates, at least 5 or 6 repetitions of the 

triangular test are necessary. In future, we can explore the idea and analyze the number of repetitions 

needed to obtain reliable estimates of detection thresholds. 

 
4. Conclusions 
Our work substantiates the importance of considering a model that takes into account the random 

effect of the assessor in the analysis of detection thresholds in replicated discrimination tests. The 

proposed model has greater detection power, resulting estimates that are more accurate to detection 

thresholds in dose-response experiments. Not considering the random effect of the assessor may 

underestimate these estimates, that is, one can erroneously conclude that ingredients are detected at 

certain concentrations when in fact they should be detected at lower concentrations. 

The proposed analysis still allows the use of unequal numbers of replications, which is more 

difficult to deal with in other approaches. This is most important when tests are not repeated on the 

same day but over several days or even weeks, so that some assessors are likely to miss one or several 

sessions. 
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Considering the random effect of the assessor is still challenging for researchers in the sensory area 

due to the difficulty associated with choosing the appropriate model, implementing and interpreting 

the results. Thus, justified the importance, this article presents the model and functions that can be 

directly applied in the estimation of detection thresholds. 
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