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Abstract
The purpose of this paper was to develop two procedures of multiple comparisons based on methods of
clustering means, that is, mean grouping tests based on the midrange (MGM) and range (MGR). The
first is based on the studentized midrange distribution, and the second is based on the studentized range
distribution. The tests presented similar performance (evaluation of type I error and power) to the perfor-
mance of the considered tests used for comparison. Like the tests presented that were based on methods of
grouping averages of literature, the MGM and MGR tests did not control the experimentwise error rate
for almost all evaluated scenarios. However, under the complete H1 hypothesis, these tests showed high
power, with emphasis on the MGM test. Thus, what we propose is yet another test alternative without
ambiguity in its results and not a substitution for the traditional tests already present in the literature.

Keywords: Midrange; Range; Mean grouping; Monte Carlo simulation; R software.

1. Introduction
In experimental statistics, some of the existing problems are the simultaneous comparison of hypoth-
esis tests, so that the global type I error increases as the number of comparisons between treatments
increases, and this is what we call the multiplicity effect. Statistical procedures designed to adequately
control for multiplicity effects are called multiple comparison procedures (MCPs).

One of the biggest problems in the study of multiple comparison procedures is the lack of transi-
tivity (results ambiguity) when two levels of the factor had the same difference between themselves,
but they do not differ from a third party, that difficult interpretation the results. As an alternative,
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different methodologies were proposed to contour this situation, for example, methods based on
grouping analysis. The grouping analysis uses as a separation criterion of objects, the characteristics
that these objects own. The proposal is to unite groups of objects with similar characteristics. An
efficient alternative to contouring the problem of MCPs ambiguity is Scott-Knott’s test (Scott &
Knott, 1974).

Despite the Scott-Knott’s test being able to solve the MCPs results ambiguity problem, its per-
formance presents some problems, like small deviations from rate of type I error under complete H0
and high type I error rates under partial H0. In addition, an interesting situation is that the criterion
of partition of the groups of means of this test, in certain situations, forms groups of means with a
difference between consecutive means intra-group greater than the difference between consecutive
means that delimit these groups.

Many other alternative forms of grouping tests, similar to Scott-Knott’s test, were presented in
the specialized literature (Bhering et al., 2008; Calinski & Corsten, 1985; Conrado et al., 2017; Ramos
& Ferreira, 2009; Ramos & Vieira, 2014; Shimokawa & Goto, 2011). None of these methods was
able to solve all problems presented beforehand and, in some cases, they displayed a performance
even worse than the reference Scott-Knott’s test. A considerable quantity of these methods is based
on the externally studentized range or in the F statistics. The search for alternative statistics to
make this grouping was the mark of these works since Scott-Knott’s test used the likelihood ratio.
A very interesting statistic is the midrange since according to Rider (1957), it is more efficient
(it’s an estimator with less variance to the population average) than the arithmetic average in some
populations, such as the cosine population, the parabolic population, the rectangular population and
the inverted parabolic population. Based on this information, it was noticed that these statistics could
be an alternative to the development of multiple comparisons methods.

In the literature, some works about the midrange were published by Gumbel (1958), David &
Nagaraja (2003), among others, obtained the midrange distribution and density functions to the case
of a normally distributed population. Batista & Ferreira (2017) developed the density, distribution
and quantile functions for the case of the externally studentized midrange, both theoretical and
numerical methods. As a consequence of these works, was created an R package, denominated
SMR (Batista & Ferreira, 2014a), with the implementation of the algorithms published in Batista
& Ferreira (2014b), that calculates the cumulative distribution function, the density function and
returns the quantile values for the distribution of this statistic. Batista & Ferreira (2020) published
two tests based on this same distribution, being an alternative to Tukey’s test.

Considering Y(1), Y(2), . . ., Y(n), the statistics with an order of one random sample Y1, Y2, . . .,
Yn with size n with normal distribution with average 0 and variance σ2, namely, Yi ∼ N(µ,σ2),
defines the externally studentized midrange as:

Q̄ =
R̄
S

, (1)

being R̄ = (Y(n) + Y(1))/2 the midrange and S an estimator to the population standard deviation σ,
associated to ν degrees of freedom and obtained independently from R̄. The density function and
the cumulative distribution function of (1), consequence of the results of Batista & Ferreira (2017),
are given by

fQ̄(q̄;µ,σ2, n,ν) =
∫ ∞

0

∫ xq̄

–∞
2n(n – 1)xϕ(y – µ/σ)ϕ(2xq̄ – y – µ/σ)×

× [Φ(2xq̄ – y – µ/σ) – Φ(y – µ/σ)]n–2fX (x;ν)dydx, (2)
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and

FQ̄(q̄;µ,σ2, n,ν) =
∫ ∞

0

∫ xq̄

–∞
nϕ(y – µ/σ)[Φ(2xq̄ – y – µ/σ)–

– Φ(y – µ/σ)]n–1fX (x;ν)dydx, (3)

respectively, wherein the probability density function fX (x;ν) is given by

fX (x;ν) =
νν/2

Γ (ν/2)2ν/2–1 xν–1e–νx2/2, x ≥ 0. (4)

However, Q̄ is not an ancillary statistic to µ, avoiding the test development based on this statistic.
This way, Batista & Ferreira (2014a) showed that to Yi ∼ N(0,σ2), the probability density function
and the cumulative distribution function are

fQ̄(q̄; n,ν) =
∫ ∞

0

∫ xq̄

–∞
2n(n – 1)xϕ(y)ϕ(2xq̄ – y) ×

×[Φ(2xq̄ – y) – Φ(y)]n–2fX (x;ν)dydx. (5)

and

FQ̄(q̄; n,ν) =
∫ ∞

0

∫ xq̄

–∞
nϕ(y)[Φ(2xq̄ – y) – Φ(y)]n–1×

fX (x;ν)dydx, (6)

respectively.
However, to Yi ∼ N(µ,σ2), the hope of Q̄ is given by

E[Q̄] =
µ

σ

(
ν
2
)1/2

Γ
(
ν–1

2

)
Γ (ν/2)

,

wherein µ = 0, one has that E[Q̄] = 0. This is fundamental information to the development of the
proposed tests in this work.

Another widely used statistic in the multiple comparison tests is the externally studentized range.
Its distribution was widely studied by (David et al., 1954; Hartley, 1942; Newman, 1939; Pearson
& Haines, 1935; Pearson & Hartley, 1943, 1942; Pearson, 1926, 1932). In the 1950 decade, the
main MCPs based on this statistic were proposed, such as the SNK test started by Student (1927)
and Newman (1939) and adapted by Keuls (1952), Tukey test (Tukey, 1953), and the Duncan test
(Duncan, 1955).

The externally studentized range is defined by the ratio between W = Y(n) – Y(1) and S, in
which S is the population standard deviation estimator σ, associated to ν degrees of freedom, being
independently distributed from W , namely,

Q =
W
S

.

The distribution function and density function of the externally studentized range are given,
respectively, by:

FQ(q; n,ν) =
∞∫

0

∞∫
–∞

nϕ(y)[Φ(xq + y) – Φ(y)]n–1fX (x;ν)dydx,
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and

fQ(q; n,ν) =
∞∫

0

∞∫
–∞

n(n – 1)xϕ(y)ϕ(xq + y)[Φ(xq + y) – Φ(y)]n–2×

× fX (x;ν)dydx,

wherein ϕ(y) and Φ(y) are the density function and the distribution function of a standard normal
random variable, with y ∈ R and fX (x;ν) is the density function of X, that was expressed in (4).
These results are given in the function of the standard normal distribution. Namely, independently
from the parameters of the initial normal distribution, the density function and the Q distribution
function will be always expressed in terms of the standard normal distribution.

Considering that both the externally range distribution and the externally studentized midrange
distribution, this work has as an objective, develop two average grouping methods that don’t present
ambiguity and that have control upon type I error and high power. The performance of the tests is
rated by Monte Carlo simulations, considering the type I error rate experimentwise and power.

2. Materials and Methods
Considering n treatments and r repetitions, for the tests proposition, the following random sample
was experimentally obtained: Y11, Y12, . . ., Y1r , Y21, . . ., Y2r , . . ., Yi1, Yi2, . . ., Yij, . . ., Yir , . . .,
Yn1, Yn2, . . ., Ynr , wherein Yij is the random observation referenced to the ith treatment in its jth
repetition, i = 1, 2, . . . , n and j = 1, 2, . . . , r. The ith treatment average is:

Ȳi. =

∑r
j=1 Yij

r
=

Yi.
r

.

This sample is subjected to variance analysis, adopting the following model:

Yij = µ + τi + ϵij = µi + ϵij, (7)

in which ϵij ∼ N(0,σ2) and µi = µ+τi are the ith treatment average. Thus, the mean squared error
(MSE) is estimated by:

MSE =

n∑
i=1

r∑
j=1

(Yij – Ȳi.)2

n(r – 1)
.

It is well known that Ȳi. and the MSE are independently distributed and that V̂(Ȳi.) = MSE/r,
see Graybill (1961) and Searle (1987).

Under the null hypothesis H0 : µ1 = µ2 = . . . = µn = µ, the n treatments have a common average
µ. In this particular case, the statistics of order Ȳ(1)., Ȳ(2)., . . ., Ȳ(n). are centered on µ. Therefore,
the externally studentized midrange, defined by

Q̄ =

√
r
[
(Ȳ(1). + Ȳ(n).)/2

]
√

MSE
, (8)

has a distribution function dependent on µ (under H0), as presented in the expressions (2) and (3).
However, µ is unknown and hardly equal to zero in real situations. Thus, to utilize the distri-

bution of Q̄ with unknown µ and µ ̸= 0 is impossible in the test proposition.
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This way, we chose to utilize the midrange distribution in the especifica case where µ = 0,
expressions (5) and (6) and adapt the test’s statistic to adjust to the sample mean. It is observed that
the distribution is centered on µ, which is unknown. Therefore, to use the distribution centred on
0, there was a correction in the statistic. Since R̄ = (Ȳ(1). + Ȳ(n).)/2 has a distribution centred on µ,
the corrected statistic was R̄n = R̄ – Ȳ∗

. , wherein Ȳ∗
. is an estimator for µ.

Initially, the overall average was thought of as an estimator of Ȳ∗
. , i.e. Ȳ.. =

∑n
i=1 Ȳi./n. However,

when the simulated data were under H1, this mean estimated the overall mean of the parameters
µ =

∑n
i=1 µi/n, where µi = E(Ȳi.). Thus, under H1, it was observed utilizing of the simulation that

the quantity (µ1 + µn)/2 was close to µ and therefore, E(R̄n) = (µ1 + µn)/2 – µ ≈ 0. Thus, the
performance of the power tests was very low.

Under H0, it is clear that the expected value E(R̄n) is null, which at first would support the
direct use of the externally studentized midrange in the test. However, what was observed, in
a preliminary evaluation via simulation, was that the type I errors experimentwise were too high.
Initially, it was speculated that this resulted from the fact of the statistic is a function of Ȳ.., which also
has a sample error associated with it. Thus, an initial (Minimum Significant Difference) MSD that
would represent the standard error of Ȳ.. was built. However, the test started to control adequately
the type I error, but presented low power.

It happened because E(R̄n), although different from zero, under H1, presented values in magni-
tude not so different from zero. Thus, it was sought an estimator of µ that would maximize E(R̄n)
under H1 and where E(R̄n) = 0 under H0. In this case, it was used Ȳ∗

. that would correspond to
the average of one of the two potential groups to be obtained in the test. This partition would be
between two ordered means of maximum range.

To obtain an estimator with a smaller standard error, it was used the average of the group with
the higher number of involved averages between the two groups considered. This estimator was
determined based on empiric criteria and validated through Monte Carlo simulation. Therefore,
considering the partitions Ȳ(1)., Ȳ(2)., . . ., Ȳ(k). and Ȳ(k+1)., Ȳ(k+2)., . . ., Ȳ(n)., whose point k corre-
sponds to the value j, where

max
j

(Ȳ(j+1). – Ȳ(j).)

happens, for j = 1, 2, . . . , n – 1. if there are ties with two or more values different from k, say
k1, k2, . . ., then it is formed a partition wherein k = max{min(k1, m – k1), min(k2, m – k2), · · · }.

This way, taking

Ȳ∗
1 =

k∑
j=1

Ȳ(j).

k

and

Ȳ∗
2 =

n∑
j=k+1

Ȳ(j).

n – k
,

the value of Ȳ∗
. will correspond to Ȳ∗

1 if k ≥ n – k or equal to Ȳ∗
2 , otherwise.

Thus, the final statistic of the test is:

R̄n =
Ȳ(1). + Ȳ(n).

2
– Ȳ∗

. (9)
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The MSD to reject or not the hypothesis, initially was considered

∆n = q̄(α/2;n,ν)

√
MSE

r
+

1√
n

√
MSE

r
,

where q̄(α/2;n,ν) is the 100α/2% upper tail quantile of the distribution of Q̄, expression 6, with n
treatments and ν degrees of freedom.

On the results of preliminary Monte Carlo simulations, it was observed that the type I error
per experiment was way smaller than the nominal levels of significance and that the power was low.
Thus, the contribution of Ȳ∗

. for the MSD, (1/
√

n)×
√

MSE/r should be reduced by a factor between
0 and 1. By trial and error in a process of Monte Carlo simulation, was found a value that converged
to

√
2/2. Thus, the final MSD considered was

∆n = q̄(α/2;n,ν)

√
MSE

r
+

1√
2n

√
MSE

r
,

where q̄(α/2;n,ν) is the 100α/2% upper tail quantile of the distribution of Q̄, expression 6, with n
treatments and ν degrees of freedom.

2.1 Mean grouping test based on the midrange (MGM)
The MCP was proposed using a criteria of forming a partition of m oredered means in the position
k, in which

max
j

{Ȳ(j+1). – Ȳ(j).} = Ȳ(k+1). – Ȳk.

happens for j = 1, 2, . . . , m – 1, where m represents the number of means in a considered group.
Initially m = n. If there are ties with two of more values different from k, say k1, k2, . . ., then it is
created a partition where k = max{min(k1, m – k1),min(k2, m – k2), · · · }. Thus, defined

Ȳ∗
1 =

k∑
j=1

Ȳ(j).

k

and

Ȳ∗
2 =

m∑
j=k+1

Ȳ(j).

m – k
.

Therefore, Ȳ∗
m = Ȳ∗

1 if k ≥ m – k or Ȳ∗
m = Ȳ∗

2 , otherwise. The steps for this test’s application are:

1. Do m = n and take the ordered means of the treatments by: Ȳ(1)., Ȳ(2)., . . ., Ȳ(m).;
2. Determine k and Ȳ∗

m as discussed previously;
3. Determine the statistic’s value by:

R̄m =
Ȳ(1). + Ȳ(m).

2
– Ȳ∗

m; (10)
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4. The MSD is

∆m = q̄(α/2;m,ν)

√
QME

r
+

1√
2m

√
QME

r︸ ︷︷ ︸
It represents the variation of Ȳ∗

m

, (11)

where q̄(α/2;m,ν) is the 100α/2% upper tail quantile of the distribution of Q̄, expression 6, with
m treatments and ν degrees of freedom;

5. If |R̄m| ≤ ∆m is the stopping criterion, therefore the m means are considered not different and
then the group is marked as not partitionable. Otherwise, consider the group’s means Ȳ(1)., Ȳ(2).,
. . ., Ȳ(k). as different from the group’s means Ȳ(k+1)., Ȳ(k+2)., . . ., Ȳ(m). and go to the 6th step;

6. For each group obtained and marked as partitionable, consider m as the number of means of the
related group. Repeat the steps from 2 to 5, with one reservation, in the 4th step, the following
must be used as the minimum significant difference:

∆m = q̄(α/2;m,ν)

√
MSE

r
, (12)

where q̄(α/2;m,ν) is the 100α/2% upper tail quantile of the distribution of Q̄, expression 6, with
m treatments and ν degrees of freedom. The reason for changing the DMS in expressions (11)
and (12) is to increase the power controlling the type I error rate at nominal significance level.
This was verified through simulation. The step (repetition of the steps 2 to 5) is done for all the
groups until no other group can be partitioned in two new ones or until all the groups contain
a single mean.

2.2 Mean grouping test based on the studentized range (MGR)
A similar version of Scott-Knott’s test (Scott & Knott, 1974), based on the studentized range was also
proposed. The essence of the test is the same as the proposed MGM test (Section 2.1). To partition
the groups, it was used a potential partition point the position of the maximum range between
ordered means. Thus, for Ȳ(1)., Ȳ(2)., . . ., Ȳ(m)., the partition must be considered in the position k
where is verified:

max
j

{Ȳ(j+1). – Ȳ(j).} = Ȳ(k+1). – Ȳk.,

for j = 1, 2, . . ., m–1. Must be considered for the application of the test, the superior quantile 100α%,
q(α;m,ν), of the externally studentized range.

The steps for the application of the test are:

1. Do m = n and consider m ordered means: Ȳ(1)., Ȳ(2)., . . ., Ȳ(m).;
2. Determine k according to what was previously discussed;
3. Calculate the statistic of the test by:

qm = Ȳ(m). – Ȳ(1).;

4. The MSD is

∆m = q(α;m,ν)

√
MSE

r
;
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5. If qm ≤ ∆m, then the m means are considered not different, mark the group as not partitionable
and go to the 6th step. Otherwise, consider the group means Ȳ(1)., Ȳ(2)., . . ., Ȳ(k). as different
from the group’s means Ȳ(k+1)., . . ., Ȳ(m). and go to the 6th step.

6. For each group obtained and marked as partitionable, consider m the number of means for the
related group. Repeat steps 2 to 5. This procedure is done for all groups until no other group
can be partitioned into two new ones or until every group contain a single mean.

2.3 Performance evaluation of the proposed tests
Two strategies were considered in this work. The first was to evaluate the experimentwise error
rate (EER) of the proposed multiple comparison tests. The second was to evaluate the power of the
tests. In both cases, Monte Carlo simulation was used in the R software (R CORE TEAM, 2022).
In each simulation the multiple comparison tests were applied at a pre-established nominal level of
significance α, verifying whether or not the null hypothesis was rejected. This process, in each
case, was repeated N∗ = 5000 times and the proportion of experiments with at least one incorrect
decision, in the first case, refers to the empirical EER and in the second case, the proportion of
correct decisions (rejections) refers to the empirical power.

To evaluate the empirical EER simulated via Monte Carlo, it was used the exact binomial test
with a coefficient of 99% of probability to test the hypothesis H0 : α = 5% against H1 : α ̸= 5%
and H0 : α = 1% against H1 : α ̸= 1%. If the null hypothesis is rejected and the empirical EER is
considered significant (p-value < 0, 01) inferior to the nominal level, the test will be considered con-
servative. If the empirical EER is considered significantly (p-value < 0, 01) superior to the nominal
level, the test will be considered liberal. If the observed value of the EER is not significant (p-value
> 0, 01), the test will be considered exact (Oliveira & Ferreira, 2010).

Considering y as the number of rejected null hypotesis in N∗ = 5000 Monte Carlo simulations,
for a nominal level of significance α, the test statistic using the relation between the distribution F
and the binomial distribution (Leemis & Trivedi, 1996), with success rate of p = α, is given by

F =
(

y + 1
N∗ – y

)(
1 – α

α

)
,

under H0. This statistic has an F distribution with ν1 = 2(N∗ – y) and ν2 = 2(y + 1) degrees of
freedom. If F < F0,005 or F > F0,995, the null hypothesis must be rejected to the significant level
1% of probability, wherein F0,005 and F0,995 are the quantiles of the F distribution with ν1 and ν2
degrees of freedom (Oliveira & Ferreira, 2010).

In both steps data were simulated according to the statistic model described in (7), where µ is
the general constant fixed at 100 for all the cases, without loss of generality, τi is the effect of the
ith treatment and ϵij is the effect of the random error with normal distribution and independently
distributed with 0 mean and common variance of σ2, also fixed at 100, without loss of generality,
being i = 1, 2, . . ., n and j = 1, 2, . . ., r, wherein r is the number of repetitions.

In the first step for the evaluation of the EER, the effects of the treatment τi were considered
equal to 0 for all i, i = 1, 2, . . ., n. Therefore, the data were generated under the complete null
hypothesis, namely, with all the treatments having the same parametric means. The probability of
the EER (α̂) was estimated by the proportion of experiments with at least one incorrectly detected
difference according to the total of N∗ simulated experiments, namely,

α̂ =

N∗∑
k=1

I(Ek = 1)

N∗ ,
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wherein Ek is a binary variable that assumes the value 1 if at least one type I error occurred in the
kth experiment and 0, otherwise, for k = 1, 2, . . ., N∗ and I(Ek = 1) is the indicator function that
returns 1 if the equality is verified and 0, otherwise.

In the second step of the power evaluation, the effects of the treatments were simulated with
two options, to generate a simulation of complete H1 (alternative hypothesis) and of partial H0 (null
hypothesis). Thus, in the first case, the effect of the treatment 1 was considered equal to 0, namely,
τ1 = 0, and the others are fixed by

τi = τi–1 + δ
σ√

r
,

for δ, δ = 1, 2, 4, 8, 16 and 32, representing the number of standard errors of the difference between
means to specify the effect of the consecutive treatments, considering i = 2, 3, . . ., n. Thus, the
power was computed by the proportion of rejections among the means involving multiples of δ,
about the total number of comparisons involving this difference. Therefore, between consecutive
treatments, for example, there are n – 1 comparisons per experiment and N∗(n – 1) comparisons
in total, which corresponds to the power of detecting δ standard errors of the difference between
means. In the same way, for the neighbours with step 2 (first and third means, second and fourth up
to the antepenultimate and last ordered means) there are n–2 comparisons per experiment involving
2δ standard errors of the difference of means to be detected. This procedure is done for all the cases
until the first and last means are compared, i.e., (n – 1)δ standard errors to be detected in only 1
comparison per experiment and a total of N∗ comparisons to all simulated experiments.

The second option for the study of the power involving a simulation under partial H0 involved
the simulation of two mean groups, with k1 = ⌊n/2⌋ and k2 = n – k1 means in each, where ⌊x⌋ refer
to the biggest integer lesser or equal to x. The means of the first group were all the same, for which
the effects were τi = 0, i = 1, 2, 3, . . ., k1, without loss of generality. The second group, with k2
means, had its effects also equal to

τi = τ1 + δ
σ√

r
, i = k1 + 1, k1 + 2, . . . , n,

where different values of δ were considered as δ = 1, 2, 4, 8, 16. In this case, the proportion of
rejections involving comparisons of different groups in the total of N∗k1k2 comparisons involving
means of two groups in the N∗ simulated experiments provided an estimate of the power. The
intragroup comparisons allowed us to also evaluate the ratios of the EER under partial H0. The
proportion of experiments with at least one rejection of the null hypothesis of equality between the
two intragroup means was an estimate of this ratio of test error. All the tests were applied to each one
of the simulated scenarios, the EER (intragroup comparisons) and power (intergroup comparisons)
were computed and the results were compared.

Considered some configurations in both steps with different values of n and r. Thus, were con-
sidered the cases with n = 5, 10, 20, 40 and 100, and r = 4, 10 and 20. Considered also the nominal
significance level of 1% and 5%. The coefficient of variation of the experiment adopted was 10%
because, in the simulated results, it was noticed that the evaluated MCPs were not influenced by
the coefficient of variation, considering a normal population, for the evaluation of the performance
of type I error per experiment and power, since, in the simulation, when the means differed, it was
always in terms of standard errors. Besides, preliminary analyses were made with the proposed tests
and this same behaviour was verified. Therefore, the simulations were fixed in a single variation
coefficient.

3. Results and Discussion
The performance evaluation of the proposed tests will be compared with the results of existing
tests in the literature, emphasizing the Tukey, SNK and Scott-Knott tests, the first two being a
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classical reference in the literature and the last one being the reference for proposing the tests. To
understand more about these tests, an updated reference can be found in Cui et al. (2021) and an
updated recommendation for multiple comparisons can be found in Sauder & DeMars (2019). Even
so, the Tukey and SNK tests were also simulated, to confirm the results that already exist on these in
the literature. The results found by Ramos & Vieira (2014), Ramos & Ferreira (2009), Conrado et al.
(2017), Bernhardson (1975), Carmer & Swanson (1973), Bhering et al. (2008) and Einot & Gabriel
(1975) will also be used for discussion. The performance evaluation will be based on the type I error
and the power of the tests. Several arrangements have been chosen for performance evaluation.
The results will be discussed and presented through tables and graphs to facilitate exposure and
interpretation. As the simulation was performed in several scenarios, only some will be presented
due to the amount of simulated data and also taking into account that in some simulation scenarios
the performance of the tests was similar. The first evaluation of the tests was based on the EER. Two
scenarios were evaluated under complete H0 and partial H0p . Tables 1 and 2 show the results of the
EER under complete H0.

Table 1. Experimentwise error rate, in percentage, of the Tukey, SNK, MGR and MGM tests, as a function of the number of
treatments and of the number of repetitions, under complete H0, at the significance level α = 1% probability, evaluated
by the exact binomial test with a confidence coefficient of 99% probability

Tests

Replications Treatments Tukey SNK MGR MGM

5 1.160 1.160 1.160 0.640––

10 1.100 1.100 1.100 0.720
4 20 1.040 1.040 1.040 0.900

30 0.820 0.820 0.820 0.660––

40 0.820 0.820 0.820 0.700
100 1.060 1.060 1.060 0.600––

5 0.980 0.980 0.980 0.460––

10 1.000 1.000 1.000 0.740
10 20 0.900 0.900 0.900 0.780

30 1.240 1.240 1.240 0.560––

40 0.880 0.880 0.880 0.860
100 0.940 0.940 0.940 0.580––

5 0.940 0.940 0.940 0.500––

10 1.080 1.080 1.080 0.880
20 20 1.100 1.100 1.100 0.720

30 1.020 1.020 1.020 0.520––

40 0.840 0.840 0.840 0.600––

100 1.020 1.020 1.020 0.700
∗The symbol “––” indicates that the EER was rejected by the exact binomial test, such that F ≤ F0.005. The “++” symbol

indicates that the EER was rejected by the exact binomial test, such that F ≥ F0.995.

It was observed that the MGM and MGR tests controlled the experimentwise error rate because
none of them had the empirical EER rejected by the exact binomial test, such that F ≥ F0.995.
However, in some cases, the empirical nominal levels for the MGM test were rejected by the exact
binomial test, such that F ≤ F0.995, making it conservative. Confirming the results of this work
(Tables 1 and 2), Carmer & Swanson (1973) and Bernhardson (1975), they also showed that the
Tukey and SNK tests have the control of the EER.

Silva et al. (1999) and Borges & Ferreira (2003), evaluating the performance of the Scott-Knott’s
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test and considering the same simulation settings of the present study, except for N = 2.000 simula-
tions, observed that some values of the EER were higher than the nominal levels of significance (α)
of 1% and 5%. The values of the EER that exceeded the value of α (liberal tests) were those in which
the number of treatments was 5, although they did not distance themselves much from the nominal
values. Conrado et al. (2017) presented a version of the Scott-Knott test for unbalanced designs.
The performance evaluation of the adjusted Scott-Knott’s test showed results similar to those found
by Silva et al. (1999) and Borges & Ferreira (2003). In some situations, the test exceeded the overall
level of significance. This can be justified by the Monte Carlo error.

Ramos & Ferreira (2009) as well as Ramos & Vieira (2014) developed the tests created by Calinski
& Corsten (1985), in the bootstrap version. They also evaluated the original tests and those that were
developed. The tests developed by Calinski & Corsten (1985) are Calinski-Corsten’s test based on
the studentized range distribution (CCR test) and Calinski-Corsten’s test based on the F distribution
(CCF test). The bootstrap versions of these tests will be called CCRb and CCFb tests, respectively.
All tests were considered exact under the null hypothesis and normal distribution. This is because
the tests were evaluated under non-normal conditions, something that was not the objective of this
work.

Table 2. Experimentwise error rate, in percentage, of the Tukey, SNK, MGR, and MGM tests, depending on the number of
treatments and the number of repetitions, under H0 complete, at the significance level α = 5% probability, assessed by
the exact binomial test with a confidence coefficient of 99% probability

Tests

Replication Treatments Tukey SNK MGR MGM

5 5.240 5.240 5.240 3.680––

10 5.660 5.660 5.660 4.720
4 20 5.080 5.080 5.080 5.060

30 4.960 4.960 4.960 4.340
40 4.980 4.980 4.980 3.980––

100 4.680 4.680 4.680 3.340––

5 4.940 4.940 4.940 3.860––

10 5.060 5.060 5.060 4.820
10 20 5.240 5.240 5.240 5.140

30 4.840 4.840 4.840 4.160––

40 4.620 4.620 4.620 4.020––

100 5.140 5.140 5.140 3.700––

5 4.880 4.880 4.880 2.540––

10 5.060 5.060 5.060 4.440

20 20 4.940 4.940 4.940 4.760
30 4.960 4.960 4.960 4.120––

40 5.020 5.020 5.020 4.180––

100 4.820 4.820 4.820 3.720––

∗ The symbol “––” indicates that the EER was rejected by the exact binomial test, such that F ≤ F0.005. The “++” symbol
indicates that the EER was rejected by the exact binomial test, such that F ≥ F0.995.

Regardless of the number of replications, the proposed tests (MGM and MGR) controlled the
EER (Tables 1 and 2). This was also verified by Borges & Ferreira (2003) when they evaluated the
performance of Tukey and SNK tests, thus confirming the results of Tables 1 and 2. They used the
same methodology of simulation of the present work, concerning the number of replications and
the coefficient of variation.
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The reason for this is the simulation adopted. Treatment parameters are linked to the number of
replications and the difference between means is always preserved in terms of standard error, which is
therefore related to the coefficient of variation and the number of replications. However, considering
Scott-Knott’s test, these same authors observed that for a large number of replications, r = 20,
only when the number of treatments was small, n = 5, the test was liberal. Conrado et al. (2017)
also verified this for the adjusted Scott-Knott test, when α > 12% in the simulated experimental
conditions.

In Figures 1 and 2 that represent the evaluation of the experimentwise error rate, two red lines
can be observed, one is full and the other is dashed. The first delimit the rejection where the EER
values below this line were lower than the overall nominal level, i.e., the hypothesis H0 : α = 5%
was rejected by the exact binomial test because F ≤ F0.005. Thus, it is a conservative test. The
second delimits the region in which the EER values above this line were higher than the overall
nominal level, that is, the hypothesis H0 : α = 5% was rejected by the exact binomial test because
F > F0.995. This is a liberal test.

In Figure 1, the MGM, MGR, Tukey and SNK tests controlled the EER, since none of the
tests evaluated by the exact binomial test exceeded the red lines identifying the rejection of the H0
hypothesis.

∗ The red lines delimit the rejection region by the exact binomial test.

Figure 1. Experimentwise error rate, in percentage, of the Tukey, SNK, MGR and MGM tests, depending on the number of
replications, hypothesis H0 complete, n = 10, α = 5%.

Regarding the number of treatments, based on a graphical representation for the arrangement
r = 20 and α = 5% in Figure 2, it was found that the MGR and MGM tests control the EER. It was
noticed that in the MGM test as the number of treatments increases, the EER decreases to the point
of being conservative for both α = 1% and α = 5% (Tables 1 and 2). The other simulated settings
can be seen in Tables 1 and 2, and the results were similar to those shown in Figure 2. Carmer
& Swanson (1973) and Boardman & Moffitt (1971) verified this same behaviour for Scheffé’s test,
considering 4000 experiments. For n = 20 treatments, the EER of this test reached almost 0% type
I error per experiment, a very conservative test.

For the Tukey, SNK and Scott-Knott tests, regardless of the number of treatments, considering
a normal population, Borges & Ferreira (2003) showed that the experimentwise error rate remains
equal to the level of overall significance. However, when considering non-normal populations, the



Brazilian Journal of Biometrics 373

∗ The red lines delimit the rejection region by the exact binomial test.

Figure 2. Experimentwise error rate, in percentage, of the Tukey, SNK, MGR and MGM tests, depending on the number of
replications, hypothesis H0 complete, n = 20, α = 5%.

Tukey and SNK tests showed EER in the order of 55% with 80 treatments for the log-normal
distribution. These same authors also found that the Scott-Knott’s test presents a certain control
of type I error by experiment considering non-normal populations, since the positive bias in the
control of the ERR was very small, presenting certain robustness. Ramos & Ferreira (2009) as well
as Ramos & Vieira (2014) also showed robustness to the CCR and CCF tests under non-normality,
the CCRb and CCFb tests being more robust, as the latter were exact.

Unlike these MCPs, Bernhardson (1975) showed that the LSD test (test based on the t distri-
bution of Student) and Duncan’s test, considering 10 treatments, present high rates of type I error,
49.0% and 36.3%, respectively. This fact was also confirmed in Boardman & Moffitt (1971) and
Carmer & Swanson (1973).

Carmer & Swanson (1973) and Perecin & Malheiros (1989) evaluated the t-bayesian test pro-
posed by Waller & Duncan (1969) and high rates of type I error were found per experiment for this
test. Carmer & Swanson (1973) observed that for the numbers of treatments equal to 5, 10 and 20
and significance level α = 5%, the values of type I error rates per experiment were 15.6%, 18.4%,
and 18.7%, respectively, confirming that it was a liberal test.

An interesting fact for the proposed MGR test is that it presents EER identical to the Tukey and
SNK tests, regardless of the number of replications and treatments, under complete H0. This is due
to the similarity in the theoretical development of the tests. For example, the Tukey and SNK tests
for the first difference between the extreme means (lowest mean and highest mean), present the same
MSD, as observed by Carmer & Swanson (1973). This fact was also observed in Borges & Ferreira
(2003), considering the normal distribution and variation coefficient of 10% (same conditions of the
simulation of this study), in which the Tukey and SNK tests present equal EER.

However, the assumption in the null hypothesis that the treatment means are the same, can be
observed in the experiments that very rarely all these means are the same. Based on this, in the
following subsection, we considered the scenario in which the simulation was based on the partial
null hypothesis. Thus, another way to evaluate the type I error is through simulations taking into
account the partial null hypothesis (H0p ), see Tables 3 to 5.

Figure 3 shows the performance evaluation of the tests about the difference in consecutive means
(δ), fixing the number of treatments (n = 5, 20 and 100) and the number of replications (r =10). In
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Table 3. Experimentwise, in percentage, of the Tukey, SNK, MGR, and MGM tests, depending on the number of treatments
and the number of replications, under partial H0, at the significance level α = 5% probability and δ = 1σȲ , evaluated by
the exact binomial test with a confidence coefficient of 99% probability

Evaluated tests

Treatment Replication Tukey SNK MGR MGM

4 2.700–– 3.600–– 8.560++ 5.220
5 10 2.820–– 3.740–– 9.960++ 4.760

20 2.240–– 3.240–– 9.420++ 4.620

4 2.980–– 3.560–– 10.820++ 9.400++

10 10 2.880–– 3.560–– 12.360++ 9.080++

20 2.460–– 3.000–– 12.900++ 8.080++

4 3.140–– 3.500–– 13.120++ 8.580++

20 10 2.740–– 3.180–– 13.440++ 7.900++

20 2.520–– 3.000–– 14.160++ 7.640++

4 3.140–– 3.480–– 15.400++ 5.600++

40 10 3.400–– 3.400–– 16.000++ 5.820
20 2.700–– 2.880–– 14.980++ 5.440

4 3.200–– 3.380–– 17.960++ 4.560
100 10 3.380–– 3.460–– 19.400++ 4.720

20 2.920–– 3.020–– 18.320++ 4.200––

∗ The symbol “––” indicates that the EER was rejected by the exact binomial test, such that F ≤ F0.005. The “++” symbol
indicates that the EER was rejected by the exact binomial test, such that F ≥ F0.995.

general, it was observed that the proposed tests exceed the established levels of significance, especially
when the difference in groups of consecutive means is greater than 2σȲ . For Ramos & Vieira (2014),
the CCR and CCF tests, as well as their bootstrap versions, presented these problems from δ ≥ 1,
making them liberal tests. Borges & Ferreira (2003) evaluated the Scott-knott’s test for δ = 0.5 and 4,
andα = 5%. In almost all scenarios evaluated, the Scott-Knott test exceeds the nominal level adopted,
being also a liberal test.

According to the simulation performed in the present study, Tukey’s test is the only test that
controls the EER to the level of overall significance, regardless of the configuration of the experi-
ment. Carmer & Swanson (1973) found that the Tukey and Scheffé tests did not exceed the 3.1%
EER in all configurations, considering a significance level of α = 5%. In this same study, it was also
observed that the Duncan and t-Bayesian tests have the highest type I error rates per experiment
under partial H0.

The SNK’s test showed control in the EER only for small differences in consecutive means.
When the difference between groups of consecutive means was greater than 4σȲ , the EER of this
test exceeded the nominal level for both α = 0.01 and α = 0.05, which characterizes it as a liberal
test being also confirmed by Carmer & Swanson (1973.

The MGR test showed control over the overall significance level when the difference between
groups of consecutive means was greater than or equal to 8σȲ . The MGM test controlled the level
of overall significance only for a large number of treatments (n = 100) and δ ≤ 2, see Tables 3 and
4.

The tests evaluated did not suffer expressive influences, as can be seen in Figure 4, which presents
the results of the EERs for the proposed tests concerning the number of replications, for n = 10,
α = 5% and the difference between consecutive group means of 4σȲ .

The number of treatments had an influence on the EER at the overall significance level, under
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∗ The red lines delimit the rejection region by the binomial test.

Figure 3. Experimentwise error rate, in percentage, of the Tukey, SNK, MGR, and MGM tests, depending on the difference
in consecutive averages (δ), under partial H0, a) n = 5, b) n = 20 e c) n = 100, for α = 5% and r = 10.
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Table 4. Experimentwise error rate, in percentage, of the Tukey, SNK, MGR, and MGM tests, depending on the number of
treatments and the number of replications, under partial H0, at the significance level probability α = 5% and δ = 2σȲ ,
assessed by the exact binomial test with a confidence coefficient of 99% probability

Evaluated tests

Treatment Replication Tukey SNK MGR MGM

4 2.460–– 5.500 18.420++ 10.760++

5 10 2.540–– 5.600 21.700++ 10.140++

20 2.240–– 3.240–– 9.420++ 15.020++

4 2.600–– 4.640 31.220++ 22.560++

10 10 3.140–– 5.260 38.220++ 21.620++

20 2.460–– 3.000–– 12.900++ 22.140++

4 3.480–– 4.800 42.920++ 22.220++

20 10 3.120–– 4.380 48.640++ 20.900++

20 2.520–– 3.000–– 12.900++ 20.640++

4 2.820–– 3.800–– 53.500++ 13.240++

40 10 2.980–– 3.860–– 58.160++ 11.460++

20 2.520–– 3.000–– 14.160++ 12.680++

4 3.360–– 3.800–– 67.120++ 5.760
100 10 2.980–– 3.440–– 69.600++ 5.260

20 2.700–– 2.880–– 14.980++ 5.780
∗ The symbol “––” indicates that the EER was rejected by the exact binomial test, such that F ≤ F0.005. The “++” symbol

indicates that the EER was rejected by the exact binomial test, such that F ≥ F0.995.

Table 5. Experimentwise error rate, in percentage, of the Tukey, SNK, MGR, and MGM tests, depending on the number of
treatments and the number of replications, under partial H0, at the significance level α = 5% probability and δ = 4σȲ ,
assessed by the exact binomial test with a 99% probability confidence coefficient

Evaluated tests

Treatment Replication Tukey SNK MGR MGM

4 2.560–– 9.740++ 21.720++ 24.880++

5 10 2.820–– 9.620++ 23.420++ 25.240++

20 2.460–– 9.360++ 23.100++ 25.500++

4 2.980–– 8.860++ 37.680++ 51.320++

10 10 2.560–– 9.100++ 40.040++ 53.220++

20 2.920–– 9.580++ 40.000++ 53.800++

4 3.000–– 8.540++ 57.660++ 64.980++

20 10 2.660–– 9.100++ 58.240++ 64.460++

20 3.140–– 9.500++ 57.480++ 65.380++

4 3.540–– 8.660++ 78.060++ 58.720++

40 10 2.600–– 8.360++ 78.120++ 57.140++

20 2.920–– 8.840++ 76.840++ 58.000++

4 3.000–– 7.800++ 97.080++ 32.720++

100 10 3.280–– 8.260++ 96.980++ 32.980++

20 2.940–– 7.720++ 96.440++ 32.720++

∗ The symbol “––” indicates that the EER was rejected by the exact binomial test, such that F ≤ F0.005. The “++” symbol
indicates that the EER was rejected by the exact binomial test, such that F ≥ F0.995.
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partial H0 (Figure 5), mainly for the MGM and MGR tests. But the behaviours of the tests were
different from each other. Initially, Tukey’s test preserved the EER at the significance level when the
number of treatments varied. Compared to the performance evaluation made by Borges & Ferreira
(2003), it was found that the results of the EER for Tukey’s test are similar.

∗ The red lines delimit the rejection region by the exact binomial test.

Figure 4. Experimentwise, in percentage, of the Tukey, SNK, MGR, and MGM tests, depending on the number of replications,
under hypothesis H0 partial, for n = 10, α = 5%.

The SNK’s test, for δ ≤ 2, presented the EER according to the level of significance adopted,
regardless of the number of treatments, see Tables 3 and 4. However, when δ > 2 the test presented
the EER > α, becoming a liberal test. It was also observed that the MGR test, for δ < 8, considerably
increases the values of the EER with the increase in the number of treatments. For δ ≥ 8, the
EER of this test stabilizes and becomes identical to the overall significance level. When δ = 16, the
experimentwise is identical to Tukey’s test. This is due to the similarity between the structures of the
two methods. So, it doesn’t matter whether you use one or the other, under partial H0 when δ ≥ 8.
The problem is that this difference between averages is not very common in practical situations and
in fact, we don’t know the real difference between the means.

For the MGM test, when δ ≥ 8, it is observed that by increasing the number of treatments, this
test also increases the EER, becoming a very liberal test, under partial H0. When δ < 8, the EERs of
these tests as a function of the number of treatments (n), present a behaviour of a parable (Figure 5),
having a peak in the values of the EER when the number of treatments is equal to 20.

In the second step, the tests were compared through the study of power. Several situations
were considered: number of replications, number of treatments, differences between means, level
of significance, and number of populations. In the latter situation, two groups were simulated that
had the same means internally and differed from each other by a quantity of δ standard errors,
that is, under partial H0. The power study was also evaluated under the hypothesis H1, in which
comparisons between groups of different means were considered.

The power of the tests, under complete H1, was influenced by the number of treatments. In
Table 9, the performance evaluation of the Tukey, SNK, MGM and MGR tests can be observed,
for the difference between averages of 2σȲ , r = 4 replications and a significance level of α = 5%
probability.

The SNK test increased power as the number of treatments (n) increased, while the Tukey test
decreased power as the number of treatments increased. Tukey’s test has almost 0% power when the
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∗ The red lines delimit the rejection region by the exact binomial test.

Figure 5. Type I error rate per experiment, in percentage, of the Tukey, SNK, MGR and MGM tests, depending on the number
of treatments, under hypothesis H0 partial, for a) δ = 2, b) δ = 4 and c) δ = 16, with r = 10, α = 5%, assessed by the exact
binomial test with a confidence coefficient of 99% probability.
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Table 6. Power of the Tukey, SNK, MGR, and MGM tests, in percentage, to detect a difference between averages starting
with standard error (1σY ) to 32σY , depending on the number of treatments and the number of replications equal to 4
(r = 4), under H1 complete, at the significance level of 5% probability

Real difference between means

Test Treatment 1σY 2σY 4σY 8σY 16σY 32σY

5 2.040 7.630 41.640 - - -
10 0.700 3.580 30.960 98.130 - -

Tukey 20 0.220 1.510 20.760 96.730 100.000 -
40 0.070 0.620 13.080 94.690 100.000 100.000
100 0.020 0.190 6.690 90.060 100.000 100.000

5 5.020 12.570 44.980 - - -
10 4.150 11.930 48.350 99.090 - -

SNK 20 3.840 11.920 51.180 99.470 100.000 -
40 3.590 11.760 52.590 99.620 100.000 100.000
100 3.550 11.910 53.710 99.700 100.000 100.000

5 15.540 25.620 50.800 - - -
10 23.690 39.270 72.520 99.620 - -

MGR 20 24.190 40.020 72.870 99.560 100.000 -
40 23.630 39.280 71.380 99.330 100.000 100.000
100 22.650 37.790 68.850 98.710 100.000 100.000

5 11.970 21.210 34.940 - - -
10 25.910 41.000 65.540 78.030 - -

MGM 20 36.610 54.610 80.600 89.790 92.090 -
40 43.360 62.150 87.280 94.480 95.910 96.480
100 49.360 68.600 92.620 98.010 98.720 98.980

number of treatments equals 100 for δ = 1. This can also be verified for the Scheffé test, according
to Carmer & Swanson (1973). This fact shows that Tukey and Scheffé tests are not recommended
for comparison of two to two means with a large number of treatments. This result shows the
importance of the type I error for these tests, i.e. a very conservative test, increases the type II error,
and consequently decreases the power of the test.

Another power performance evaluation was performed for the MGR, MGM and Scott-Knott
tests, Figure 6. This evaluation was performed based on the number of treatments, fixing the differ-
ence between means of 2σȲ , r = 4 replications and α = 5% probability. The power of Scott-Knott’s
test was taken from the work of Silva et al. (1999). These authors evaluated Scott-Knott’s test in the
same experimental scenario as the present study.

The MGM test had an increase in power with an increase in the number of treatments. This
behaviour was also verified for the Scott-Knott test. However, the MGR test practically did not
change power with the variation in the number of treatments. What occurred was a small decrease
in power with an increase of n. For n = 5, the power of the MGM, Scott-Knott and MGR tests was
42.99%, 39.45% and 37.59%, respectively. While for n = 100, the power of the tests was 72.64%,
48.45% and 33.51%, respectively. The MGM test showed greater power than the Scott-Knott and
MGR tests. The latter showed the worst performance among the three tests.

For a broader evaluation, all the tests presented to date were compared with the performance
evaluations of other tests performed by Perecin & Malheiros (1989). These authors showed that the
test with the greatest power was the t-Bayesian test, followed by the t-test, Duncan test, modified
Newman-Keus test and the Newman-Keuls test. All of them had power above 60% for 4σȲ standard
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∗ Result of Silva et al. (1999).

Figure 6. Power of the Scott-Knott, MGR and MGM tests, in percentage, under H1 complete, to detect a difference between
averages of 2σȲ , with r = 4 replications, in depending on the number of treatments, for a α = 0.05.

errors, this effect being more expressive with the t-bayesian test, power above 78%. However, this
is due to the high type I error rates per experiment, under the H0 hypothesis.

Figure 7 shows the power of the tests in the scenario δ = 4, r = 4 replications and α = 5%
probability. This scenario served as the basis for presenting the other situations since the results
were equivalent.

∗ Results of Silva et al. (1999) and
∗∗ Results of Perecin & Malheiros (1989).

Figure 7. Power of Duncan, Scott-Knott, MGM, MGR, SNK, modified SNK, t, t-bayesian, and Tukey tests, in percentage,
under H1 complete, to detect a difference between averages of 4σȲ , with r = 4 replications, depending on the number of
treatments, for a α = 0.05.
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It was observed that the MGM, t-bayesian and Scott-Knott tests showed the greatest power, and
the first test showed the greatest prominence. Tukey’s test presented the worst performance. The
other tests presented the values of intermediate power between those of the MGM test (test with
greater power) and Tukey’s test (test with less power).

The number of replications was another aspect that influenced the power of the tests, but not
as expressive as in the case of the number of treatments. Figure 8 has presented the evaluation of
power performance concerning the number of replications. This evaluation was analyzed in three
scenarios: (a) 5 treatments, (b) 20 treatments and (c) 100 treatments, for a difference between the
mean of 2σȲ and α = 5%.

For a small number of treatments, Figure 8(a), there was an increase in the power of the tests
with an increase in the number of replications, mainly from 4 to 10. However, when the number of
treatments increased (n ≥ 20), Figures 8(b) and 8(c), the power of the tests hardly changed with the
increase in the number of replications. This may be due to the higher accuracy of the estimation
of residual variance, because of the increase in the number of treatments, regardless of the increase
in the number of replications, degrees of freedom are high. However, with a small number of
treatments, the degrees of freedom are also small for a small number of replications, and high for a
large number of replications. Thus, we observe the greatest effect of the number of replications for
the power in the latter situation, once the accuracy of the experiment was fixed.

Another evaluation of power performance was based on the difference between means. The
power of the tests increased rapidly as the difference between means increased. Silva et al. (1999)
and Perecin & Malheiros (1989) showed that when the magnitude between means was equal to or
greater than 6σȲ , the correct decision percentages of the tests evaluated were high.

In Figure 9 presented the power of the tests for the real differences between averages of 1 to
32σȲ , with 4 replications and α = 0.05. The scenario was divided concerning the number of
treatments: (a) n = 5, (b) n = 20 and (c) n = 100. When δ ≤ 6, Figure 9(a), the MGR (for n = 5) and
MGM (for n = 20 and 100) tests obtained higher power than the others. When δ > 6 almost all the
tests reached 100% power (Figures 9(b) and 9(c)), remembering that the proposed tests converged
more slowly to this value. With 100 treatments, the power of these tests did not exceed 50%, even
when the actual difference between averages was 32σȲ (Figure 9(c)). It is interesting to note that
the SNK test tends to be slightly higher than the Tukey test in all configurations, as can also be seen
in Borges & Ferreira (2003), and that this test has converged more quickly to 100%.

To compare the power of the proposed tests with the power of other tests found in the literature,
the real difference between means was considered from 2 to 32σȲ , for the number of treatments 5,
20 and 100, with 4 replications and α = 0.05, Figure 10.

For a small real difference between means, regardless of the size of n, the MGM test obtained
higher power than the others, being even more accentuated as n increased, especially from the
Tukey test, a test with less power for this situation.

The t-Bayesian and Duncan tests were highlighted concerning power, as expected, because
these two tests have high rates of error type I per experiment Bernhardson (1975), in the case of
liberal tests. Being liberal tests, a high type I experimentwise error rate implies a small type II error
rate and consequently high power. With the increase in the difference between means, these two
tests converged more quickly at 100%.

Unlike the MGM test, the MGR test showed a power lower than the Scott-Knott test. However,
in the performance evaluation, it was classified as having intermediate test power concerning that
of the evaluated tests. The modified SNK and SNK tests also showed intermediate power, but lower
than the MGR test for n ≤ 5 and higher than the MGR test for n > 5, Figure 10.

When the actual difference between means increased, the power of the t-bayesian and Duncan
tests increased, although the MGM test maintained high power and control of type I error per
experiment.
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∗ Results of Silva et al. (1999).

Figure 8. Power of the Scott-Knott, MGM, MGR, SNK, and Tukey tests, in percentage, under H1 complete, to detect a differ-
ence between averages of 2σȲ , with (a) n = 5, (b) n = 20 and (c) n = 100, depending on the number of replications, for a
α = 0.05.



Brazilian Journal of Biometrics 383

Figure 9. Power of the MGM, MGR, SNK, and Tukey tests, in percentage, under H1 complete, to detect differences between
averages from 1 to 32 σȲ , considering treatments (a) n = 5, (b) n = 20 and (c) n = 100, 4 replications, and a significance
level of 5% probability.
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The Scott-Knott and modified SNK tests obtained higher power than the MGR tests, with
slightly higher values with an increase of n. Interestingly, in almost all configurations, the modified
SNK and SNK tests were practically the same, except for the difference between means between 4
and 8σȲ .

Comparing the power of the MGM and MGR tests with the CCR, CCF, CCRb and CCFb tests
(Ramos & Ferreira, 2009; Ramos & Vieira, 2014), we noticed that the tests proposed in this work
showed greater power for smaller differences between means (δ ≤ 2). As this difference increases,
the CCRb and CCFb tests have greater power than the other tests.

A very relevant aspect in the proposed tests (MGR and MGM) was that although they may have
presented a slower convergence to the maximum percentage of correct decisions (100%), for small
values of δ, these tests were superior when compared to the other tests presented in this paper. In
real experiments, this is the most common situation, Figure 9.

In Figure 11, we observe the setting for the real difference between means of 4 to 32σȲ , for
n = 5, 20 and 100 treatments, with 4 replications and α = 0.05. For this scenario, the proposed
tests were compared with the Tukey and SNK tests. Regardless of the number of treatments, the
MGM test obtained higher power, followed by the SNK and MGR tests. Once again, the test with
the worst performance was Tukey’s test. When the initial value of the difference between means
was greater than 4σȲ , the power of the tests quickly converged at 100%, since the real difference
between means was very large.

In the present study, it was verified that the initial values of the real differences between means
influenced the power of the proposed tests. This was not verified in any other study. Consider the
power value of the MGM test as an example. In Table 9, the value of the difference between means
(δ) for the n = 5, r = 4 and α = 0.05 scenario was 1 to 32. In Table 7, the value of δ was 2 to 32, and
in Table 8, 4 to 32.

Note that the initial δ values were different. Thus, for these three scenarios, considering the
same difference between averages of 4σȲ , the power for the three situations was 34.94%, 69.91%
and 89.58%, respectively, Figure 12.

This shows that the power of the proposed tests and the SNK test has increased as population
means have become more heterogeneous. However, this did not happen with the MGR test. When
the initial values of δ were 1 to 32 for 2 to 32, the power of this test increased when evaluating the
same difference between means (4σȲ ).

However, when the initial values of δ went from 2 to 32 to 4 to 32, the power of this test
increased. Thus, what is observed is that the MGR test tends to be more powerful when it is eval-
uated medium populations that are more homogeneous than medium populations that are more
heterogeneous. For the Tukey test, power has become constant for the same difference between in-
creasingly more heterogeneous population means. This can be explained by the fact that the Tukey
test is very conservative. Excessive control in type I error ends up influencing power, as predicted
in the literature.

Another way to evaluate the tests is under the hypothesis under partial H0. The evaluation took
into account the number of treatments, number of replications, difference between means and level
of significance.

The number of treatments was a point that influenced the power, under partial H0, although
the number of replications did not show as much influence. In Figure 13, it was observed that the
increase in the number of treatments (n) decreases the power of the tests. However, when the real
difference between means was 4σȲ , Figure 13(c), the MGR test started to increase power with an
increase of n, being the only test to reach power around 90% when n = 100. This test and the MGM
test obtained the highest percentages of correct decisions. However, when δ ≤ 4, the power values
did not exceed 30%. Even so, the Tukey test performed worst in almost all situations. With the
increase of n, its power came close to 0%. From δ > 8, almost all the tests converged to 100% power.
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Figure 10. Power of the Scott-Knott MGM, MGR, SNK, Tukey, Duncan, modified SNK and t-Bayesian tests, in percentage,
under H1 complete, to detect differences between averages from 2 to 32 σȲ , considering the number of treatments (a)
n = 5, (b) n = 20 and (c) n = 100, 4 replications, and a significance level of 5% probability.
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Figure 11. Power of the MGM, MGR, SNK and Tukey tests, in percentage, under H1 complete, to detect differences between
averages from 4 σȲ to 32 σȲ , considering the number of treatments (a) n = 5, (b) n = 20 and (c) n = 100, 4 replications,
and a significance level of 5% probability.
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Figure 12. Power of the MGM, MGR, SNK and Tukey tests, in percentage, under H1 complete, for the initial values of the
actual differences between means for 4σȲ , for n = 5, r = 4 and α = 0.05.

Figure 13. Power of the MGM, MGR, SNK and Tukey tests, in percentage, under partial H0, depending on the number of
treatments, to detect differences between averages of (a) 1 σȲ , (b) 2σȲ , (c) 4σȲ e (d) 8σȲ , with 4 replications, and a
significance level of 5% probability.
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Table 7. Power of the Tukey, SNK, MGR, and MGM tests, in percentage, to detect a difference between averages starting
with two standard errors (2σY ) to 32σY , depending on the number of treatments and the number of replications equal to
4 (r = 4), under H1 complete, at the significance level of 5% probability

Real difference between means

Test Treatment 1σY 2σY 4σY 8σY 16σY 32σY

5 - 7.660 41.930 98.880 - -
10 - 3.350 29.840 98.060 100.000 -

Tukey 20 - 1.610 20.740 96.770 100.000 100.000
40 - 0.680 13.440 94.820 100.000 100.000
100 - 0.190 6.690 89.980 100.000 100.000

5 - 22.500 59.600 99.220 - -
10 - 23.440 64.530 99.710 100.000 -

SNK 20 - 24.780 67.310 99.850 100.000 100.000
40 - 25.170 68.410 99.880 100.000 100.000
100 - 25.330 69.110 99.890 100.000 100.000

5 - 35.720 68.320 99.320 - -
10 - 36.480 68.790 99.280 100.000 -

MGR 20 - 35.800 67.260 98.900 100.000 100.000
40 - 34.890 65.420 98.240 100.000 100.000
100 - 33.340 62.840 96.810 100.000 100.000

5 - 40.910 69.910 83.880 - -
10 - 56.000 86.610 95.970 97.180 -

MGM 20 - 63.860 92.710 98.670 99.070 99.220
40 - 68.540 95.080 99.430 99.580 99.640
100 - 72.480 96.690 99.820 99.820 99.890

The power of the tests evaluated had little practical significance, since the EER of all these tests
was higher than the level of significance adopted, under partial H0. Only the Tukey and Scheffé
tests had EER identical to the nominal level, as verified in Carmer & Swanson (1973). However, the
power of these EERs came to 0% in certain situations.

A characteristic that can be improved in the MGM and MGR tests, for the control of type I
error by experiment and high power, under partial H0, is to try to improve the contribution that
the unknown population mean influences the MSD of the tests, since the distribution of the centred
midrange in µ depends on the location parameter.

4. Application
We apply the tests the proposed tests, using the experiment of Figueiredo et al. (2015). The results
will be compared with Scott-Knott’s test.

Example 1 The experiment was performed in a triple-lattice design evaluating the genotypes in 7 environ-
ments. For this study, the evaluation of the environments will not be taken into consideration, since it goes
beyond the study objective of this work. The evaluation of the Scott-Knott test for the flowering period was
also performed by Figueiredo et al. (2015) and is presented in Table 10. The additional information of this
study was: an analysis of variance whose residual mean square was 6.3078 with 252 degrees of freedom. The
number of replications with which the genotype means were estimated was 21.
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Table 8. Power of the Tukey, SNK, MGR, and MGM tests, in percentage, to detect a difference between averages starting
with four standard errors (4σY ) to 32σY , depending on the number of treatments and the number of replications equal to
4 (r = 4), under H1 complete, at the significance level of 1% probability

Real difference between means

Test Treatment 1σY 2σY 4σY 8σY 16σY 32σY

5 - - 20.020 92.730 100.000 -
10 - - 14.430 92.290 100.000 100.000

Tukey 20 - - 9.320 90.760 100.000 100.000
40 - - 5.840 87.440 100.000 100.000
100 - - 2.860 80.910 100.000 100.000

5 - - 47.790 97.530 100.000 -
10 - - 53.980 99.100 100.000 100.000

SNK 20 - - 56.840 99.500 100.000 100.000
40 - - 58.250 99.590 100.000 100.000
100 - - 59.400 80.910 100.000 100.000

5 - - 54.120 94.850 100.000 -
10 - - 55.790 94.540 100.000 100.000

MGR 20 - - 55.990 93.600 100.000 100.000
40 - - 54.710 91.740 100.000 100.000
100 - - 59.400 99.670 100.000 100.000

5 - - 74.340 95.050 97.500 -
10 - - 86.520 99.540 99.790 99.820

MGM 20 - - 91.470 99.940 99.960 99.970
40 - - 93.450 99.990 100.000 100.000
100 - - 95.100 100.000 100.000 100.000

A data entry not very common in routines is the average of the treatments, which will be pre-
sented in this example. In this example, it will be shown that by entering only the results of the mean
square of the residue, the degree of freedom and the number of replications, the MRtest function
can perform the procedure of the four proposed tests.

In Table 11, the test results are presented for comparison, as well as the consecutive differences
between the ordered means to assist in the comparison of the test results. Another aspect is the
emphasis on the lines in which one of the tests separated the group of means.

The results show that the proposed tests (MGM and MGR) showed a greater separation of the
groups of means than Scott-Knott’s test in a more coherent way. The proposed tests showed very
similar results. The means were ordered to facilitate discussion. Note the difference in test results
in the first groups of means. The means of the genotypes BR507 and BR506 were considered
statistically equal by the Scott-Knott test, but different by the MGM and MGR tests. Subsequently,
the means of genotypes BR506 and BR508 were considered statistically equal by the proposed tests,
but different by the Scott-Knott test. There is an inconsistency in the Scott-Knott test, which is very
common in practice. Note the difference ȲBR507 – ȲBR506 = 0.84. The value of 0.84 between these
two means was not enough for the Scott-Knott test to detect that they are sampled from populations
with different means. However, this same test found that the difference ȲBR506 – ȲBR508 =0.63
was significant, and therefore the mean effects of these genotypes are different. This is due to the
philosophy of how the Scott-Knott test was developed. The separation of groups occurs by the
likelihood ratio between groups. The differences between the limiting means of each group can
often be smaller than the differences between consecutive means within the groups.
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Table 9. Power of Tukey, SNK, MGR, and MGM tests, in percentage, to detect a difference between averages starting with
standard error (1σY ) to 32σY , as a function of the number of treatments and the number of replications equal to 4 (r = 4),
under H1 complete, at the significance level of 5% probability

Real difference between means

Test Treatment 1σY 2σY 4σY 8σY 16σY 32σY

5 2.040 7.630 41.640 - - -
10 0.700 3.580 30.960 98.130 - -

Tukey 20 0.220 1.510 20.760 96.730 100.000 -
40 0.070 0.620 13.080 94.690 100.000 100.000
100 0.020 0.190 6.690 90.060 100.000 100.000

5 5.020 12.570 44.980 - - -
10 4.150 11.930 48.350 99.090 - -

SNK 20 3.840 11.920 51.180 99.470 100.000 -
40 3.590 11.760 52.590 99.620 100.000 100.000
100 3.550 11.910 53.710 99.700 100.000 100.000

5 15.540 25.620 50.800 - - -
10 23.690 39.270 72.520 99.620 - -

MGR 20 24.190 40.020 72.870 99.560 100.000 -
40 23.630 39.280 71.380 99.330 100.000 100.000
100 22.650 37.790 68.850 98.710 100.000 100.000

5 11.970 21.210 34.940 - - -
10 25.910 41.000 65.540 78.030 - -

MGM 20 36.610 54.610 80.600 89.790 92.090 -
40 43.360 62.150 87.280 94.480 95.910 96.480
100 49.360 68.600 92.620 98.010 98.720 98.980

Unlike Scott-Knott’s test, the MGM and MGR tests are more consistent in this respect. The
difference between the BR506 and BR508 genotypes of 0.63 was not sufficient for the proposed
tests to evaluate these two genotypes as statistically different. However, for the major difference
between the BR507 and BR506 genotypes of 0.84, they were statistically different.

However, in one situation the MGR test did not get rid of this aspect either. Verifying the
difference between the genotypes V82393 and V82392, which was 1.31, the MGR test did not
detect a difference between these means, as it was not verified by Scott-Knott’s test. This question is
because the difference between the BR507 and BR506 genotypes of 0.84 was detected as a significant
difference by the MGR test. For the MGM test, this does not occur; the difference for genotypes
V82393 and V82392 of 1.31 was detected as statistically different genotypes. Only in one situation
did none of the tests detect significance in a difference of 0.86 (difference between the genotypes
CMSXS639 and CMSXS642). The smallest significant difference detected for the MGM and MGR
tests was 0.84, and for the Scott-Knott test was 0.63. Thus, all tests above these values should also
detect differences. It is worth remembering that for the proposed tests, the values 0.84 and 0.86 are
very close, being a threshold for these tests to detect the significance of the difference between the
means.

In all other situations in which Scott-Knott’s test differentiated the groups of means, the MGM
and MGR tests were also able to detect. Taking into account that the MGM test further refined the
group separation.

More coherently, the greater group separation occurs in the MGM and MGR tests due to the
development of how the tests were proposed. The separation of the groups of these tests takes into
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Table 10. Selection of twenty-five sorghum genotypes based on the flowering period, evaluated by the Scott-Knott test

Genotype Flowering period Scott-Knott test

CMSXS643 87.51 A
CMSXS630 85.78 B

BR507 85.17 B
BR506 84.33 B
BR508 83.70 C

CMSXS629 83.27 C
BR501 83.25 C

CMSXS635 82.48 C
CMSXS644 82.35 C

BRS511 81.42 D
CMSXS648 81.12 D
CMSXS633 80.91 D

BR505 79.91 E
CMSXS637 79.59 E

XBSW80140 79.35 E
CMSXS646 78.59 E

BRS601 78.33 E
CMSXS639 78.15 E
CMSXS647 77.29 E

SUGARGRAZE 75.45 F
CMSXS636 75.43 F

V82391 75.36 F
XBSW80007 75.15 F

V82393 73.83 G
V82392 72.52 G
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Table 11. Results of the MGM, MGR and Scott-Knott tests evaluating the 25 sorghum genotypes presented in Example 1

Tests

Genotype Means Difference between means MGM MGR Scott-Knott
CMSXS643 87.51 - g1 g1 A
CMSXS630 85.75 1.77 g2 g2 B

BR507 85.17 0.58 g2 g2 B
BR506 84.33 0.84 g3 g3 B
BR508 83.70 0.63 g3 g3 C

CMSXS629 83.27 0.43 g3 g3 C
BR501 83.25 0.01 g3 g3 C

CMSXS635 82.48 0.77 g3 g3 C
CMSXS644 82.35 0.13 g3 g3 C

BRS511 81.42 0.93 g4 g4 D
CMSXS648 81.12 0.30 g4 g4 D
CMSXS633 80.91 0.21 g4 g4 D

BR505 79.91 1.00 g5 g5 E
CMSXS637 79.59 0.32 g5 g5 E

XBSW80140 79.35 0.24 g5 g5 E
CMSXS646 78.59 0.76 g5 g5 E

BRS601 78.33 0.26 g5 g5 E
CMSXS639 78.15 0.18 g5 g5 E
CMSXS647 77.29 0.86 g5 g5 E

SUGARGRAZE 75.45 1.84 g6 g6 F
CMSXS636 75.43 0.02 g6 g6 F

V82391 75.36 0.07 g6 g6 F
XBSW80007 75.15 0.21 g6 g6 F

V82393 73.83 1.32 g7 g7 G
V82392 72.52 1.31 g8 g7 G
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account the greater consecutive difference between means, and this was determinant to avoid the
inconsistency that often occurs in the Scott-Knott test.

Example 2 Calinski & Corsten (1985) proposed two grouping methods, one based on the F distribution, we
will call it the CF test, and the other based on the studentized range, we will call it the CR. For these authors,
the idea of the tests was to provide unambiguous results, to have a separation of small groups and that this
separation would provide more homogeneous groups among any other formation of groups, that is, groups with
lower intra-group variances. Thus, they exemplified the application of the two proposed tests applying them
in the experiment analyzed by Duncan (1955) and then by Scott & Knott (1974). The experiment evaluated
the yields (bushels per acre) of seven varieties of barley were compared in a randomized block design, which
contained 6 blocks. The means of the varieties were:

Treatments 1 2 3 4 5 6 7
Means 49,6 58,1 61,0 61,5 67,6 71,2 71,3

We will present the results for the tests proposed by Calinski & Corsten (1985), the Scott-Knott test, and
the MGM and MGR tests, in Table 12. Results that present equal letters in the means between treatments
represent that they are statistically equal. The different letters represent the means of different groups. To verify

Table 12. Result of multiple comparison tests

Test results
Varieties CF CR Scott-Knott MGM MGR

1 b b b c b
2 b b b b a
3 b b b b a
4 b b b b a
5 a a a a a
6 a a a a a
7 a a a a a

the homogeneity of the groups, we applied a weighted average of the variances of the formed groups, in which
the weights were the degrees of freedom computed in each group. For example, for the CF test, we have two
groups formed (1-4)(5-7). Thus, the variance of means for the first group was 30.33667, and for the second
it was 4.443333. In the first group, there are four means, and therefore, 3 degrees of freedom. In the second
group, there were 2 degrees of freedom. Thus, the value for the weighted mean of the variances of the groups
for the CF test is (30.33667 × 3 + 4.443333 × 2)/5 = 19.97933. For the other tests, the weighted average
of the variances is given in Table 13.

Table 13. The weighted average of the variances of the groups formed from the multiple comparison tests

Tests Average of variances
CF 19.97933
CR 19.97933

Scott-Knott 19.97933
MGM 3.906667
MGR 32.13367

It can be observed that the MGM test presented more homogeneous groups and the MGR test presented
the formation of more heterogeneous groups. One could think that this occurred because the MGM test formed
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more groups. However, as well mentioned by Calinski & Corsten (1985), it can be observed that the difference
between consecutive means of treatments 1 and 2, in the order of 2.33σȲ , was greater than the difference
between treatments 4 and 5, in the order of 1.67σȲ . These last treatments were the limited treatments for the
breakdown of group formation. However, the formation of the groups by the CF, CR and Scott-Knott tests,
with the inclusion of treatment 1 in the group (1-4), provided that this group had a greater sum of squares,
and consequently, a greater variance for the group. This shows that the treatment included in this group differs
from the other treatments and, therefore, could not be included in the group. This was verified by the MGM
test, which resulted in the formation of groups (1)(2-4)(5-7).

Something that also draws attention is that Ramos & Vieira (2014) evaluated these tests, and the power
of the CF and CR tests is greater than the power of the MGM test. Considering, a scenario similar to this
experiment, with 5 treatments and 4 replications under complete H1, the power of the CF and CR tests to
detect the difference between means of 2σbarY or more, is greater than approximately 30%. For the MGM
and MGR tests, the power of the tests is in the order of 25% and 21%, respectively. Still, the tests proposed
by Calinski & Corsten (1985) could not detect separation of treatment 1 form treatments 2 to 4. This can be
explained because for the CF and CR tests to have reached the formation of this group, they had a type I error
rate per experiment ranging from 1% up to 53.1%.

Thus, the fact that the groups formed by the MGM test were no longer homogeneous because they separated
more groups, but rather because they formed groups with similar characteristics.

These results presented in the two examples do not mean that this will always happen for the
MGM and MGR tests. However, one can observe the good characteristics that these tests, whereas
the classical tests such as Scott-Knott could not detect such differences. Thus, the idea is not to
show that these proposed tests are better than those already present in the literature, but to be an
alternative for the use of procedures that present good characteristics, with the control of type I
error per experiment, under complete H1, high power, and without ambiguity in its results, that is,
a new alternative for the formation of groups of means.

Based on Carmer & Swanson (1973), one should not develop an MCP giving total emphasis
to type I error, because in this view one can see the fragility of Tukey’s test. Nor even less want
the formation of smaller groups in a more homogeneous way, since it ends up generating some
inconsistencies as shown in the Example 2. However, we cannot make choices like those made by
Carmer & Swanson (1973 when choosing Fisher’s protected T-test or the t-Bayesian test, because
it performs well in some evaluations, however, very high rates of type I error. One should be very
cautious in the usage choices of an MCP because the search for good multiple comparison procedures
continues since this still represents a gap in science.

5. Conclusions
The proposed MGM and MGR tests performed better than the Skott-Knott’s test, in most of the
evaluations performed, except for the type I error per experiment under partial H0, which even
the Skott-Knott test does not control. Among all the tests evaluated in this study, the MGM test
presented the best performance in almost all evaluation configurations, adding the advantage of not
presenting ambiguity in its results.

However, we noticed some limitations of the proposed tests (MGM and MGR tests). As the
number of treatments increases in the simulated scenarios, under partial H0, the empirical type I
error rate increases. While the only test presented that controls the type I error rate at the nominal
level of significance is the Tukey’s test, but with decreasing power the more the number of treat-
ments in the simulated scenarios is increased. This means that the decision to choose the best test
to be used must be taken with caution and verification of the advantages and disadvantages and in
which experimental scenario the test is being applied.
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We are presenting two more possible tests to be used in multiple comparison procedures, allow-
ing the researcher more test options for decision making.
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