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Abstract
Experiments in which the response is ordinal polytomous are often performed in the agricultural sciences
and, often, the cumulative logit models are used to analyze this variable. A particular characteristic is that
the polytomous variables are objects of multivariate statistics and the ordinary residual, associated with the
classical models available, is a vector for each subject. Consequently, these residuals are not easily inter-
preted, and their distribution is unknown. Residual analysis is an essential step in validating any statistical
model, and not performing it can allow a model to incorrectly fit the data, resulting in erroneous con-
clusions and inferences. In this context, the work aims to review the residuals for ordinal data available in
the literature, emphasizing the so-called surrogate residuals with continuous distribution. As a practical
application, it is present an experiment carried out with Tambaqui fish of different types of genotype.
The response variable in this study is the severity of the lesions found in the livers of Tambaquis. The
estimation of the parameters was performed using the maximum likelihood. The selected model by the
likelihood ratio test included the proportional odds and fish genotype effect. According to this model,
it was possible to verify in this study that fish with genotype 122 presented a higher probability of liver
lesion classified as irreversible (71, 26%), while Tambaquis with genotype 130 had a higher probability of
moderate lesion, 46, 75%. For the model diagnostics, the half-normal plot and the Kolmogorov-Smirnov
test were used to examine the performance of the surrogate residual. The results obtained provided evi-
dence of the adequacy of the selected model since the residuals did not reveal patterns or influential points
in diagnostic tools.

Keywords: Cumulative logit model; Maximum likelihood; Half-normal plot;Kolmogorov-Smirnov test.

1. Introduction
In agricultural sciences, it is common to carry out experiments that result in polytomous data

as a response of interest. These data assume values in a finite set of categories with nominal or
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ordinal scale (natural ordering between categories) and have a multinomial distribution regardless
of this nature (Agresti, 2002). The models with the logit link function are the most used in the
statistical analysis of these data. The proportional odds model (McCullagh, 1980) is widely used for
the ordinal case with a smaller number of parameters due to the assumption of proportionality (Tutz,
2011). However, other alternatives can be considered, such as the cumulative probit model or the
Proportional Hazards model with a complementary log-log link function (Agresti, 2010). When
the proportionality assumption is not valid, the cumulative logit model (Williams & Grizzle, 1972)
can be fitted to the data or the adjacent-categories logit model, for example (Ananth & Kleinbaum,
1997 and Agresti, 2002). Furthermore, one can assume another discrete multivariate distribution
for the response variable, such as the Dirichlet distribution, which is the conjugate distribution of
the multinomial in Bayesian inference (Ng et al., 2011).

When selecting a model, it is essential to assess the quality of its fit to the data as well as to
validate its assumptions. The fitted model must describe the observed data well so as not to result
in incorrect inferences. In this context, residual analysis plays an important role in detecting pos-
sible failures resulting from the fit and identifying outliers and/or influential points, becoming an
integral part of any regression problem (Cook & Weisberg, 1982). McCullagh & Nelder (1989)
paid substantial attention to defining residuals for Generalized Linear Models (GLMs), with Pearson
and deviance residuals frequently used in the diagnostics of GLMs. However, these residuals do not
apply to multinomial data due to the nature of the response variable. As the polytomous variable is
multivariate, the ordinary residual given by the difference between the observed response and the
estimated probability is a vector for each subject (Reiter & Kohnen, 2005). Therefore, diagnostic
plots of residuals are difficult to interpret since their distribution is difficult to identify. Further-
more, few papers in the literature involve types of residuals that help validate models associated with
polytomous data, and these are defined, in particular, for the case in which the response of subject
results in only one of the categories.

For the ordinal case, Liu et al. (2009) presented the vector of cumulative residuals focusing on
validating the proportional odds model with respect to the covariates of the linear predictor. How-
ever, it is not simple to interpret the behavior of these residuals in diagnostic plots, as is the case with
residuals for continuous variables. Li & Shepherd (2012) and Liu & Zhang (2018) defined residuals
that correspond to a single value per subject regardless of the number of categories. While the resid-
ual proposed by Li & Shepherd (2012) is obtained in the discrete space of the original response, in
the approach used by Liu & Zhang (2018), a continuous variable replaces the ordinal variable, and
the residual is defined through this new variable. Liu & Zhang (2018) compared the performance of
the residuals so-called surrogate, with those proposed by Li & Shepherd (2012) in the residuals ver-
sus covariates plot and Quantile-Quantile plot (Q-Q plot) to assess the fit of the cumulative probit
model with respect to mean structure, heteroscedasticity, and proportionality. The authors showed
that the surrogate residuals presented expected behaviors in these plots for the model correctly spec-
ified to the data. In contrast, the residuals defined by Li & Shepherd (2012) showed unusual patterns
that did not allow concluding in favor of the correct model.

The aim of this work is to present a review of models and residuals for polytomous ordinal
data, considering the relevance and need for studies and research in this area. As a specific case,
we show the performance of the surrogate residuals to evaluate the cumulative logit model for
ordinal response. As a motivational study and application, it is presented the research carried out
with Tambaqui fish (Colossoma macropomum), in which a type of histopathological alteration was
observed in the liver fish. Therefore, in this study, the response variable is the severity of lesion
found in the fish liver (natural ordering), which was classified as mild, moderate, and irreversible.
Also, it is verified the relationship of the classifications with the different gene expressions of the
Tambaquis. This species is a source of aquatic protein widely consumed in the North region of
Brazil and has attracted significant interest from fish farmers from other countries (Lopes et al.,
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2016). Given the large production of Tambaqui in the country, the aquatic environment and the
management of these fish must be appropriately controlled to generate a healthy population, not
causing losses in productivity (Correa et al., 2018).

2. Models for ordinal response
The multinomial distribution is the most important and usual one for random variables associated

with categorical data. Thus, it is the distribution that is assumed, except for overdispersion, in
classic models with polytomous responses (Agresti, 2002). Let it be a multinomial trial, that is, an
experiment that admits J possible and mutually exclusive outcomes, whose probabilities are denoted
by π1,π2, ..., πJ such that

0 ≤ πj ≤ 1, j = 1, 2, ..., J , and
J∑

j=1
πj = 1.

Consider m identical and independent trials, which means that the probabilities of occurrence of
the results are constant for each trial and that the result obtained in one trial does not interfere with
the result of the other. The components of the random vector Y = (Y1, . . . , YJ )′ give the cell counts
in categories 1, . . . , J . Then, the random vector follows a multinomial distribution with parameters
m and π = (π1, . . . ,πJ )′, Y ∼ Multi(m,π), and probability mass function given by

P(Y1 = y1, Y2 = y2, ..., YJ = yJ ; m;π) =
m!

y1!y2!...yJ !
π

y1
1 π

y2
2 ...π

yJ
J ,

where yj ∈ {0, 1, . . . , m} and
J∑

j=1
yj = m.

For the category j the result yj has mean and variance given by E(Yj) = mπj e Var(Yj) =
mπj(1 – πj), respectively. Furthermore, the covariance between yj and yj′ , ∀j ̸= j′, j′ = 1, . . . , J , is
obtained by Cov(Yj, Yj′ ) = –mπjπj′ , and that the marginal distribution of each yj is binomial.

2.1 Cumulative logit model
The cumulative logit model (Williams & Grizzle, 1972) is a multivariate extension in the class

of generalized linear models used to model the dependence of an ordinal response on discrete or
continuous covariates. In this context, the response variable Yi takes on a value in the set

{
1, 2, . . . , J

}
for the i-th subject, i = 1, 2, . . . , n, with the ordered categories 1 < 2 < . . . < J and following the
multinomial distribution. Then, the cumulative logit models with the canonical link function can
be used to describe the functional relationship between the response and covariates of the study.
According to Agresti (2010), models that consider the natural order of the response can produce
more powerful results than models that ignore ordinality.

This model is defined by:

logit
[
γij(xi)

]
= log

[
γij(xi)

1 – γij(xi)

]
= αj +

p∑
k=1

βjkxik = αj + β′
jxi, j = 1, . . . , J – 1, (1)

where xi = (xi1, xi2, . . . , xip)′ is the vector of the p covariates for the i-th subject, βj = (βj1,βj2, . . . ,βjp)′

represents the vector of regression parameters and αj is the intercept, with j = 1, 2, . . . , J – 1, these
ones constitute the systematic part of model. Here for the multinomial response Yi, γij(xi) is the
cumulative probability of the subject i until the j-th category, that is, γij(xi) = P(Yi ≤ j|xi) =
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πi1(xi) + . . . +πij(xi), j = 1, . . . , J , being πij(xi) = P(Yi ≤ j|xi) – P(Yi ≤ j – 1|xi) the probability of the
(marginal) response in the j-th category, more precisely,

πij(xi) =
exp(αj + β′

jxi)

1 + exp(αj + β′
jxi)

–
exp(αj–1 + β′

j–1xi)

1 + exp(αj–1 + β′
j–1xi)

with P(Yi ≤ 0|xi) = 0 and P(Yi ≤ J |xi) = 1.
In the cumulative logit model, the regression parameters are not constant for the j logits, i.e., βj

can vary according to each response category. The estimation of the parameters of the model (1)
is generally performed using the maximum likelihood method, whose likelihood function for the
random sample of size n is given by

L(θ) =
n∏

i=1

{
J∏

j=1

[
πij(xi)

]yij

}

=
n∏

i=1

{
J∏

j=1

[
P(Yi ≤ j|xi) – P(Yi ≤ j – 1|xi)

]yij

}

=
n∏

i=1

{
J∏

j=1

[
exp(αj+β

′
jxi)

1+exp(αj+β
′
jxi)

–
exp(αj–1+β′

j–1xi)

1+exp(αj–1+β′
j–1xi)

]yij
}

,

where yij = 1 if the response of subject i, i = 1, . . . , n, belongs to the category j, j = 1, . . . , J ,

yij = 0 otherwise, with
J∑

j=1
yij = 1 and θ =

(
α1, . . . ,αJ–1,β1, . . . ,βJ–1

)′
is the vector with the

parameters to be estimated. It is necessary to use iterative methods such as the Newton-Raphson
method to maximize L and obtain the maximum likelihood estimators of the parameters (Agresti,
2002). Additionally, as is a classic in generalized linear models, under conditions of regularity, in
the ordinal case, asymptotically θ̂ has a normal distribution, that is, θ̂ ∼ N(θ,ℑ–1), where ℑ is
the Fisher information matrix. This matrix is of fundamental importance in the construction of
hypothesis tests and asymptotic confidence intervals for the elements of θ (via the Wald method),
since the square root of the main diagonal elements are the standard errors of the estimators. More
details can be found at McCullagh (1980).

An alternative to model (1) is the proportional odds model, which assumes that the effects of
the covariates are the same for each logit j, resulting in a more parsimonious model, that is, with a
smaller number of parameters (Bilder & Loughin, 2014). The proportional odds assumption results
in the simplest fit with easy interpretation, but it should always be carefully verified (Lemos et al.,
2015).

2.2 Proportional odds model
The simplest model in the class of cumulative logit models involves parallel regressions on the

ordinal scale and assumes equivalent proportions by assuming the same regression parameter for all
categories. This model, called the proportional odds model, was introduced by McCullagh (1980)
and can be expressed by

logit
[
γij(xi)

]
= log

[
γij(xi)

1 – γij(xi)

]
= αj +

p∑
k=1

βkxik = αj + β′xi, j = 1, . . . , J – 1, (2)

where xi = (xi1, xi2, . . . , xip)′ is the vector of covariates for the subject i, β = (β1,β2, . . . ,βp)′
represents the vector of regression parameters, αj is the intercept, and the last category J as the
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reference. Here for the multinomial response Yi, γij(xi) is the cumulative probability of subject i
until the j-th category, that is, γij(xi) = P(Yi ≤ j|xi) = πi1(xi) + . . . + πij(xi), j = 1, . . . , J . The
probabilities πij(xi) are obtained for the model (2) by means of subtractions given by

πij(xi) = P(Yi ≤ j|xi) – P(Yi ≤ j – 1|xi) =
exp(αj + β′xi)

1 + exp(αj + β′xi)
–

exp(αj–1 + β′xi)
1 + exp(αj–1 + β′xi)

,

where P(Yi ≤ 0|xi) = 0 and P(Yi ≤ J |xi) = 1.
As the effects of the covariates are equal, the model assumes that the effects on the logit are

identical for all categories of the response variable. Then, the J –1 logits are shifted only as a function
of the intercept (Bilder & Loughin, 2014). According to Agresti (2007), the maximum likelihood
procedure can be used to estimate the parameters of the model (2), with a likelihood function for
the random sample of dimension n described by

L(θ) =
n∏

i=1

{
J∏

j=1

[
πij(xi)

]yij

}

=
n∏

i=1

{
J∏

j=1

[
P(Yi ≤ j|xi) – P(Yi ≤ j – 1|xi)

]yij

}

=
n∏

i=1

{
J∏

j=1

[
exp(αj+β

′xi)
1+exp(αj+β

′xi)
– exp(αj–1+β′xi)

1+exp(αj–1+β′xi)

]yij
}

,

where yij = 1 if the response of subject i, i = 1, . . . , n, belongs to category j e yij = 0 otherwise,

j = 1, . . . , J , with
J∑

j=1
yij = 1 and θ =

(
α1, . . . ,αJ–1,β

)′
representing the vector of parameters.

According to McCullagh (1980), the Newton-Raphson method with Fisher scoring can be used to
obtain parameter estimates, converging rapidly even with poor initial values.

The odds ratio is a very intuitive and used way to interpret the parameters estimated by the
proportional odds model. Consider two subpopulations characterized by vectors x1 and x2, then
the cumulative odds ratio for the two subpopulations is given by

P (Yi ≤ j|x1)
/

P (Yi > j|x1)
P (Yi ≤ j|x2)

/
P (Yi > j|x2)

= exp
[
β′(x1 – x2)

]
, j = 1, 2, . . . , J – 1,

where the odds of occurring
{

Yi ≤ j|xi = x1
}

is equal to exp[β′(x1–x2)] times the odds of occurring{
Yi ≤ j|xi = x2

}
. As stated in Bilder & Loughin (2014), the cumulative odds ratio remains the same

regardless of the category j used, and this is due to the assumption that the effects of the covariates
are the same for all categories.

As the proportional odds model is a particular case of the model (1), the proportionality assump-
tion can be verified through the likelihood ratio test (LRT) with the following hypotheses{

H0 : β′
j = β′, ∀j = 1, 2, . . . , J – 1

H1 : β′
j ̸= β′, forsomej.

and with the statistic of the test given by

Λ = –2 log
[

LH0

LH1

]
∼ χ2

m,
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where LH0 is the likelihood function under the null hypothesis H0, i.e., referring to model (2) and
LH1 is the likelihood function under the alternative hypothesis H1, i.e., referring to model (1). Here,
Λ follows an approximate Chi-square distribution, in which the degrees of freedom, m, are obtained
by the difference between the numbers of the parameters under the hypotheses H0 and H1. If the
null hypothesis is not rejected at the 5% significance level, then the proportional odds model can be
fitted to the data (Lemos et al., 2015 and Giolo, 2017).

The proportionality assumption can be verified in two ways: global and subject. Globally, all
model covariates are considered, while subjectly, it is considered covariate by covariate. In the case
of rejection of the null hypothesis for part of the covariates, that is, some covariates have the property
of proportional odds and others do not, an alternative is the partial proportional odds model (Agresti,
2010).

2.3 Partial proportional odds model

The proportional odds assumption is not always achieved in practice. A model proposed by
Peterson & Harrell Jr (1990), an extension of the proportional odds model, can be used when part
of the covariates violates this assumption.

Consider the vector xi with the values of p covariates for the i-th subject that present proportional
odds and the vector zi with the values of q (q ≤ p) covariates that do not, so the partial proportional
odds model is given by

logit
[
γij(xi, zi)

]
= log

[
γij(xi, zi)

1 – γij(xi, zi)

]
= αj + β′xi + ρ′jzi, j = 1, . . . , J – 1, (3)

where β = (β1,β2, . . . ,βp)′ and ρj = (ρj1, ρj2, . . . , ρjq)′ sare the vectors of regression parameters,
αj is the intercept and the last category taken as a reference. Here, the vector ρj describes the effect
of non-proportionality for each j–th cumulative logit associated with the vector zi. In this model,
J – 1 intercepts, p coefficients referring to the vector β, which are independent of the compared
categories, and q(J – 1) coefficients referring to the vector ρj are estimated. Furthermore, γij(xi, zi)
is the cumulative probability of subject i until the j-th category, i.e., P(Yi ≤ j|xi, zi) = πi1(xi, zi)+. . .+
πij(xi, zi), j = 1, . . . , J , and the probabilities πij(xi, zi) for th model (3) are obtained in an analogous
way to those obtained for models (1) and (2), so

πij(xi, zi) = P(Yi ≤ j|xi, zi) – P(Yi ≤ j – 1|xi, zi)

=
exp(αj+β

′xi+ρ′
jzi)

1+exp(αj+β
′xi+ρ′

jzi)
–

exp(αj–1+β′xi+ρ′
jzi)

1+exp(αj–1+β′xi+ρ′
jzi)

,

where P(Yi ≤ 0|xi, zi) = 0 and P(Yi ≤ J |xi, zi) = 1.

The estimation of parameters can also be performed using the maximum likelihood method
for the random sample of size n (Agresti, 2010). Considering yij = 1 if the response of subject i,

i = 1, . . . , n, belongs the category j, j = 1, . . . , J , yij = 0 otherwise and
J∑

i=1
yij = 1, the estimators of
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the model (3) can be obtained by maximizing the likelihood function (or its logarithm) given by

L(θ) =
n∏

i=1

{
J∏

j=1

[
πij(xi, zi)

]yij

}

=
n∏

i=1

{
J∏

j=1

[
P(Yi ≤ j|xi, zi) – P(Yi ≤ j – 1|xi, zi)

]yij

}

=
n∏

i=1

{
J∏

j=1

[
exp(αj+β

′xi+ρ′
jzi)

1+exp(αj+β
′xi+γ′

jzi)
–

exp(αj–1+β′xi+ρ′
jzi)

1+exp(αj–1+β′xi+ρ′
jzi)

]yij
}

,

where θ =
(
α1, . . . ,αJ–1,β,ρ1, . . . ,ρJ–1

)′
corresponds to the vector of parameters to be estimated.

The estimates can be obtained using the step-halving technique in the modified Gauss-Newton
algorithm that ensure, in each iteration, an increase in the likelihood logarithm (Peterson & Harrell
Jr, 1990).

The adjacent-categories logit model is also an alternative when the proportionality assumption
is not satisfied. It considers the ratio between the probabilities of successive categories rather than the
cumulative probabilities. We reinforce that all models mentioned here are based on the multinomial
distribution for the response variable, i.e., a random part of the model. They differ in the structure
of the linear predictor, the systematic part of the model. Additionally, it is possible to find this model
and others for ordinal data in Ananth & Kleinbaum (1997), Agresti (2002), Agresti (2007), Agresti
(2010), Tutz (2011), Bilder & Loughin (2014), Giolo (2017), among others.

3. Residuals for ordinal data
After fitting a model to the data, it is essential to verify whether its assumptions are satisfied

and identify subjects that may disproportionately interfere with the results obtained. Through an
analysis of the residuals, it is possible to study the robustness of the fitted model in terms of the
various aspects that involve its formulation and the estimates of its parameters, detecting potential
problems, and improving the fitting process (Souza, 2006).

3.1 Ordinary Residual
For the class of models with a polytomous categorical response, the ordinary residual associated

with the i-th subject, i = 1, . . . , n, is a vector J × 1 defined by (Reiter & Kohnen, 2005)

r̂i = yi – π̂i =
(

yi1 – π̂i1, yi2 – π̂i2, . . . , yiJ – π̂iJ
)′

, (4)

where yi = (yi1, yi2, . . . , yiJ )′ is the observed vector with yij = 1 if the response of the subject i
belongs to the category j and yij = 0 otherwise, π̂i = (π̂i1, π̂i2, . . . , π̂iJ )′ is the estimated probabilities
vector. The only positive element in this vector pertains to the observed outcome for the subject.
This vector may not be informative in the diagnostic techniques for analyzing residuals since its
asymptotic distribution is unknown.

3.2 Cumulative Residual
Specifically for the proportional odds model, defined in section 2.2, Liu et al. (2009) presented the

cumulative residuals for a binary response (by collapsing the categories) and the vector of cumulative
residuals considering the original response. For the multivariate case, the vector of cumulative
residuals, J × 1, for each subject is expressed by

r∗i = yi – γi =
(

yi1 – P (Yi ≤ 1|xi) , yi2 – P (Yi ≤ 2|xi) , . . . , yiJ – P (Yi ≤ J |xi)
)′

,
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where γi = (P (Yi ≤ 1|xi) , P (Yi ≤ 2|xi) , . . . , P (Yi ≤ J |xi))
′ is the vector of cumulative probabilities

for the i-th subject. The authors used the sum of this residual vector in graphical and numerical
methods to assess the goodness-of-fit of the model. The methods generalize those developed by
Arbogast & Lin (2005) for the logistic regression model with binary responses. However, diagnostic
plots associated with residuals are difficult to interpret.

3.3 LS Residual
Considering the models that assume the assumption of proportionality for the regression pa-

rameters, Li & Shepherd (2012) proposed a residual that is a single value per subject, regardless of
the number of ordered categories. This residual, called LS, is obtained by the difference between
two cumulative probabilities, and the authors examined several properties to apply it to the available
diagnostic tools. The residual associated with a subject considering the model 2 is obtained by

RLS
i = P(Yi < j|xi) – P(Yi > j|xi)

= P(Yi ≤ j – 1|xi) –
[
1 – P(Yi ≤ j|xi)

]
= P(Yi ≤ j – 1|xi) + P(Yi ≤ j|xi) – 1,

with its value varying in the numeric interval of [–1, 1]. The Q-Q plot of this residual is obtained
compared to the theoretical quantiles of a Uniform distribution in [–1, 1]. However, the residual
is defined on the discrete space of the response variable, and its conditional distribution can vary
according to the covariates. These facts make it difficult to analyze the residuals in diagnostic plots
since they do not produce the expected patterns. According to Liu & Zhang (2018), the use of this
residual is limited to verifying its zero mean under the correct model.

3.4 Surrogate Residual
The residual defined by Liu & Zhang (2018) is also a single value per subject for the models that

assumes the proportional odds. Consider the model (2) and a latent variable given by Zi = –β’xi +εi,
i = 1, 2, . . . , n, where ε1, . . . , εn is a random sample of the variable ε which follows a standard logistic
distribution, ε ∼ log(0, 1), with probability density function and cumulative distribution function,
respectively, given by

g (u) =
e–u

(1 + e–u)2
e G(u) =

eu

1 + eu ,

where u ∈ R. The mean and variance of ε are E (ε) = 0 and Var (ε) = π2

3 , respectively.
The concept of latent variable induces a joint distribution of the variables Yi and Zi determined

by Yi = j if αj–1 < Zi ≤ αj, j = 1, 2, . . . , J , with –∞ = α0 < α1 < . . . < αJ–1 < αJ = ∞. Thus, the
marginal distribution of the ordinal variable Yi is the same as the distribution specified by the model
(2). The authors defined a continuous variable Si based on the conditional distribution of Zi given
Yi, i.e., Si follows a truncated distribution of Zi in the interval

(
αj–1;αj

)
given Yi = j. Therefore,

the surrogate residual is obtained by the difference between the surrogate variable and its expected
value, with the expression given by

RS
i = Si – E0(Si|xi) = Si – E(Zi|xi) = Si + β’xi –

+∞∫
–∞

udG(u) (5)

where E0(.) and E(.) denote, respectively, the mean of variables Si and Zi. If the model (2) is specified
correctly, the variable Si follows the same distribution of Zi and the residual RS

i , which is also a
continuous variable, has the following properties:
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i) E
(
RS

i |xi
)

= 0;
ii) Var

(
RS

i |xi
)

= π2

3 , a constant does not depend on xi;
iii) Reference distribution: Independent of xi, the empirical distribution of RS

i approximates of the
standard logistic distribution, that is, RS

i ∼ G (.).

These properties allow an analysis of residuals in practically all existing diagnostic tools for con-
tinuous variables Liu & Zhang (2018). As the residuals are obtained by random sampling, diagnostic
plots may vary from one sample to another (especially for small samples). The authors presented a
bootstrap algorithm for the residual (5) similar to the bootstrap algorithm used in linear regression
proposed by Efron (1979) to account for the variability of conditional sampling. It consists of repeat-
edly resampling the observed data, generating new data sets, and finding characteristics of interest
in the population studied.

The algorithm for obtaining the b-th bootstrap replication of surrogate residuals, b = 1, 2, . . . , B,
is given in two steps (Liu & Zhang, 2018):

1) Generate a bootstrap sample of size n through sampling with replacement of the original data
and the corresponding covariates, i.e.,

{(
x∗1b, Y∗

1b

)
,
(
x∗2b, Y∗

2b

)
, . . . ,

(
x∗nb, Y∗

nb

)}
.

2) Using the bootstrap sample obtained in step 1, perform the conditional sampling procedure pre-
sented in this section to generate a sample of the surrogate residuals given by RS∗

1b , RS∗
2b , . . .RS∗

nb .

Thus, it is possible to examine the discrepancy between the empirical bootstrap distributions and
the reference distribution (standard logistic). As the bootstrap samples are drawn independently, the
behavior of B × n surrogate residuals is examined in the plot of residuals versus covariate (or fitted
values), while the median of the B bootstrap distributions is examined in the Q-Q plot.

4. Diagnostic techniques
Several diagnostic techniques based on residual analysis can assess the goodness-of-fit of a sta-

tistical model. These can be informal through residual plots or formal when using tests. The tests
provide a p-value referring to a tested hypothesis. At the same time, the graphical representation is
an important exploratory diagnostic feature that can reveal which components of the model were
not correctly specified.

When fitting a linear regression model, the Shapiro-Wilk test (Shapiro & Wilk, 1965) is gen-
erally used to verify the normality assumption of residuals. On the other hand, the Kolmogorov-
Smirnov test (Kolmogorov, 1933) is a widely known test that considers continuous models other
than the linear regression model. Through this test, it is possible to examine the degree of agreement
between the empirical distribution function of the residuals concerning the theoretical distribution
function of reference (Dufour et al., 1998). In addition, a simple way to visualize the shape of the
residual distribution is through a histogram, making it possible to compare the result obtained with
the shape of the normal distribution or any other distribution.

Consider R1, R2, . . . , Rn a random sample of residuals with empirical distribution function

Qn(c; R1, R2, . . . , Rn)

and G(c) the theoretical distribution function of reference. The hypotheses of the Kolmogorov-
Smirnov test are given by{

H0 : Qn(c; R1, R2, . . . , Rn) = G(c), ∀c ∈ (–∞; +∞)
H1 : Qn(c; R1, R2, . . . , Rn) ̸= G(c), forsomec.

and test statistic
Tn(R1, R2, . . . , Rn) ≡ n1/2dKS (Qn, G) ,



296 Brazilian Journal of Biometrics

where dKS (Qn, G) = sup
c∈R

|Qn(c; R1, R2, . . . , Rn) – G(c)| corresponds to the largest vertical difference

between the two distribution functions. For a significance level α = 5%, the H0 is rejected if the
statistic Tn exceeds the quantile value of 1 –α as given by the table of quantiles for the Kolmogorov
test statistic. In case of non-rejection of the null hypothesis, R1, R2, . . . , Rn is a random sample from
the theoretical distribution function.

Although goodness-of-fit tests provide a p-value that indicates how strong the evidence (ob-
served data) is against the null hypothesis, they may fail in certain circumstances, for example, when
the sample size is small. Generally, graphical techniques can be more informative, providing a bet-
ter diagnostics of model adequacy than hypothesis testing (Moral et al., 2017). Among the different
types of diagnostic plots, some principals are (Paula, 2013; Faraway, 2016; Moral et al., 2017; among
others):

i) Residuals versus covariates: indicates whether the systematic part was incorrectly specified, with
the need to include higher-order terms or transform the quantitative covariates into the linear
predictor. The expected pattern of this plot is a zero-centered distribution of residuals with
constant amplitude;

ii) Residuals versus fitted values: the behavior of the residuals in this plot must be the same as de-
scribed in item (i) for a well-fitted model. This plot can reveal the existence of heterogeneity of
variance in addition to outliers;

iii) Normal and half-normal plots: they are widely used for the diagnostics of the model, being pos-
sible to detect outliers and identify failures in the specification of the link function or distribution
of the random component. The residuals should follow approximately a straight line with a slope
of 45º for a well-fitted model.

Under the normality assumption, the normal plot of the residuals against the expected sorted
values of the standard normal distribution, which is approximated by

Φ–1

[(
i – 3

/
8
)

n + 1
/

4

]
,

while in the half-normal plot, the absolute values of the residuals (even with unknown distribution)
are compared concerning the expected order statistics of the half-normal distribution, obtained by

Φ–1

[(
i + n – 1

/
8
)

2n + 1
/

2

]
,

where Φ–1 is the standard normal distribution function, with i = 1, . . . , n and n corresponding to
the sample size. However, the behavior interpretation of the points in these plots can be subjective,
and it is difficult to point out other causes for unavoidable irregularities. To assist in visual analysis,
Atkinson (1985) proposed adding a simulated envelope to these plots. So, it is possible to observe the
proportion of points randomly distributed within the envelope and decide whether the observed
residuals are consistent with the fitted model. The envelope is simulated with a confidence level
of 95% that contains the residuals, i.e., there is evidence of a good fit when the number of points
outside the envelope is below or equal to 5%.

In addition, a sensitivity analysis based on a set of tools (such as leverage, case-deletion, or local
influence analysis) can be designed to evaluate changes in the fitted model when some perturbation
is imposed on the data or assumptions of the model (Singer et al., 2017). This will be briefly presented
below given that the focus of this paper is on the residual analysis.

It is important to examine the existence of one or more points poorly fitted by the model (do not
follow the same pattern as the others) and may cause a significant impact on some characteristics of
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interest, such as the parameter estimate or the corresponding standard error (Singer et al., 2017). A
simple technique introduced by Cook (Cook, 1977) that can be used is the deletion, which measures
the impact on the fit of the model by considering all the subjects with the fit when deleting a
particular subject from the sample. Consider θ̂ and θ̂(i) the estimated maximum likelihood vectors
from the sample with all subjects and the sample without subject i, respectively. An indicator of the
influence of i-th subject can be calculated by θ̂ – θ̂(i). If the estimates differ substantially, the subject
can be considered influential.

A measure that also can be used to assess the influence of the i-th subject is the likelihood displace-
ment (Cook & Weisberg, 1982). This measure verifies the distance between the two likelihoods,
being given by

LDi = 2
[
l(θ̂) – l(θ̂(i))

]
,

where l(θ̂) and l(θ̂(i)) are, respectively, the likelihood logarithms of the parameters obtained from
the sample with all points and the sample without the i-th subject. When it is not possible to obtain
an analytical form for LDi, a quadratic approximation by Taylor series leads to the following result:

LDi = (θ̂ – θ̂(i))
′F(θ̂)(θ̂ – θ̂(i)),

where F(θ) = E
(

– ∂2L(θ)

∂θ∂θ
′

)
is the Fisher information matrix, which is estimated by substituting θ̂.

Generally, it is not possible to obtain a closed form for θ̂(i), and the one-step approximation is used
that takes the first iteration of the iterative process by the Fisher score method when it starts at θ̂
(Paula, 2013).

Another indication of an influential observation is through leverage point. The leverage value
measures the potential for a subject to have a large effect on the fitted regression line, being defined
as a measure of how far a particular case is (based on only predictor values) from the average of all
cases. Also, looking at residuals doesn’t help to detect leverage points since they don’t necessarily
fall off the regression surface (Simonoff, 2003).

Finally, there are several techniques that can help in the diagnostics of the model, which are
described in several papers such as Junior & Veiga (2020) that assessed the local influence and the
likelihood displacement measure for diagnostics in normal and logistic regression models. Details
about these diagnostic measures are covered in Cook & Weisberg (1982), McCullagh & Nelder
(1989), Turkman & Silva (2000), among others. It is highlighted that a point should only be excluded
as a last alternative after several attempts to accommodate it in the fit, such as through transformations
or including covariates (Silva, 2003).

5. Matherials and Methods

5.1 Material
As an application, it is considered the data from the experiment conducted by Marques (2018)

regarding the histopathological alterations found in the livers of Tambaqui fish (Colossoma macrop-
omum) at the Biofish-Aquicultura farm based in Porto Velho-RO from January 2015 to October
2016. In this experimental study, juvenile fish were anesthetized and marked using a microchip in
the ventral portion (Figure 1), applying Methylene Blue to the inserted site to prevent infection.
After recovering from anesthesia, the Tambaquis were managed in an excavated pond with approx-
imately 600m2 of water, where they received the same food three times a day. In the end, the fish
were fasted for 24 hours, collected with a trawl, and anesthetized when transported to water tanks
for slaughter.
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Figure 1. Microchip inserted in the juvenile of Tambaqui in a study carried out by Marques (2018) at the Biofish-Aquicultura
farm.

The pituitary gland was collected for gene expression analysis, placed in a stabilizing solution
(RNAlater), and stored at -80ºC until the moment of RNA extraction. With the DNA Analyzer
4300 equipment, two different types of genotypes, 122 and 130, were obtained. Small organ frag-
ments were collected and properly stored for the liver histopathology analysis at the Laboratory of
Ecology of Reproduction and Recruitment of Marine Organisms, Oceanographic Institut, USP/SP.
The histopathological alterations were photomicrographed, Figure 2, and ordered according to the
severity of the lesions, being classified as mild, moderate, and irreversible. Images of the lesions were
obtained using the AXIOSKOP-ZEIS photomicroscope.

Figure 2. Morphology of the liver tissue of the Tambaqui fish with the histopathological alterations in the experiment
carried out by Marques (2018) at the Biofish-Aquicultura farm. A- Ductal hypertrophy (black arrows); B- Hemosiderosis; C-
Cholestasis (black arrows); D- Focal necrosis (blue arrow) and Congestion of vessels and sinusoids (black arrows).

The author made available 21 data from fish with genotype 122 and 21 from fish with genotype
130, totaling a sample of size equal to 42, in which was verified the relationship between the severity
of lesions with the different gene expressions of Tambaqui. According to Marques (2018), the liver
needs to function properly for a healthy fish population.
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5.2 Methods
In this application, the response represents the histopathological alteration obtained in the liver

of the fish associated with a different genotype, and the degree of severity of the lesions (from less
to more severe) depends on this classification. Then, the response variable Yi, i = 1, 2, . . . , 42, has an
ordinal scale assuming values in the set {1, 2, 3}, i.e., Yi = j represents the response of the i-subject in
the category j, j = 1, 2, 3, where 1-mild, 2-moderate, 3-irreversible with 1 < 2 < 3. In this context,
the corresponding observed vector is yi = (yi1, yi2, yi3)′, where yij = 1 if the response referring to
the fish i belongs to the category j and yij = 0, otherwise. The genotype covariate is a factor, being
incorporated into the model through the dummy variable.

First, to test the proportionality, the likelihood ratio test described in section 2.2 will be used
considering the model with the main effect given by

logit
[
γij(xi)

]
= log

[
γij(xi)

1 – γij(xi)

]
= αj + βjxi, j = 1, 2 (6)

where αj is the intercept, βj is the parameter associated with the genotype effect on the j-th logit.
Here, the third category is used as a reference. Using the standard parameterization, xi = 0 for the
i-th fish with genotype 122 and xi = 1 for fish i with genotype 130.

If the proportionality condition is not violated, proportional odds are assumed. Otherwise, the
model (6) is used to proceed with selecting the linear predictor. Under the proportionality assump-
tion, the sequential proportional odds models are expressed by

Model 1 - Null:

logit
[
γij(xi)

]
= log

[
γij(xi)

1 – γij(xi)

]
= αj, j = 1, 2

Model 2 - Genotype effect:

logit
[
γij(xi)

]
= log

[
γij(xi)

1 – γij(xi)

]
= αj + βxi, j = 1, 2.

The likelihood ratio test (LRT) is used to select the structure of the linear predictor, verifying if
there is an effect of genotype in the classification of severity found in the Tambaqui liver, that is, if
H0 : β = 0 is true or false. The test statistic is given by

Λ = –2
[
lH0 (α̂) – lH1 (α̂, β̂),

]
where lH0 (α̂) is the logarithm of the null model likelihood function and lH1 (α̂, β̂) is the logarithm
of likelihood function of the model with genotype effect, with expressions given by

lH0 (α̂) =
42∑
i=1

3∑
j=1

yij log

(
exp(α̂j)

1 + exp(α̂j)
–

exp(α̂j–1)
1 + exp(α̂j–1)

)

and

lH1 (α̂, β̂) =
42∑
i=1

3∑
j=1

yij log

(
exp(α̂j + β̂xi)

1 + exp(α̂j + β̂xi)
–

exp(α̂j–1 + β̂xi)

1 + exp(α̂j–1 + β̂xi)

)
,

with α̂ = (α̂1, α̂2)′. The estimates of the parameters of models (1) and (2) are obtained by the
maximum likelihood procedure as described in the review chapter, section 2.2. The null model has
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only the intercept effect (2 parameters), and model 2 takes into account the intercept and genotype
effect (3 parameters) under the null hypothesis has Λ ∼ χ2

1.
Once the genotype effect is significant, confidence intervals (CIs) are constructed for the esti-

mated probabilities for each response category and comparisons between observed and estimated
proportions. In this way, simultaneous confidence intervals of 100(1 –α)% are given by (see May &
Johnson, 1997)

π̂ij(xi) ±
√
χ2

(α,l) × π̂ij(xi) ×
[
1 – π̂ij(xi)

]
, j = 1, 2, 3

where χ2
(α,l) is the point from a chi-square distribution with l = J – 1 = 2 degrees of freedom and

α = 0, 05 is the significance level. The estimated probabilities are expressed by

π̂i1(xi) =
exp(α̂1 + β̂xi)

1 + exp(α̂1 + β̂xi)
,

π̂i2(xi) =
exp(α̂2 + β̂xi)

1 + exp(α̂2 + β̂xi)
–

exp(α̂1 + β̂xi)
1 + exp(α̂1 + β̂xi)

,

and
π̂i3(xi) = 1 – π̂i1(xi) – π̂i2(xi).

Next step, for the fitted model validation, the surrogate residuals are used as described in section
3.4. Thus, with the data and the model, the conditional distribution of Zi ∈ (α̂j–1; α̂j) given Yi = j is
obtained by substituting the parameter estimates α̂j’s and β̂ where the latent variable is Zi = –β̂xi +εi
and εi ∼ Log(0, 1). A random sample si, i = 1, 2, . . . , 42, is obtained from this distribution, and the
i-th surrogate residual is given by

r̂i = si + β̂xi –
∫ +∞

–∞
udG(u).

Once obtained the residuals, it is possible to compare their empirical distribution function graph-
ically with the standard logistic distribution function. Also, the bootstrap algorithm described in
section 3.4 is used with 10 replications because of the sample size. The informal and formal tech-
niques to evaluate the residual performance are the following: a) histogram, b) half-normal plot, c)
the plot of residuals versus covariates, and c) the Kolmogorov-Smirnov test as described in section
4.

The analysis and estimation of model parameters were performed by the clm(.) function of the
ordinal package (Christensen, 2013) and the resids(.) function of the sure package (Greenwell
et al., 2018) to obtain the surrogate residuals. The ks.test(.) function of the dgof package (Arnold
& Emerson, 2011) was used to obtain the p-value of the Kolmogorov Smirnov test. Finally, the
hnp(.) function is used for the half-normal plot with a simulated envelope, implemented in the
hnp package (Moral et al., 2017). All are available in the R software (R Core Team, 2020).

6. Results and Discussion
Initially, an exploratory analysis was carried out to describe the fish data set. The frequencies

of mild, moderate, and irreversible lesions were obtained for each type of genotype (Figure 3), in
which one can observe the differences according to classifications. The liver alteration classified as
irreversible had a higher frequency in fish with genotype 122 than in fish with genotype 130. On
the other hand, fish with genotype 130 had higher frequencies of mild and moderate lesions than
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Figure 3. Frequencies of mild, moderate, and irreversible lesions in the liver of Tambaquis by type of genotype (122 and
130) in the study carried out by Marques (2018) at the Biofish-Aquicultura farm.

fish with genotype 122. Then the cumulative logit and proportional odds models were fitted to test
proportionality. It was verified evidence in favor of the proportional odds model by the LRT (p-
value = 0.8667). Afterward, the sequential proportional odds models were fitted and compared using
the LRT as well. The model that considers the genotype effect was selected (p-value= 0.02714).
Based on this result, it is concluded that the type of genotype contributes to explaining the lesion
classification in the liver of the Tambaqui fish in the study carried out by Marques (2018).

The estimated parameters and standard errors for the model with genotype effect are presented
in Table 1.

Table 1. Estimated regression parameters of the proportional odds model with the effect of genotype selected for analysis
Tambaqui in a study carried out by Marques (2018)

Parameter Estimate Standard error

α1 (intercept 1) -3.1289 0.6989
α2 (intercept 2) -0.9079 0.4811
β (Genotype 133) 1.3779 0.6437

The expressions in terms of the cumulative logits for the proportional odds model with genotype
effect are expressed by

log
[

γ1(x)
1 – γ1(x)

]
= –3.1289 + 1.3779 x and log

[
γ2(x)

1 – γ2(x)

]
= –0.9079 + 1.3779 x.

The interpretation of the estimated parameter is generally performed through the odds ratios.
The estimate of the genotype effect parameter is 1.3779 (Table 1), which indicates a tendency to-
wards classification in the less severe categories in fish with genotype 130, as observed in the ex-
ploratory analysis. Therefore, the odds of the lesion being classified as mild (in relation to moderate
or irreversible) in fish with genotype 130 was approximately 3.97 times the odds of being clas-
sified in fish with genotype 122. The same conclusions can be obtained considering the odds of
the lesion being classified as mild or moderate in relation to irreversible, which occurs due to the
proportionality assumption assumed by the model.
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The predicted probabilities for each response category in the different types of genotype, with
their respective confidence intervals, are presented in Table 2. Fish with genotype 122 showed
irreversible liver alteration with a probability of 71.26%, while for fish with genotype 130, this
occurs with a probability of 38.46%. Therefore, fish with genotype 122 tend to have more severe
liver lesions than fish with genotype 130. As shown in Table 2, the confidence interval has greater
amplitude due to the relatively small sample size.

Table 2. Estimated probabilities and 95% confidence intervals (in parentheses) in each of the response categories for fish
with genotypes 122 and 130 were obtained by fitting the proportional odds model with the genotype effect

Genotype Category
mild moderate irreversible

122 4.19% 24.55% 71.26%
(1.10%; 14.69%) (11.87%; 44.02%) (49.13%; 86.42%)

130 14.79% 46.75% 38.46%
(5.41%; 34.49%) (29.22%; 65.12%) (20.94%; 59.59%)

The observed and estimated proportions by genotype can be seen in Figure 4. Visually, the
values are close to each other, showing that the proportional odds model includes the genotype
effect is reasonable for describing the proportions of lesions observed in the study conducted by
Marques (2018).
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Figure 4. Observed proportions for the mild, moderate, and irreversible lesions and proportions estimated by proportional
odds model with genotype effect in the study of Marques (2018).

The validation of the model assumptions was verified by the surrogate residuals analysis using
bootstrap replications due to the sample size. Observing the histogram, Figure 5, the residual distri-
bution presented a shape similar to the standard logistic distribution (red line), which is symmetrical,
similar to the normal distribution but with heavier tails. The values for mean and variance were ap-
proximately 0.002 and 3.176, respectively. Furthermore, the p-value of the Kolmogorov-Smirnov
test was approximately 0.729, which indicates in favor of the hypothesis that the surrogate residuals
follow a standard logistic distribution.
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Figure 5. Histogram of surrogate residuals related to the proportional odds fitted model (genotype effect) to the fish data
in the study of Marques (2018)

The half-normal plot with a simulated envelope for the surrogate residuals was presented in
Figure 6. There is evidence that the observed data are a plausible realization of the fitted model
since no systematic deviation pattern was observed with all the points inside the envelope. Thus, the
model with the genotype effect can be used to analyze the data.
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Figure 6. Half-normal plot with a simulated envelope (the default is 0.95 confidence level) for the surrogate residuals to
assess the fit of the model with genotype effect in the study of Marques (2018).

As in this model, a covariate is a factor, using the plot of residuals versus covariate is inappropriate.
The boxplot of residuals was obtained for each genotype (Figure 7), which revealed medians of
residuals close to zero. In addition, the residual distributions present symmetrical tendency, similar
variability, and the presence of outliers per genotype.
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Figure 7. Boxplot of surrogate residuals per genotype to assess the proportional odds fitted model to the fish data in the
study of Marques (2018).

The large residuals in the Figure 7 refer to subject #32 for genotype 122 and to subjects #8,
#13, and #15 for genotype 130. The model was fitted without these subjects to assess the impact
on the estimates of model parameters. The parameter estimates and the related standard errors, in
parentheses, are shown in Table 3.

Table 3. Estimated Parameters of proportional odds model with genotype effect by excluding the subject #32 for genotype
122 and the subjects #8, #13 and #15 for genotype 130 the fish data

subject Parameters
α1 α2 β

Complete sample -3,1289 -0,9079 1,3779
(0, 6989) (0, 4811) (0, 6437)

Excluding #32 -3,0651 -0,8391 1.3105
(0, 7003) (0, 4857) (0, 6467)

Excluding #8 -3,0358 -0,9137 1,3142
(0, 6928) (0, 4806) (0, 6485)

Excluding #13 -3,3315 -0,8971 1,2675
(0, 7532) (0, 4822) (0, 6501)

Excluding #15 -3,3315 -0,8971 1,2675
(0, 7532) (0, 4822) (0, 6501)

The variations between the estimated parameters (and the standard errors) were not dispropor-
tionate with the exclusion of subjects by genotype from the sample (Table 3), indicating that these
points do not have a high influence on the fit. Thus, the entire inference based on the complete
sample remains valid, and the choice of another model could lead to inadequate conclusions. Fi-
nally, the results were satisfactory, contributing to the validation of the model that provided a good
fit for the data.
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7. Conclusions
The paper describes an introduction to residuals analysis with ordinal data through a method

that uses a continuous variable that replaces the original response, allowing to obtain unique residu-
als by subjects. The surrogate residuals have similar properties to ordinary residuals for a continuous
response and they can be used in virtually all available diagnostic tools, as illustrated in the practi-
cal application. The residuals were informative, not detecting violations of the assumptions of the
model selected to describe the fish data. As the residuals are obtained by conditional sampling, it is
recommended to use the Bootstrap algorithm in small samples to control the sampling error that
can lead to a variation in the patterns of residuals. The limitation of this approach is that the residual
is defined only for models that present a valid proportional odds assumption, not covering the entire
class of models for ordinal data. Furthermore, these univariate residuals are not defined for nomi-
nal data or the different data structure from the subject one. These issues present challenges in the
diagnostics for different models with distinct data structures. Future studies can be carried out to
improve the analysis of residuals in polytomous data, stimulating the methodological development
in this important area whose tools are still limited.
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Appendix
################################################################
# R code #
################################################################
#Fish data
#ordinal variable
rm(list=ls(all=TRUE))
# Installing the packages
library(ordinal);library(hnp);library(ggplot2); library(sure);
library(gridExtra);library(dgof)
#########################################################################
mydata<-read.csv("fish.csv", head=TRUE, sep=";", dec=",") #reading data
mydata$genotype<-as.factor(mydata$genotype) #covariate
mydata$resp<-as.ordered(as.factor(mydata$resp)) #ordinal response
attach(mydata)
summary(mydata)
head(mydata)
##########################################################################
#Exploratory analysis
levels(mydata$genotype)<-c(" Genotype 122","Genotype 130")
levels(mydata$resp)<-c("Mild", " Moderate", "Irreversible")
ggplot(mydata, aes(x = resp,fill = resp)) +
geom_bar(width=0.3,show.legend = FALSE) + facet_grid(.~genotype)+
ylab(’Frequency’)+xlab("Category")
###########################################################################
#Models
mod <- clm(resp~genotype,data=mydata) # MOP
#Likehood ratio test
nominal_test(mod)
#or
mod1 <- clm(resp~genotype,nominal=~genotype,data=mydata) # MLC
anova(mod,mod1)
###########################################################################
#Likehood ratio test to select linear predictor of sequential proportional
odds models
mod0 <- clm(resp~1,data=mydata)
anova(mod0,mod)
#Deviances
tab <- with(mydata, table(genotype, resp))
pi.hat <- tab/rowSums(tab)
(logvero_modc <- sum(tab * ifelse(pi.hat > 0, log(pi.hat), 0)))
logvero_mod0 <- mod0$logLik
(Deviance0 <- -2 * (logvero_mod0 - logvero_modc))
logvero_mod <- mod$logLik
(Deviance1 <- -2 * (logvero_mod - logvero_modc))
###########################################################################
#Wald CI 95% for:
#parameters
param<-coefficients(mod) #coefficients of parameters
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confint(mod,type = "Wald")
# and the estimated probabilities
drop<-expand.grid(genotype=levels(mydata$genotype))
CIprob<-predict(mod,newdat=drop,se.fit=TRUE,interval = T)
#odds ratio
exp(-param[3])
###########################################################################
#observed versus estimated probalities plot
tab <- with(mydata, table(genotype, resp)) #frequency
prob<-round(prop.table(tab,margin = 1),2);prob #observed probabilities
p1<-as.vector(t(prob))
probs<-as.vector(t(predict(mod, newdat=drop)$fit)) #estimated probabilities
probfinal<-data.frame(genotype=rep((1:2),each=3,times=2),

response=rep((1:3),times=4))
datafinal<-cbind(probfinal,proba=c(probs,p1),tipo=rep(c("Estimated",
"Observed"),each=6))
datafinal$genotype<-as.factor(datafinal$genotype)
datafinal$response<-as.factor(datafinal$response)
levels(datafinal$response)<-c("Mild","Moderate","Irreversible")
levels(datafinal$genotype)<-c("Genotype 122", "Genotype 130")
ggplot(datafinal, aes(x=response, y=proba, colour=tipo)) +

geom_point(size=3) + facet_grid(.~genotype) +
xlim("Mild","Moderate","Irreversible")+
xlab(’\n Response Category \n’)+ ylab(’Proportion\n’)+
scale_colour_manual(name="",breaks=c(’Estimated’,’Observed’),

values=c(’blue’,’red’))+ theme(legend.position="top")
###########################################################################
#hnp using surrogate residuals
res_sure<-resids(mod,nsim = 10) #to obtain the residuals
#half-normal plot with simulated envelope
hnp(res_sure,print=T, ylab="Surrogate Residuals",scale = T)
#QQ plot
qq_sure <- autoplot.clm(mod, nsim = 10, what = "qq");qq_sure
#The function to obtain the bootstrap sample
nsim<-10 # number of replications
n.obs<-mod$nobs #sample size
boot.res <- boot.index <- matrix(nrow = n.obs, ncol = nsim)
for(i in seq_len(nsim)) {

boot.index[, i] <- sample(n.obs, replace = TRUE)
mr<- mod$y[boot.index[, i]]
boot.res[, i] <- resids(mod, y = y[boot.index[, i]], mean.response = mr)

}
x_orig<-as.vector(boot.index)
xboots<-vector()
for(i in 1:length(x_orig)) {
if(x_orig[i]<=21){

xboots[i]<-"130"
}else{

xboots[i]<-"122"
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}
}
yboots<-as.vector(boot.res)
mydataboots<-data.frame(xboots,yboots)
attach(mydataboots)
#p-value of Kolmogorov-Smirnov Test for bootstrap residuals
ks.test(yboots, "plogis")$p.value
#mean and standad deviation of bootstrap residuals
mean(yboots); sd(yboots)^2
#Boxplot dos resíduos com 10 rep bootstrap
(p10 <- ggplot(mydataboots, aes(x =xboots,y = yboots))+labs(x = "Genotype",
y = "Surrogate residuals")+ geom_boxplot(aes(fill=xboots))+
guides(fill=FALSE))
#to obtain the outliers per genotype
out <- ggplot_build(p10)[["data"]][[1]][["outliers"]]
g122.out<-as.vector(out[[1]])
g130.out<-as.vector(out[[2]])
ind_boots<-match(c(g122.out,g130.out), yboots)
ind_orig<-x_orig[ind_boots]
out_f<-rep(NA,length(x_orig))
for(i in 1:length(x_orig)){

for (j in 1:length(ind_orig)) {
if(i==ind_boots[j]){ out_f[i]<-ind_orig[j]}}}

#Boxplot with the subjects that corresponds the outliers per genotype
(p10+ geom_text(aes(label=out_f),na.rm=TRUE,nudge_y=0.05,hjust=-0.5))

#Histogram with 10 replicates bootstrap
ggplot(mydataboots, aes(x=yboots)) + geom_histogram(binwidth=1,
fill="#69b3a2", color="blue")+ylab("Frequenqcy")
+xlab("Surrogate Residuals") +stat_function(fun = function(x)
dlogis(x, 0,1)*length(yboots),color = "red", size = 1)
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