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Abstract
Coronavirus Disease 2019 (COVID-19) has been responsible for an international health crisis that de-
manded incredible efforts from the scientific community to understand the disease, its risk factors, and
consequences. In this work, we seek to investigate the role of serum chloride and main Strong Ion Differ-
ence (mSID) on the survival of severely ill COVID-19 patients treated in the Intensive Care Unit (ICU).
Electrolyte measurements were taken daily from each patient from their admission to death or discharge.
ICU survival time was measured in days from admission, and discharged patients were considered cen-
sored. The longitudinal trajectories of chloride and mSID were associated with patients’ survival times
using joint models for longitudinal and time-to-event data. A total of 58 COVID-19 patients were en-
rolled, and 21 died during hospitalization. Older patients had lower concentrations of chloride overall,
and both chloride and mSID increased over time for patients on average. Age was a significant risk factor
for ICU mortality, along with the slope of estimated longitudinal trajectory of chloride. Patients with
decreasing chloride levels during ICU stay had increased hazard of death. This results of this study sug-
gest that acquired hypochloremia may be an important marker of disease progression and risk of death in
patients with severe COVID-19. As such, chloride should be further validated as longitudinal marker for
monitoring prognosis during the course of ICU stay. Neither the current values or the slope of the tra-
jectory of mSID were associated with mortality in this sample. The association between the longitudinal
trajectory’s slope and ICU mortality is important to understand the dynamics of the disease on a patient
level, and could only be quantified by using the joint model framework.
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1. Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-

19, has been a major health concern worldwide since its emergence in November 2019. As a respira-
tory disease that can progress to severe stages, affecting multiple organs and systems, it is important
to understand the dynamics of laboratory parameters that indicate disease progression and future
prognosis (Tezcan et al., 2020). Electrolytes maintain and regulate cellular functions in the hu-
man body (Shrimanker & Bhattarai, 2022). Imbalances in serum electrolytes can have detrimental
consequences if not promptly dealt with, especially when associated with severe diseases such as
COVID-19. Different imbalances in electrolytes associate with severe illness and poor outcomes in
COVID-19 patients (Sultana et al., 2020; Tezcan et al., 2020), and therefore their monitoring may
have important implications in the management and prognosis of critically ill patients.

Chloride is an important electrolyte, found predominantly in the extracellular fluid. Chloride
levels are regulated by kidney function, and its imbalance can lead to excess water gain conditions
such as congestive heart failure (Shrimanker & Bhattarai, 2022). Imbalances in chloride levels have
been associated with poor outcomes in critically ill patients. The presence of low chloride lev-
els, known as hypochloremia, has been associated with higher frequencies of intensive care unit
(ICU) admission, use of mechanical ventilation, mortality (Tezcan et al., 2020), and development of
acute kidney injury (AKI) (Kimura et al., 2020). ICU mortality and AKI have also been associated
with hyperchloremia (Chowdhury et al., 2012; Neyra et al., 2015). Additionally, main Strong Ion
Difference (mSID), the difference between sodium and chloride measurements, is also a possible
prognostic tool for critically ill patients (Mallat et al., 2013), and other authors have studied its rela-
tion to kidney impairment and mortality (Cusack et al., 2002; Ho et al., 2016; Kimura et al., 2020).
Although electrolyte imbalances reported in cross-sectional studies might be related to underlying
patient characteristics, the pathological processes that occur as a consequence of COVID-19 itself
can also lead to imbalances during the disease course. Particularly, SARS-CoV-2 acts directly on
the renin-aldosterone-angiotensin system, which regulates electrolyte homeostasis(LIPPI; SOUTH;
HENRY, 2020). It has been suggested that electrolyte levels may be successful indicators of disease
progression (Atila et al., 2021), and that the correction of unbalanced levels may improve patient
outcomes (de La Flor et al., 2021; Tan et al., 2020).

Abnormal chloride measures at hospital admission have been associated with poor prognosis
and overall mortality(DUAN et al., 2020; SULTANA et al., 2020; TEZCAN et al., 2020) through
methods such as univariate testing and logistic regression analysis. However, these results only
consider the status of chloride deregulation at the time of presentation, given the cross-sectional
nature of the studies. By evaluating disease progression over time, longitudinal measures can be used
to increase the performance of regression models and provide valuable insight into the dynamics of
disease. When dealing with longitudinal data, it is important to consider the mechanism that leads
to imbalance and missing values. In the case of ICU data, patients may provide a longer or shorter
sequence of information given the length of their stay in the ICU. When the sequence is interrupted
by patient’s death, this might be a case of non-random dropout, in which traditional mixed effects
models cannot be employed. Joint models for longitudinal and time-to-event data overcome this
issue by modelling the longitudinal measures and the dropout mechanism (survival) simultaneously.
In this study we aim to examine serum chloride alterations in COVID-19 patients being managed in
the ICU of the Security Forces Hospital in Saudi Arabia, measured daily from admission to discharge
or death, and explore the association between these longitudinal measures and patient survival via
joint models.
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2. Matherials and Methods
2.1 Study design, data collection and outcomes

This retrospective cohort study was approved by the Institutional Review Board of the Security
Forces Hospital in accordance with the National Committee of Bio Ethics in Saudi Arabia and
received a waiver of informed consent due to no greater than minimal risk to participants. This
study was conducted in accordance with the Declaration of Helsinki, under the terms of relevant
local and national legislation.

The observational unit consists of adult patients presenting to the ICU with reverse transcrip-
tase polymerase chain reaction (RT-PCR)-confirmed SARS-CoV-2 infection, during the period
between the 8th of June 2020 and the 18th of August 2020.Chloride measurements were taken at
ICU admission, as well as in the following days until death or discharge. The levels were quanti-
fied using an Ion-Selective Electrode (Roche Cobas 8000; Roche Diagnostics, Basel, Switzerland).
Patients’ baseline characteristics such as age, sex and comorbidities were also recorded.

This study has two main outcomes, which were modeled jointly in order to make inferences on
the relationship between them. The first encompasses the longitudinal measures of serum chloride,
and the second is the number of days of survival in the ICU for each patient. Patient survival was
also analyzed jointly with mSID, a secondary outcome.

2.2 Statistical analysis
The joint model approach was utilized to accommodate longitudinal trajectories truncated by

death, as well as estimate the association between the longitudinal markers and survival time. This
methodology combines the use of Linear Mixed Effects (LME) models for longitudinal chloride and
mSID measures and proportional hazards regression for the survival time.

Given a standard linear mixed model:
yyyi = Xiβββ + Zibbbi + εεεi,
bbbi ∼ N (0, D),
εεεi ∼ N (0,σ2IIIni ),

(1)

where yyyi is a vector of responses of dimension ni that assumes values yij for the ith individual at the
jth time point. Xi and Zi are known design matrices, for the qy fixed-effects regression coefficients
βββ and the qb random-effects regression coefficients bbbi. A multivariate normal distribution with mean
zero and variance-covariance matrix D is assumed for the random effects, which are independent of
the error terms εεεi, also normally distributed with mean zero and variance matrix σ2Ini . Responses
from the same subject at different time points are conditionally independent, given the covariates
and random effects, and have conditional normal distributions. Assuming two random effects, the

matrix D =

[
σ2

bi1
ρb

ρb σ2
bi2

]
.

And given a proportional hazards model:

hi(t|wwwi) = h0(t) exp(γγγ′wwwi), (2)

where hi(t) is the ith subject’s hazard of death at time t, www′
i = (wi1, ..., wip) corresponds to the covariate

vector and γγγ the vector of p respective regression coefficients. The h0(t) function is the baseline
hazard function, the hazard function of a subject whose γγγ′wwwi = 0, and is assumed to have a Weibull
distribution.

The time-dependent slopes joint model takes the form:
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hi(t) = h0(t) exp{γγγ′wwwi + α1mi(t) + α2m′
i(t)}, (3)

where mi(t) is a term that denotes the true value of the longitudinal variable at time t for the ith
subject, and m′

i(t) is the first derivative of the longitudinal trajectory of the longitudinal variable
at time t, that represents its slope at that time point for the ith subject. α1 and α2 are association
parameters that quantify the relationship between the hazard of death and the longitudinal marker
value at time t, as well as the marker’s rate of change at time t (Rizopoulos, 2012).

Estimation of the joint model is based on the joint distribution of the observed outcomes {Ti, δi,yyyi},
where the vector yyyi contains the observations of the ith individual at each available time point j, Ti
the observed event times, δi is the indicator of censoring, and assuming that the random effects bbbi
account not only for the correlation between the repeated measurements in the longitudinal data
but also the association between the longitudinal and the event outcomes.

Formally, we define θθθ = (θθθ′t,θθθ′y,θθθ′b)′ the full parameter vector, where θθθt corresponds to the
p+ph parameters for the event time outcome, p the number of regression coefficients in γ and ph the
parameters of the baseline hazard distribution. θθθy corresponds to the parameters for the longitudinal
outcome (a vector of qy + 1 elements, qy the size of the covariates and intercepts parameter vector
βββ, plus the estimated variance for the errors σ2) and θθθb corresponds to the vector of qb ∗ (qb +
1)/2 parameters of the random-effects covariance matrix. Therefore, the event outcomes and the
longitudinal outcome are conditionally independent, given the random effects and parameters, and
longitudinal measurements of the same subject are also independent given the random effects and
parameters,

p(Ti, δi,yyyi|bbbi;θθθ) = p(Ti, δi|bbbi;θθθ)p(yyyi|bbbi;θθθ), and (4)

p(yyyi|bbbi;θθθ) =
∏

j
p{yi(tij)|bbbi;θθθ}. (5)

The log-likelihood contribution for the ith subject can be defined as

log p(Ti, δi,yyyi;θθθ) = log

∫
p(Ti, δi,yyyi,bbbi;θθθ)dbbbi

= log

∫
p(Ti, δi|bbbi;θθθt,βββ)

[∏
j

p{yi(tij)|bbbi;θθθy}
]
p(bbbi;θθθb)dbbbi,

(6)

where the conditional density for the survival part p(Ti, δi|bbbi;θθθt,βββ) takes the form

p(Ti, δi|bbbi;θθθt,βββ) = hi(Ti|Mi(Ti);θθθt,θθθ)δiSi(Ti|Mi(Ti);θθθt,βββ)

=
[
h0(Ti) exp{γγγ′wwwi + α1mi(Ti) + α2m′

i(Ti)}
]δi

exp
(

–
∫ Ti

0
h0(s) exp{γγγ′wwwi + α1mi(s) + α2m′

i(s)}ds
)
,

(7)

and the joint density for the longitudinal responses together with the random effects is given by

p(yyyi|bbbi;θθθ)p(bbbi;θθθ) =
∏

j
p{yi(tij)|bbbi;θθθy}p(bbbi;θθθb)

= (2πσ2)–
ni
2 exp{–||yyyi – Xiβββ – Zibbbi||2/2σ2}

(2π)
qb
2 det(D)–

1
2 exp(–bbb′iD

–1bbbi/2),

(8)
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where ||x|| = [
∑

i x2
i ]1/2 denotes the Euclidean vector norm.

Maximization of the log-likelihood function is done using the Expectation-Maximization algo-
rithm (Rizopoulos, 2010).

Regression coefficients are presented, as well as their standard errors, Confidence Intervals (CI)
and respective p-values. Statistical analysis was performed using R software (version 4.0.2, R Foun-
dation for Statistical Computing, Vienna, Austria) and packages survival (Therneau, 2022), nlme
(Pinheiro et al., 2022) and JM (Rizopoulos, 2010). P-values below 5% were considered statistically
significant.

3. Results
3.1 Patient cohort and outcomes

Overall patient characteristics can be observed according to patient outcomes in Table 1. Cat-
egorical data were reported as absolute number (n) and relative frequency (%), whilst continuous
variables were reported as median and interquartile range (IQR). In order to identify any baseline
differences between characteristics of deceased and survivors, categorical variables were compared
using the chi-squared test or Fisher’s exact test, and continuous variables were compared using the
Mann-Whitney U test.

A total of 58 patients with laboratory-confirmed COVID-19 were included in this study. Sixteen
patients were female and 42 were male, ranging from 27 to 87 years of age. There was a significant
difference in age between patients who died and those who survived, according to Mann-Whitney’s
U test. Deceased patients tended to be of older age. Twenty-nine patients presented with a diagnosis
of hypertension and 3 with coronary artery disease, whilst 2 patients had been previously diagnosed
with heart failure, 17 with hyperlipidemia and 33 with diabetes. Chronic obstructive pulmonary
disease was present in one patient, chronic kidney disease in 7, and 4 had a history of stroke. These
patients spent a minimum of two and a maximum of 58 days in the ICU, with a median ICU time of
12.5 days. A total of 21/58 (36.2%) patients died during the course of their ICU stay. We did not find
any significant differences between deceased and survivors regarding the presence of comorbidities.

Table 1. Baseline characteristics of COVID-19 positive patients

Variable Total Sample
(n = 58)

Died
(n = 21)

Survived
(n = 37)

p-value

Age, yearsa 57.0 (48.2-67.0) 65.0 (56.0-72.0) 52.0 (43.0-62.0) 0.015
Sexb Male 42 (72.4%) 17 (80.9%) 25 (67.6%) 0.365

Female 16 (27.5%) 4 (19.0%) 12 (32.4%)
Hypertensionc 29 (50.0%) 12 (57.1%) 17 (45.9%) 0.585
Coronary Artery Diseaseb 3 (5.2%) 2 (9.5%) 1 (2.7%) 0.546
Heart Failureb 2 (3.5%) 2 (9.5%) 0 (0.0%) 0.127
Hyperlipidemiac 17 (29.3%) 6 (28.6%) 11 (29.7%) 1
Diabetesc 33 (56.9%) 12 (57.1%) 21 (56.8%) 1
Chronic Obstructive Pulmonary Diseaseb 1 (1.7%) 1 (4.8%) 0 (0,0%) 0.362
Chronic Kidney Diseaseb 7 (12.1%) 3 (14.3%) 4 (10.8%) 0.695
History of Strokeb 4 (6.9%) 1 (1.7%) 3 (8.1%) 1
Days in ICUa 12.5 (6.0-21.7) 14.0 (6.0-24.0) 12.0 (7.0-21.0) 0.852

aMann-Whitney’s U test, bFisher’s Exact test, cChi-Square test

Given the normal range of chloride between 98 and 106 mmol/L for adults and elderly patients
(RN et al., 2018), 15/58 (25.9%) patients were hypochloremic when admitted to the ICU, while
6/58 (10.3%) presented with hyperchloremia. Thirty-two patients had a measured serum chloride
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concentration below the lower limit of normal at some point in their ICU stay, while 34 were
above the upper limit on at least one occasion. The profile charts allow us to visualize each patient’s
sodium trajectory over the course of ICU treatment, both for deceased and discharged patients
(Figure 1A). Chloride measurements show reasonable variation at baseline and over time for each
subject. A slight difference in overall trajectories is suggested by the profile chart and regression
lines presented, given that patients whose outcome was death appear to have decreasing levels of
chloride over time, while discharged patients display stable or increasing measurements throughout
their ICU stay. These observations suggest that an LME model for these longitudinal trajectories
might benefit from a random intercept term as well as a random slope term. Figure 1B shows the
profile chart for mSID, where the normal range of 32 through 34 mmol/L (Kimura et al., 2020)
is shaded for reference. Although we can also observe different baseline values and different slopes
for each patient’s trajectory, and all patients presented values above the normal range at some point
during ICU stay, systematic differences between deceased and survivors are less clear.
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Figure 1. Profile charts for (a) chloride and (b) mSID over time according to patient outcome. Shaded area represents
normal range. Solid blue line is a simple linear regression.
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As for the survival outcome, given that age was significantly different between survivors and
deceased, the Kaplan-Meier estimator was also used to plot different survival curves according to
patient’s age groups. A large gap can be observed between the curves in Figure 2, which suggests
that age is a determining factor when estimating risk of death in the ICU. Median survival time was
estimated at 42 days for those under 60 years of age, and 24 days for those aged 60 years or older.

3.2 Joint modeling
Taking into account the behaviour seen in the descriptive analysis, we specified the longitudi-

nal sub models for Chloride and mSID measurements as LME models with random intercept and
random slopes. As age is known to be an important prognostic factor in COVID-19 patients, and
we observed it to have an important role in this cohort’s survival, patients’ scaled age was used as an
independent variable in the models, such that one unit of age corresponds to one standard deviation
of 14.4 years from the mean of 56.7 years. Time in the ICU was also reparameterized so that one
unit of time corresponds to 3 days in the ICU. The survival sub model is a proportional hazards
regression model, where patients who did not die during their ICU stay are censored. Individuals’
age was also included in the model as a covariable, scaled in the same way as mentioned for the
LME model. For the joint model specification, to avoid underestimation of standard errors (HSIEH;
TSENG; WANG, 2006), the baseline hazard function of the survival part was assumed to follow a
Weibull distribution. Model estimates for chloride are presented in Table 2, and Table 3 for mSID.
Standard errors for model coefficients are the standard asymptotic maximum likelihood estimators:

v̂ar(θ̂θθ) =
{

–
∑n

i=1
∂2 log p(yyyi,Ti,δi;θθθ)

∂θθθ⊤∂θθθ

∣∣∣
θθθ=θ̂θθ

}–1
, and p-values result from z-tests, given the parameters’

asymptotic normal distributions.

Table 2. Joint Model Coefficients for Chloride and Survival

Coefficient Std. Error p-value

Longitudinal Process
Intercept 100,58 0,535 <0.001
Age -0,733 0,304 0,016
Time 0,388 0,076 <0.001

Event Process
Intercept -7,338 2,054 <0.001
Age 0,429 0,251 0,087
α1 0,018 0,015 0,216
α2 -1,061 0,531 0,045

σbi1 = 5.179,σbi2 = 1.076,ρb = –0.623

Therefore, the model expression for chloride and survival takes the form:

hi(t) = h0(t) exp{–7.338 + 0.429 ∗ Age+
+0.018 ∗ [(100.58 + bi1) – 0.733 ∗ Age + (0.388 + bi2) ∗ Time]–

–1.061 ∗ [0.388 + bi2]},
(9)

and the expression for mSID and survival takes the form:

hi(t) = h0(t) exp{–5.311 + 0.344 ∗ Age+
+0.021 ∗ [(37.944 + bi1) – 0.349 ∗ Age + (0.277 + bi2) ∗ Time]–

–0.277 ∗ [0.277 + bi2]}.
(10)



Brazilian Journal of Biometrics 95

Table 3. Joint Model Coefficients for mSID and Survival

Coefficient Std. Error p-value

Longitudinal Process
Intercept 37,944 0,341 0,000
Age -0,349 0,239 0,143
Time 0,277 0,031 0,000

Event Process
Intercept -5,311 0,925 0,000
Age 0,344 0,231 0,137
α1 0,021 0,023 0,364
α2 -0,277 0,618 0,654

σbi1 = 2.777,σbi2 = 0.765,ρb = –0.480

Residual plots were used to evaluate each model’s adequacy. Figure 3 presents the standardized
conditional residuals for the longitudinal process of each model and the Cox-Snell residuals for the
survival process. It is expected that conditional residuals are randomly distributed around zero and
have constant variability. These assumptions are reasonably met by both models, but better by
the chloride and survival model, whereas the mSID model shows some lack of fit when estimating
higher values of mSID. We also expect that the Cox-Snell residuals survival function follows a unit
exponential distribution, and the plots show relative closeness between the two functions, indicating
a good fit of the survival part of the model.
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Figure 3. Standardized conditional residuals for the chloride and survival model (a) and the mSID and survival model (b),
and estimated survival functions for the Cox-Snell residuals of (c) the chloride and survival model and (d) the mSID and
survival model, where dashed lines represent the function’s 95% confidence interval, and solid grey lines represent the
unit exponential.
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Patients’ age was found to be significantly associated with chloride measurements, every 14.4
years corresponding to a mean decrease of 0.73 mmol/L in chloride (95% CI: -1.33 to -0.14, p=0.016).
The overall mean effect of time was also significant, such that chloride measurements increased by a
mean of 0.388 mmol/L every three days in the ICU (95% CI: 0.239 to 0.537, p <0.001). The current
value association parameter α1 was not significant, meaning there was no association between a pa-
tient’s chloride concentration at a specific time point and their hazard of death at that same time. In
contrast, the slope association parameter alpha 2 was estimated at -1.061, corresponding to a hazard
ratio of 0.35. The negative coefficient indicates that longitudinal chloride trajectories with positive
slopes were associated with decreased hazard of death, while negative slopes (i.e., trajectories that
decrease over time) were associated with increased hazard of death.

The joint model for mSID showed a significant average increase in sodium-chloride differences
over time, a mean increase of 0.277 units every 3 days. Longitudinal values of mSID did not, how-
ever, associate with ICU mortality.

4. Discussion
The results of this study reveal that, as an essential electrolyte, chloride has an important role in

describing the progression of COVID-19 disease in severely ill patients treated in the ICU. Chloride
imbalances have previously been associated with mortality in non-COVID-19 critically ill patients(Ji
& Li, 2021; Marttinen et al., 2016), and in those with severe acute conditions (Grodin et al., 2015;
Ter Maaten et al., 2016). A study of hospitalized patients suffering from acute heart failure found
that newly developed or persistent hypochloremia was associated with increased mortality, while
baseline hypochloremia that resolved within 14 days was not (Ter Maaten et al., 2016). These find-
ings are in accordance with the results of the present study, where the rate of decrease in chloride
concentration was significantly associated with lower survival time, while increase in chloride con-
centration was associated with enhanced survival. In our study, the longitudinal chloride trajectory
slopes are subject-specific given the random effects declared in the LME model, and their standard
deviation was estimated at 1.076. A patient’s random slope adds to the overall effect of time, so that a
patient with a decrease of one standard deviation from the mean slope would have an estimated slope
of -0.688 (from 0.388 to -1.076), associated with a hazard ratio of 2.075, meaning a patient whose
chloride measurements decrease 0.688 mmol/L every three days is, on average, twice as likely to
die when compared to a patient with stable chloride throughout their hospitalization. These results
also highlight the importance of longitudinal studies that consider the dynamics of these biomarkers
over time in hospitalized patients.

Patients’ older age was also associated with lower chloride values over time, which may be due to
older patients’ reduced homeostatic capacity (Rolls & Phillips, 1990). Hypochloremia in ICU patients
may be related to gastrointestinal or renal losses of chloride ions, which can occur in the presence of
renal disorders, gastrointestinal symptoms such as vomiting, and congestive heart failure (Bandak &
Kashani, 2017). Acute renal involvement is expected in COVID-19 patients and is correlated with
poor outcomes and higher mortality in these patients (Pourfridoni et al., 2021). Gastrointestinal
symptoms such as abdominal pain and vomiting have also been widely reported in relation to this
disease (Henry et al., 2020). Other authors report that COVID-19 may increase the odds of acute
heart failure in both previously healthy patients (Bader et al., 2021) and in those with previous history
of heart failure (Rey et al., 2020). Combined with the present study, previous investigations suggest
that the effects of SARS-CoV-2 infection on kidney and heart function may translate into lowering
chloride levels, making it an important marker of disease progression and poor prognosis. Moreover,
hypochloremia may cause metabolic alkalosis, leading to further clinical decompensation (Tani et al.,
2012). Overall, it is likely that hypochloremia in COVID-19 patients is multi-factorial and clinically
represents a declining capacity of the body to maintain homeostasis.

This study is limited by its small sample and observational nature. Although we were not able to
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find a significant association between the longitudinal trajectories of mSID and death, this may be
a result of an underpowered sample, considering that there was great variability between patients,
resulting in large standard errors for model estimates. Some studies of critically ill patients without
COVID-19 have had similar results, where chloride performed better as a prognostic tool than
markers based on anion differences (Cusack et al., 2002; Ho et al., 2016), while larger samples have
found that mSID correlates with the development of acute kidney injury (Kimura et al., 2020). A
strength in the methodology used in this study is the increase in information that can be found when
collecting data from patients at many time points, instead of limiting data collection to the moment
of hospital admission. Traditional regression models would not be able to evaluate the significance
of the longitudinal trajectory’s slope on the survival time, unlike the joint model parameterization
presented in this work.

5. Conclusions
Decreasing chloride during ICU stay was associated with increased mortality in COVID-19 pa-

tients, as was older age, independent of the current value of chloride on any given time, indicating
that acquired hypochloremia may be an important marker of disease progression in severely ill pa-
tients. Older patients had overall lower values of chloride over time. The etiology of hypochloremia
in COVID-19 patients is likely multi-factorial and clinically represents a declining capacity of the
body to maintain homeostasis, thus correlating to poor outcomes and higher mortality. As such,
chloride should be further validated as a longitudinal marker for monitoring prognosis during the
course of ICU stay. We highlight the importance of longitudinal monitoring of ICU patients, as the
analysis of markers’ trajectories over time may be more informative and allow for medical care to be
tailored to each patient in real-time. This relationship between a longitudinal slope and a survival
outcome can only be inferred on by simultaneously estimating the two regression models using the
joint model framework.
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