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Abstract
Stunting is one of the problems that the world focuses on today to be resolved immediately. World
Health Organization (WHO) stipulates that a country’s public health problems are said to be chronic if
the stunting prevalence rate reaches more than 20%.The prevalence rate of stunting in Indonesia in 2021
reached 24.4%. This study aims to analyze factors that correlate with the prevalence of stunting in East
Java Province using machine learning methods: Random Forest Regression (RFR) and Geographically
Weighted Random Forest (GWRF) methods. The results of this research are the factors that correlate
with the prevalence of stunting based on the RFR method, namely the number of babies who get early
breastfeeding initiation, the number of malnourished toddlers, and the number of active integrated health
posts. The RFR method results in RMSE values of 3.014, MAPE 11.69%, and R2 0.8168. The factors that
correlate with the prevalence of stunting based on the GWRF method are divided into six groups accord-
ing to the similarity of factors that correlate with stunting in the regency/city. The GWRF method gives
better results than the RFR indicated by the resulting RMSE values of 1.023, MAPE 4.45%, and R2 0.9788.

Keywords: Stunting; Random forest regression; Geographically Weighted random forest.

1. Introduction
Stunting is a condition of stunted physical growth in children due to a chronic lack of nutri-

tional intake (Abdullah et al., 2021; Kemenkes, 2021; Roediger et al., 2020). The World Health
Organization (WHO) stipulates that a country’s public health problems are said to be chronic if the
stunting prevalence rate reaches more than 20% (De Onis et al., 2019; Kadir, 2021). Indonesia is
one of the countries with chronic public health problems because the national stunting prevalence
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in 2021 reached 24.4% (Kemenkes, 2021). East Java Province is one of the priority provinces for
handling stunting, according to BKKBN, because it is included in the five provinces with the high-
est number of stunting cases in Indonesia. In 2021, Bangkalan Regency had the highest stunting
prevalence in East Java, reaching 38.9%. The lowest stunting is in Mojokerto City, with a per-
centage of 6.9% (Kemenkes, 2021). The relationship between stunting prevalence and influential
factors is not always linear (Bitew et al., 2022; Sisimayi et al., 2021), and multicollinearity sometimes
be found (Chilyabanyama et al., 2022; Sisimayi et al., 2021).

A method that can be used to analyze non-linear data and data with multicollinearity is Random
Forest Regression (RFR). RFR consists of a collection of decision trees for regression problems and
can model non-linear relationships between dependent and independent variables (James et al., 2013).
The research about a factor analysis that affects nitrate concentration using RFR (Ouedraogo et al.,
2018) concludes that the RFR Method gives better results than linear regression models, indicated
by the larger R2 values of the RFR method of 0.97 and R2 of the linear regression model of 0.64.
RFR for poverty estimation in Bangladesh (Zhao et al., 2019) results an R2 value of 0.70. However,
the RFR is a machine learning method that works without regard to the spatial aspects of the data.

Differences in stunting prevalence between observation areas can be influenced by different
geographical (Ahmed et al., 2021; Menon et al., 2018; Muche et al., 2021), environmental (Budge et
al., 2019; Kwami et al., 2019; Titaley et al., 2019), and social factors (Kwami et al., 2019; Mohammed
et al., 2019) between regions. Therefore, the factors that influence the prevalence of stunting in
each regency in East Java Province are thought to be influenced by spatial heterogeneity. Spatial
heterogeneity is found due to the presence of characteristic differences that occur between regions.

One machine learning method that considers spatial heterogeneity in the data is Geographi-
cally Weighted Random Forest (GWRF). It is a combined method between GWR and RFR that
can analyze data spatially with non-linear relationships between independent and dependent vari-
ables. The main difference between RFR and GWRF is that the RFR method analyzes data without
considering spatial aspects, while the GWRF method analyzes data by considering it. Some of the
previous studies related to the GWRF method include being used in population modeling problems
(Georganos et al., 2021), risk factor analysis of COVID-19 mortality rates (Luo et al., 2021), anal-
ysis of socioeconomic and environmental factors against poverty in China (Luo et al., 2022), and
evaluation of the causes of changes in the amazon forest in Northern Ecuador (Santos et al., 2019).
Using GWRF, the result of Georganos et al., 2021 gives an RMSE value of 0.648 in analyzing the
population distribution, while Luo et al., 2021 obtained an R2 of 0.78 in analyzing the distribution
of the COVID-19 mortality rate.

In this research, we investigate the factors that correlate with the prevalence of stunting in East
Java Province, Indonesia. The difference in stunting prevalence rates in each region shows that it
is thought to be influenced by spatial aspects. GWR is a method that works by paying attention to
the spatial aspects of data. Previous research on analyzing factors causing stunting using the GWR
method was done by Al Azies et al., 2019. However, the method was only limited to linear and
non-multicollinearity data. Based on these problems, this research aims to analyze stunting data in
East Java Province, Indonesia, using the machine learning method (GWRFR and RFR), with and
without considering spatial heterogeneity. The methods are more flexible and can be used for linear
or non-linear, and with or without multicollinearity data. Furthermore, we discuss comparing the
two approaches in analyzing the stunting data.

2. Materials and Methods
The data in this research are from the publications of the Ministry of Health Indonesia (Ke-

menkes, 2021), the East Java Provincial Health Office (Dinkes, 2021), and the Central Agency on
Statistics of East Java Province (BPS, 2022). The data consists of stunting prevalence data along with
factors that are suspected of affecting stunting in nine cities and 29 regencies in East Java Province,
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Indonesia, obtained in 2021. The variables consist of one dependent variable (Y) and eight inde-
pendent variables (X), with details in Table 1.

Table 1. Research variables

Variables

Prevalence of stunting cases (Y)
Percentage of poor population (X1)
Percentage of families with access to proper sanitation (X2)
Percentage of low birth weight babies (X3)
Number of active integrated health posts (X4)
Percentage of babies who obtain exclusive breastfeeding (X5)
Number of newborns who get early initiation of breastfeeding (X6)
Number of underweight toddlers (X7)
Number of pregnant women who received blood-added tablets (X8)

2.1 Random Forest Regression (RFR)
RFR is a method that consists of a collection of decision trees used for regression problems. The

Random Forest algorithm (Schonlau & Zou, 2020) is given below:
1. Tunning mtry and ntree parameters.
2. Randomly retrieve Di sample data from dataset D with returns.
3. Build a tree by using Di sample data.
4. Repeat steps 2-3 as many as k (the desired number of trees).

2.1.1 Parameter Tuning
Parameter tuning is performed to determine the optimal parameters to be used in constructing

a Random Forest. Parameters in a Random Forest include mtry and ntree. The parameter tuning
process is carried out with k-fold cross-validation (Probst et al., 2019).

2.2 Geographically Weighted Random Forest (GWRF)
GWRF is a combined method of GWR and Random Forest that can be used to analyze spatial

data with non-linear relationships between dependent and independent variables. GWRF method
procedures are given below (Luo et al., 2021, 2022)
1. Define weights using kernel functions
2. Determine the optimum bandwidth value
3. Select all neighbors from region i according to the bandwidth value
4. Build a local Random Forest (RF) with the input of region i and its neighbors
5. Analyze the value of variable importance of region i
6. Repeat steps 3-5 for each region i, so that the variable importance value of each region is obtained.

2.2.1 OptimumWeight and Bandwidth
The weight indicates the range of the region to be involved in the modeling. There are two

weight functions in the GWRF method, namely fixed kernel and adaptive kernel. A fixed kernel
is a kernel that refers to the maximum distance from the region to be involved in constructing the
local RF. The adaptive kernel is a kernel that refers to the maximum number of neighbors that will
be involved in building a local RF (Georganos et al., 2021). After determining the type of kernel,
the next step is determining the optimum bandwidth value. GWRF selects the optimum bandwidth
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based on the highest R2 OOB value. The selection of the nearest neighbor that falls within the
bandwidth range is determined based on the Euclid distance between the i-th region and the j-th
region defined by the formula in equation 1.

dij =
√(

ui – uj
)2 +

(
vi – vj

)2 (1)

where (ui,vi) is the latitude and longitude value of region i.

2.2.2 Variable Importance
The degree of importance of an independent variable can be known by using the formula in-

creasing the average error value (%IncMSE). %IncMSE indicates the percentage increase in MSE
value when randomization is performed on an independent variable (Liang et al., 2020). The formula
of %IncMSE can be seen in Equation 2.

%IncMSE =
(MSEpermuted – MSE

MSE

)
× 100% (2)

where MSE is mean square error and MSEpermuted is MSE value obtained when permutations
are randomly performed on an independent variable.

2.3 RMSE, MAPE, and R-Square
The results obtained from the RFR and GWRF methods are then compared to choose which

method gives better results in this study. The selection of the best approach is determined based on
the values of Root Mean Square Error, Mean Absolute Percentage Error, and R-Square (Feng et al.,
2021).

2.3.1 Root Mean Square Error (RMSE)
RMSE is the square root value of the mean squared error (MSE). The formula can be written as

below:

RMSE =

√√√√1
n

n∑
i=1

(yi – ŷi)
2 (3)

where n is the number of observations, yi is a value of observation result, and ŷi denotes the predicted
result value.

2.3.2 Mean Absolute Percentage Error (MAPE)
The MAPE value indicates the average percentage of error of the prediction value compared to

the observation value

MAPE =
1
n

n∑
i=1

∣∣∣∣yi – ŷi
yi

∣∣∣∣× 100% (4)
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2.3.3 R-Square
R-Square or coefficient of determination is a value that indicates the magnitude of the influence

of the independent variable on the dependent variable.

R2 = 1 –
∑n

i=1 (yi – ŷi)
2∑n

i=1 (yi – ȳ)2
(5)

where ȳ represents the average value of the observation result.

2.4 Research Steps
We analyze the data using the machine learning method, RFR, and GWRF based on the steps

below:

1. Descriptive statistics of the data
2. Performing spatial heterogeneity tests using Bruce Pagan (Breusch & Pagan, 1979)
3. Analyzing the Random Forest Regression method (Schonlau & Zou, 2020)

(a) This step performs tunning mtry and ntree parameters. The parameter tuning process is
carried out with k-fold cross-validation (Probst et al., 2019). The mtry value option to be used
in this research is 1,2,3,4,5,6,7,8, and the ntree value option to be used is 25,50,100,500,1000.

(b) Analyzing variable importance uses increasing the average error value (Liang et al., 2020).

4. Analyzing the GWRF method

(a) We use the adaptive kernel function to determine the optimum bandwidth and the increment
of the mean square error to find the variable importance of each region.

(b) We map variable importance based on the similarity of factors correlating with each region’s
stunting.

5. Comparison of RFR and GWRF based on RMSE, MAPE, and R2 indicators

3. Results and Discussion
East Java, Indonesia, consists of 29 regencies and nine cities and is geographically located between

111°0’ – 114°4’ East Longitude and 7°12’ – 8°48’ South Latitude. In 2021, stunting was more than
20% in East Java. Table 2 presents the descriptive analysis of the dependent and independent research
variables. The distribution map of stunting prevalence categories in East Java Province can be seen
in Figure 1. The highest stunting locations tend to happen in Madura Island and the east part of
East Java.

The stunting data contain multicollinearity. Some variables have high variance inflation factor
(VIF) values (Table 3). When we analyze the data using a linear model, it performs poorly, with an
R2 of 0.3608. Based on the Breusch-Pagan test, we reject H0; the resulting p-value is 0.0192<0.05.
It means there is an indication of spatial heterogeneity in the data.
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Table 2. Descriptive analysis results.

Variable Minimum Mean Maximum

Y 6.9 21.7 38.9
X1 4.09 11.32184 23.76
X2 70.7 95.91579 100
X3 0.6 6.384211 66.4
X4 153 975.7632 2803
X5 42.1 72.81211 92.2
X6 1664 10432.11 33289
X7 275 3694.947 1864
X8 1811 13476.26 41226

Figure 1. Distribution of stunting prevalence categories.

Table 3. The VIF value.

Variable VIF

X1 1.338
X2 1.667
X3 1.220
X4 4.816
X5 1.337
X6 25.868
X7 3.220
X8 26.950
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3.1 Random Forest Regression
We simulate and select the best mtry and ntree parameters for building the model. The parameters

are chosen based on the RMSE value. The factors related to stunting in East Java are ranked based
on variable importance.

3.1.1 Parameter Tuning
The parameter tuning process in the RFR method is done to find the best mtry and ntree pa-

rameter values used to build the Random Forest model. We use eight options 1,2,3,4,5,6,7,8 of the
mtry parameter and five options 25,50,100,500,1000 of ntree parameter. The best parameters are
selected using 10-fold cross-validation and determined based on the smallest RMSE value produced
and presented in Table Table 4.

We find that the ntree = 500, mtry = 2 has the smallest RMSE value. Therefore, we use the
parameters for further analysis.

Table 4. RMSE values resulting from tuning mtry and ntree parameters

Number Number of ntree
ofmtry 25 50 100 500 1000

1 6.5215 6.0850 6.6361 5.9227 6.1496
2 6.4299 5.8936 6.3754 5.8675 6.1119
3 6.5342 6.0220 6.6765 5.8738 6.2429
4 6.3556 6.1438 6.3914 5.9024 6.2951
5 6.8258 5.9953 6.5812 5.9405 6.3439
6 6.6979 6.0726 6.8340 5.9769 6.3603
7 6.8482 6.1219 6.4916 5.8941 6.3734
8 6.2763 6.0458 6.5332 5.9853 6.3739

3.1.2 Variable Importance
We rank independent variables importance using the increment of Mean Square Error (%In-

cMSE). The order of the independent variables with the value of %IncMSE from the highest to the
lowest is X6, X7, X4, X1, X8, X2,X5, and X3, respectively (Table 5). The three variables that most
correlate with the prevalence of stunting include the number of babies who get early breastfeed-
ing initiation (X6), the number of malnourished toddlers (X7), and the number of active integrated
health posts (X4). %IncMSE values of low birth weight babies (X3) and percentage of babies who
obtained exclusive breastfeeding (X5) show negative results. A negative value in %IncMSE indicates
that the MSE value obtained after random permutation in a predictor variable is smaller than the
MSE value before permutation. It means that the response variable has a low correlation with the
predictor variable (Du et al., 2019; Meador, 2020; Roth et al., 2021). The percentage of low birth
weight babies (X3) and the percentage of babies who obtain exclusive breastfeeding (X5) have a low
correlation with stunting in East Java.
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Table 5. Variable importance value of RFR

Independent
Variable %IncMSE

X1 5.255670
X2 2.118345
X3 -3.106665
X4 8.262264
X5 -0.465226
X6 9.430673
X7 8.824693
X8 4.837198

3.2 Geographically Weighted Random Forest
We find the bandwidth based on R2 OOB value using the adaptive kernel function. Like RFR,

the factors related to stunting are ordered based on variable importance. We cluster locations that
have similar characteristics.

3.2.1 OptimumWeight and Bandwidth
This research determines the optimum bandwidth value based on the R2 OOB value of the local

Random Forest and uses an adaptive kernel to find the weight (Figure 2).

Figure 2. R2 OOB value on optimum bandwidth search.

Based on the graph in Figure 2, it can be seen that the highest R2 value of 0.2317 is obtained
when the bandwidth is worth 29. This value indicates that the construction of local Random Forests
in each regency/city will involve 29 nearby areas. As an illustration, the construction of the lo-
cal RFR model in Pacitan Regency only involves 29 locations closest to Pacitan Regency, such as
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Pacitan, Ponorogo, Trenggalek, Magetan, Madiun City, Ngawi, Madiun, Tulungagung, Kediri
City, Nganjuk, Bojonegoro, Blitar, Blitar City, Kediri, Jombang, Batu City, Mojokerto, Mojok-
erto City, Malang City, Tuban, Lamongan, Malang, Sidoarjo, Gresik, Pasuruan, Pasuruan City,
Surabaya City, Lumajang, and Bangkalan.

3.2.2 Variable Importance
The value of the variable importance for each area varies. Based on the three most important

variables, we group the locations. Table 6 exhibits this grouping

Table 6. Variable importance of location grouping

Group Variable importance regencies/cities

1 X1,X4, andX7 Ponorogo, Lumajang, Jember, Banyuwangi, Situbondo, Probolinggo, Pasuruan,
Bangkalan, Sampang, Pasuruan City.

2 X1,X6, andX7 Pacitan, Nganjuk, Magetan, Ngawi, Probolinggo City, Madiun City.
3 X1,X7, andX8 Bondowoso, Malang City.
4 X4,X6, andX7 Malang, Madiun, Sumenep.
5 X4,X7, andX8 Sidoarjo, Gresik, Pamekasan, Surabaya City.
6 X6,X7,andX8 Trenggalek, Tulungagung, Blitar, Kediri, Mojokerto, Jombang, Bojonegoro, Tuban, Lam-

ongan, Kediri City, Blitar City, Mojokerto City, Batu City.

Group four consists of Malang, Madiun, and Sumenep Regency. Factors that correlate with the
prevalence rate of stunting in these three regions include the number of active integrated health
posts (X4), the number of babies who get early initiation of breastfeeding (X6), and the number
of malnourished toddlers (X7). The same explanation also applies to the other five groups. The
distribution map of each regency/city based on the grouping of variable importance is presented in
Figure 3.

Figure 3. Variable importance grouping distribution map.

Figure 3 shows that Bondowoso Regency is included in a different group from the surrounding
areas, such as Banyuwangi, Jember, Probolinggo, and Situbondo Regencies. The difference in
groups is due to the stunting prevalence rate in Bondowoso Regency showing a higher percentage
than the surrounding regencies. The stunting prevalence rate in Bondowoso Regency shows a
percentage of 37%. Unlike Bondowoso Regency, the stunting prevalence rate in Banyuwangi,
Jember, Probolinggo, and Situbondo Regencies is 20%-24%.
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3.3 Methods Comparison
The comparison of the goodness of the RFR and GWRF methods is based on the RMSE, MAPE,

and R2 values (Table 7).

Table 7. RMSE, MAPE, andR2

Methods RMSE MAPE R2

RFR 3.014867 11.69245 0.8168135
GWRF 1.023974 4.452734 0.9788683

The GWRF method is better than RFR; it has smaller MAPE and RMSE values and R2 values
close to 1. The MAPE value of the GWRF method is 7.24% smaller compared to the MAPE value
of the RFR method. The R2 value of the GWRF method also shows a better result of 0.9789.

4. Conclusions
The research results show that East Java, Indonesia’s stunting data contains multicollinearity and

spatial heterogeneity. Some independent variables have large VIF values. Based on the Breusch-
Pagan test, the resulting p-value is 0.0192<0.05. When we analyze it using a linear model, it per-
forms poorly (R2 = 0.3608). Based on the machine learning approach, the RFR method yields an R2

of 0.8168, RMSE of 3.014, and MAPE value of 11.69%. The GWRF method has better goodness of
fit than RFR. It gives R2 of 0.9788, RMSE of 1.023, and MAPE value of 4.45%. The RFR method
results that the factors that correlate with the prevalence of stunting in East Java Province are the
number of babies who receive early initiation of breastfeeding (X6), the number of malnourished
toddlers (X7), and the number of active integrated health posts (X4). From the GWRF, the factors
are different between areas. There are six groups according to the similarity of them, and Bon-
dowoso regency is in different group from the surrounding areas, it has a high stunting prevalence
rate.
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