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Abstract
In the context of health data classification, imbalanced and asymmetric class distributions can significantly
impact the performance of machine learning models. One critical aspect affected by these issues is the
reliability of class probability estimates, which are crucial for informed decision-making in healthcare
applications. Instead of predicting class values directly for a classification problem, it can be more con-
venient to predict the probability of an observation belonging to each possible class. This research aims
to address the challenges posed by imbalanced and asymmetric responses in health data classification by
evaluating the effectiveness of recent calibration methods in improving class probability estimates. We
propose Beta calibration techniques and the Stratified Brier score and Jaccard’s Score as novel calibration
methods and evaluation metrics respectively. The experimental comparison involves implementing and
assessing various calibration techniques to determine their impact on model performance and calibra-
tion accuracy of simulated and healthcare datasets with varying imbalance ratios. Our results show that
the Beta calibration method consistently improved the classifiers’ predictive ability. The findings of this
study provide valuable insights into selecting the most suitable calibration method for enhancing class
probability estimates in healthcare-related machine learning tasks.
Keywords: Imbalanced Data; Machine Learning; Jaccard Score; Calibration; Classification

1. Introduction
In the field of machine learning, model calibration is a crucial procedure in the creation of clas-

sification models because it improves their accuracy and reliability. Class probability estimates are
intuitively interpretable and useful for estimating expected costs of classification decisions and in
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general offer more granular information than mere class membership predictions. They are espe-
cially useful when decisions have associated costs and experts would like to incorporate uncertainty
into decisions made in such contexts. Class imbalance is the scenario in which the number of in-
stances from each class is extremely unequal (Fu et al., 2023). Imbalance is common in real-world
learning tasks, like fraud detection and medical applications. In imbalanced scenarios, misclassifica-
tion costs tend to be asymmetric (Ali et al., 2013).

Healthcare data often exhibit imbalanced and asymmetric class distributions, where certain med-
ical conditions or outcomes are rare or underrepresented. In such scenarios, traditional machine
learning models may struggle to provide accurate class probability estimates, leading to sub-optimal
decision-making and potentially compromising patient care. Calibration methods, designed to im-
prove the reliability of class probability estimates, have shown promising results in addressing this
challenge (Mukhiddinov et al., 2022). However, there is a need for a comprehensive comparison
of various calibration techniques to identify the most effective approach for health data classifica-
tion tasks. This research aims to fill this gap by conducting an experimental evaluation of recent
calibration methods in the context of imbalanced and asymmetric health data.

Although learning about well-calibrated models for health analysis is important, it has not been
extensively researched in the literature (Dukhi et al., 2021; More & Rana, 2021). In data science,
modelers do not always care about the probability associated with each prediction, but there are
cases in which we want to know the exact predictive probabilities, especially in medical diagnosis.
Uncalibrated probability predictions can be biased for imbalanced data. Using machine learning
models that predict probabilities is generally preferred when working on imbalanced (asymmetric)
classification tasks (Zhou et al., 2023). In imbalanced scenarios, it is important to have a model
with good accuracy that is also calibrated. Despite the attention that classification under imbalance
has received, only a few works have investigated the reliability of class membership probability
estimates for imbalanced data in the literature (Alfhaid & Abdullah, 2021). Predicting probabilities
allows some flexibility including deciding how to interpret the probabilities, presenting predictions
with uncertainty, and providing more nuanced ways to evaluate the skill of the model. Predicted
probabilities that match the expected distribution of probabilities for each class are often referred to
as calibrated probabilities.

This present study focuses on calibrated probability estimators, which transform raw scores from
classifiers into probability estimates. Many machine learning models can predict probability-like
scores for asymmetric classes of data. However, the probabilities provide a required level of granu-
larity for evaluating and comparing models, especially on imbalanced classification problems where
the ROC-AUC metric is commonly used to compare model performance. Worse still, the severely
skewed class distribution in imbalanced classification tasks may result in even more bias in the pre-
dicted probabilities as they over-favor the majority class (Wallace & Dahabreh, 2014). In this work,
we demonstrate that class probability estimates obtained via supervised learning in imbalanced sce-
narios systematically underestimate the chances for minority class instances, despite ostensibly good
overall calibrations. We show that calibrated probability estimators produce biased estimates in im-
balanced scenarios, especially in medical scenarios (Ugarković & Oreški, 2022). We propose three
novel metrics for this study, namely the stratified Brier Score (SBS), the Jaccard Score (JS), and
Matthew’s Correlation Coefficient (MCC), to capture class-specific calibrations that can assess the
discriminative performance of classifiers in imbalanced classification problems.

2. Materials and Methods
2.1 Supervised Machine Learning Models

We focus on six supervised classification algorithms in this work. These models were selected
because they have been shown to outperform other supervised learning algorithms with respect to
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class probability estimation in the literature. The models considered are briefly described in this
section. More details about these models can be found in the cerebral work of Hastie et al., 2009.

2.1.1 Logistic Regression (LR)
Logistic regression is a statistical method used in machine learning to predict the probability

of a binary outcome. The LR is frequently used when attempting to predict whether an observa-
tion corresponds to one of two classes (as in the classification problems). The logistic function used
in logistic regression models the connection between the predictor variables and the likelihood of
belonging to a specific class. van den Goorbergh et al., 2022 highlighted the fact that logistic regres-
sion can manage both continuous and categorical predictor variables, and it has become a popular
technique for binary classification because it offers results that are easy to understand. Additionally,
regularization methods can be easily incorporated into it, thereby enhancing their efficiency and
avoiding overfitting. The logistic regression equation is given as

p =
1

1 + e–z (1)

where p is the probability of the dependent variable taking on a certain value, z is the linear com-
bination of the independent variables and their coefficients, and e is a constant known as Euler’s
number.

The variable z is given as
z = b0 + b1x1 + b2x2 + ... + bnxn (2)

where b0 is the intercept term and b1, b2, ..., bn are the coefficients for each independent variable
x1, x2, ..., xn. The likelihood function for logistic regression coefficients is given as;

L(b) =
n∏

i=1
[p(i)yi ∗ (1 – p(i))(1–yi)] (3)

where yi is the observed value of the dependent variable for observation i and p(i) is the predicted
probability of yi taking on its observed value given the values of the independent variables. It has
been popularly used for binary classification problems with imbalanced scenarios (Mahmudah et al.,
2021).

2.1.2 Naive Bayes [NB]
This is a simple yet powerful classification algorithm that can be used for both binary and multi-class
classifications. Naive Bayes performs the classification task using the basic Bayes Theorem, that is,
it classifies a new observation to a class that has the highest conditional probability for the particular
observation amongst the target classes using prior information which can be gotten by using the
Bayesian Network Classifiers below, subject to the assumption that the conditional probabilities
exist:

P(y|x) =
P(y)P(x|y)

P(x)
(4)

P(x|y) = Πn
i=1P(xi|y) (5)

hence,
P(x) = Πk

i=1P(ci)P(x|ci) (6)

where xi is the value of the ith attribute in x, n is the number of attributes, k is the number of classes,
and ci is the ith class. Naive Bayes has been reputed to have some interesting advantages such as it
being computationally efficient because the time it takes for training is linearly related to both the
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training examples and number of attributes while the time it takes to classify new items is linearly
related to the number of attributes and not determined by the training size. The variance of Naive
Bayes is often low because it does not engage in searching, but it pays for the low variance with
an increase in bias and it learns incrementally with continuous updating as new training data are
supplied, moving from low order probabilities to higher ones. It can predict the posterior probability
directly and it is also robust when there are missing values or noise since it uses all attributes in its
prediction. The Naive Bayes classifier used in this study follows a Gaussian (normal) distribution
which models each class’s feature by estimating the mean and standard deviation.

2.1.3 Decision Tree (DT)
A decision tree is an approach used to break up a complex decision into multiple simpler decisions

(Safavian & Landgrebe, 1991). This algorithm is one of the most successful data mining approaches.
It has been widely employed in a variety of areas and it is robust even when they are missing values
in the dataset (Hastie et al., 2009). The algorithm collects observations of an object, represented
by branches, and draws inferences about the problem goal value, represented by leaves. It may
display the decisions in a tree-like structure. The tree is constructed by subdividing the target,
which contains the tree’s root node as well as its successive children. The basic concept of decision
trees is the fundamental components of the model which are nodes and branches, and the most
significant phases in developing the model are splitting, stopping, and pruning. The splitting of the
trees is based on classification features splitting rules (Shalev-Shwartz & Ben-David, 2014). This
algorithm is prone to high variance and overfitting of the imbalanced training data, which can be
characterized by Entropy and Information Gain (Panigrahi et al., 2021). Both Gini impurity and
entropy are commonly used in data splitting for decision trees, and they often lead to similar trees.
However, Entropy was used in this study as criteria for data splitting. Entropy is a measure of
randomness in a dataset. It is defined as:

H(S) = –
n∑

i=1
pi log2 pi (7)

where S is the set of data, n is the number of classes, and pi is the proportion of data belonging to class
i. Entropy ranges from 0 (when all data belongs to one class) to 1 (when data is evenly distributed
among all classes). Information gain tells us how much entropy is reduced after splitting the data
based on an attribute. It is defined as:

IG(S, A) = H(S) –
∑

v∈values(A)

|Sv|
|S|

H(Sv) (8)

where A is an attribute, values(A) are its possible values, Sv is the subset of data where attribute A
has value v, and |S| and |Sv| are the sizes of sets S and Sv, respectively.

2.1.4 Linear Discriminant Analysis (LDA)
Discriminant analysis (DA) is a multivariate technique used to separate two or more groups of

observations (individuals) based on k variables measured on each experimental unit (sample) and
find the contribution of each variable in separating the groups (Li et al., 2023). The LDA and QDA
perform as kernels that are used for the separation of classes by the hyperplane with the objective of
an object within a class dependent on a discriminant rule with the highest probability.

The discriminant function is calculated as

D = a1x1 + a2x2 + ... + akxk (9)
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where D is the discriminant score, x1, x2, ..., xk are the predictor variables, and a1, a2, ..., ak are the
coefficients of the discriminant function. The coefficients are calculated as

ai =
(µi˘µ)
σ2 (10)

where µ is the overall mean of all predictor variables and σ2 is the pooled variance across all groups
(Awe et al., 2023).

2.1.5 Support Vector Machine (SVM)
The SVM is a widely used algorithm in biological applications and one clear example is the

automatic classification of microarray gene expression profiles. The algorithm is also used for image
detection and recognization of fraudulent activities. SVM algorithm comprises the following basic
concepts: a separating plane, a maximum-margin hyperplane, a soft margin, and finally the kernel
functions (Noble, 2006). The basic idea behind SVM is to find a decision boundary that separates the
data points into two classes with maximum margin. The margin is defined as the distance between
the decision boundary and the closest data point from either class. The equation of a hyperplane in
n-dimensional space can be written as:

wTx + b = 0 (11)

where x represents a vector of features that describes a point in the n-dimensional space, and b is the
bias term.

In other to separate the data points into two classes with maximum margin, there is a need to
solve an optimization problem:

minimize
1
2

||w||2 (12)

subject to
yi(wTxi + b) ≥ 1∀i (13)

where yi is the class label of data point i (+1 or -1), xi is its feature vector, and ||w||2 is the squared
Euclidean norm of w. After getting w and b, The predicted class label for a new data point x is given
by:

y = sign(wTx + b) (14)

where sign(wTx + b) returns +1 or –1 depending on whether its argument is positive or negative.

In handling nonlinear separable problems, SVM uses kernels. A kernel function maps input vec-
tors into a higher-dimensional feature space where they become linearly separable. The most used
kernels are;

• Linear Kernel:
K(xi, xj) = xT

i xj (15)

• Polynomial Kernel:

K(xi, xj) = (γxT
i xj + r)d (16)

• Gaussian (RBF) Kernel:
K(xi, xj) = exp(–γ||xi – xj ||2) (17)
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2.1.6 K Nearest Neighbor (KNN)
KNN is a nonparametric model in machine learning that is used for classification where a k

value is chosen for the classifications. The algorithm is a lazy learner technique that keeps all the
training data for classification. In the process of choosing k’s nearest neighbors, kNN computes the
distance between all training samples and each test sample. Given a training set of N data points,
each has d features as X = x1, x2, ..., xN , where xi = (xi1 , xi2 , ..., xid) and corresponding labels given
Y = y1, y2, ..., yN , where yi ∈ C for classification or yi ∈ R for regression.

To classify a new data point xq with an unknown label yq; the following steps can be followed:

1. Calculate the distance between xq and all other data points in X using a distance metric such as
the following:

• Euclidean distance:

d(xi, xq) =

√√√√√ d∑
j=1

(xij – xqj)2 (18)

or
• Manhattan distance:

d(xi, xq) =
d∑

j=1
|xij – xqj | (19)

2. Select K nearest neighbors of xq based on their distances.
3. Consider the following cases:

• For classification: Assign the label yq to the majority class among the K nearest neighbors.
yq = argmaxc∈C

∑
[yi=c][d(xi, xq)

≤ d(xj, xq), j = 1, ..., K] (20)

where [W] is an indicator function that returns 1 if W is true and 0 otherwise.
• For regression: Assign the value yq to the average of the values of the K nearest neighbors.

yq =
1
K

∑
[d(xi,xq)≤d(xj ,xq),j=1,...,K]

yi (21)

where yi is the value of the ith nearest neighbor.

2.2 Calibration Methods
There are various methods for obtaining calibrated scores in a binary classification setting of

which Platt scaling (Sigmoid) and Isotonic Regression are the most prominent. In addition, we
propose a novel calibration method named Beta calibration (Kull et al., 2017) in this study for char-
acterizing health data.

2.2.1 Sigmoid Method
Sigmoid calibration or Platt scaling fits a one-variable logistic regression model to predict the

outcomes from the scores. This approach was motivated by the idea that the relationship between
the scores given by SVMs and the actual probabilities often fits well by the sigmoid function. As one
would expect from a strict parametric approach, it works well when the data actually fit the model
but gives poor results when the desired calibration function is not well-approximated by a sigmoid
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function. Assume that there is a logistic relationship between the z scores and the true probability
p.

log(
p

1 – p
) = α + βz (22)

Hence,
p =

1
1 + exp(–(α + βz))

(23)

where α and β are the regression constants. However, this method has a very restrictive set of
possible functions. Its main restriction is that the mapping function is monotonically increasing
(Pan et al., 2022).

2.2.2 Isotonic Regression
Isotonic Regression fits a piecewise constant, monotonically increasing function to map the

scores to probabilities.
Given a machine learning model with fi as the predicted value and yi as the actual, then we make
an assumption as follows:

yi = m(fi) + ei, (24)

where m is an Isotonic function.
Given the training set (fi,yi), we try to find the isotonic function m by minimizing the following
equation:

m̂ = argminz
∑

(yi – z(fi))2 (25)

The Pool Adjacent Violators Algorithm (PAVA) is used to solve this problem. This method works
reasonably well on a wider variety of problems due to its non-parametric approach (Allikivi &
Kull, 2019). However, piecewise-constant approximations yield room for improvement due to their
coarseness. Another limitation of these approaches is that they do not extend directly to a multi-
class setting. Rather, we propose an indirect approach of fitting multiple binary classifiers and then
calibrating and combining them (Naeini & Cooper, 2016).

2.2.3 Beta Calibration
We propose an improvement on Sigmoid and Isotonic regression for binary classifiers (Kull et al.,

2017).
Beta calibration produces a 3-parameter family of curves given as:

p = (1 +
1

(exp(c)( za

(1–z)b )–1)
) (26)

where a, b, and c are parameters and z is a z score. It does not give misleading results if the model
is already calibrated. We consider Beta calibration as a post-processing technique used to calibrate
the predicted probabilities of the machine learning models in this study. It becomes particularly
useful when the predicted probabilities do not align well with the actual proportions of positive
outcomes in the dataset. In particular, Beta calibration aims to improve the reliability of predicted
probabilities by adjusting them to better match the true proportions of positive outcomes. The
goal of beta calibration is to enhance the calibration of predicted probabilities, making them more
meaningful and reliable for decision-making, particularly when the model’s original probabilities
are poorly calibrated.

Below is a simplified algorithm we used for beta calibration:

1. Input the predicted probabilities from the machine learning model (original probabilities).
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2. Calculate the Brier score (BS) for the original probabilities. The methodology for calculating
the BS is shown in the next section.

3. Calculate the observed proportion of positive outcomes in the dataset by dividing the number
of positive outcomes by the total number of instances.

4. Estimate the calibration parameters (alpha and beta) that will transform the original probabilities
into the calibrated probabilities. These parameters determine how much the probabilities need
to be adjusted to align with the observed proportions.

5. For each original predicted probability p, apply the calibration transformation to adjust the prob-
ability using equation (22).

calibratedprobability = (p ∗ α)/(p ∗ α + (1 – p) ∗ β)

. This transformation ensures that the calibrated probabilities are scaled based on α and β to
better match the observed proportions.

6. Calculate the Brier score for the calibrated probabilities to assess the improvement in the relia-
bility of predicted probabilities.

7. Obtain calibrated probabilities, which have been adjusted to better align with the observed pro-
portions. These are the calibration parameters (alpha and beta) that were used in the transfor-
mation.

2.3 Model Evaluation Metrics
For a binary classification problem, the confusion matrix comprises four results from classifica-

tion outputs that report the number of true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN) predicted by a model. In the case of imbalanced data classification, alter-
native metrics that emphasize good performance concerning both classes are now widely accepted
as more suitable for imbalanced data (e.g., the F1-score, g -mean, or MCC). However, the corre-
sponding problem for probability estimation—good overall calibration masking unreliable estimates
for minority instances—has not been addressed. We propose a modification of the Brier score that
stratifies the score by class in this study. This is considered alongside other popular metrics high-
lighted briefly as follows:

2.3.1 F1-Score
This is the weighted average of precision and recall (sensitivity). It was adopted in this study

because it is often considered more useful than accuracy because it combines both precision and
sensitivity. It can be obtained by the formula:

F1 – Score = 2 ∗
Precision ∗ Sensitivity
Precision + Sensitivity

(27)

To minimize both false positive and false negative outcomes at the same time, precision and sensi-
tivity can be summarized by using the F1-score, where precision is defined as:

Precision =
TP

TP + FP

. These metrics are highly useful for imbalanced data classification.

2.3.2 Matthew’s Correlation Coefficient
The Matthews correlation coefficient (MCC) offers an equitable assessment, suitable even when

classes possess varying sizes. A coefficient value of 1.0 signifies impeccable prediction; a value of
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0.0 implies a prediction no more accurate than randomness; and a value of -1.0 indicates the most
unfavorable prediction conceivable. It harmoniously merges prediction accuracy and coverage, cul-
minating in a high score only if the classifier excels in all four cells of the confusion matrix. In the
domains of machine learning and biostatistics, researchers widely adopt MCC as a performance met-
ric for evaluating binary classifiers, regardless of dataset balance. Unlike balanced accuracy, which
overlooks low precision, MCC adeptly captures the modest positive connection between reality and
prediction. It can be mathematically represented as:

MCC =
TP × TN – FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(28)

2.3.3 Brier Score (BS)
We view this metric as more appropriate for assessing calibration in imbalanced scenarios. The

value of the error score is always between 0 and 1 where a model with a score of 0 is perfect.
This means that the closer the value of the Brier score to 0, the better the prediction, and the
closer its value to 1, the less accurate the prediction is. The Brier score reflects both calibration and
and discrimination. The Brier score measures the mean squared difference between the predicted
probability y assigned to the possible outcomes for item i, and the actual outcome y. Therefore,
the lower the Brier score is for a set of predictions, the better the predictions are calibrated. It is
analogous to the mean square error (MSE). The Brier score measures the accuracy of predicted
probabilities. It is calculated as the mean squared difference between the predicted probabilities
and the actual binary labels. The most common formulation of the Brier score (Rufibach, 2010) in
literature is given as

BS =
1
N

N∑
t=1

(pt – at)2 (29)

where pt is the probability that was forecasted, and ai is the actual outcome of the event at
instance t.

2.3.4 Jaccard Score
The Jaccard score, also known as the Jaccard index or Jaccard similarity coefficient, is a measure-

ment in machine learning for evaluating how well a classification model performs, especially when
dealing with imbalanced datasets. Mathematically, the Jaccard score (JS) is calculated by dividing
the size of the intersection of the positive set and the actual positive set by the size of their union. It
is represented as follows:

JS =
TP

TP + FP + FN
(30)

Ranging from 0 to 1, the Jaccard score indicates how closely the predicted positive set aligns with
the true positive set. A score of 1 indicates agreement, while a score of 0 means there is no overlap
at all. This metric is particularly useful in situations where there is an imbalance between classes.
It focuses on predicting positives while not considering true negatives. This proves advantageous
when there is a difference in quantity between negative and positive classes, which often occurs
with imbalanced datasets. Additionally, the Jaccard score remains reliable when faced with class
imbalance.

2.3.5 Sensitivity (Recall)
This is the ability of a model to correctly identify patients with a disease. It is calculated as

Sensitivity =
TP

TP + FN
(31)
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where TP is true positive and FN is false negative.

2.3.6 Specificity
This is the metric used to judge if the classifier correctly predicts people without the disease in

a health diagnosis study. It is calculated as

Specificity =
TN

FP + TN
(32)

where TN is true negative, FP is false positive.

2.3.7 Accuracy
Accuracy measures how accurate the algorithm is. It is obtained as

Accuracy =
TP + TN

TP + TN + FN + FP
(33)

. It has been suggested not to be appropriate for imbalanced datasets.

2.3.8 Log Loss
Log loss is a common evaluation metric for binary classification models. It measures the perfor-

mance of a model by quantifying the difference between predicted probabilities and actual values.
It is indicative of how close the prediction probability is to the corresponding actual/true value (0 or
1 in the case of binary classification), penalizing inaccurate predictions with higher values. Lower
log-loss indicates better model performance. Log Loss is the most important classification metric
based on probabilities. Although it is difficult to interpret raw log-loss values, it is still a good met-
ric for comparing calibrated models. For any given problem, a lower log-loss value means better
predictions. Log Loss is the negative average of the log of corrected predicted probabilities for each
instance. It provides a continuous and differentiable measure of the model’s performance, making
it suitable for optimization algorithms. The log loss penalizes confident and incorrect predictions
more heavily, incentivizing calibrated probability estimates. Finally, log loss can be interpreted as
the logarithmic measure of the likelihood of the predicted probabilities aligning with the true labels.

Mathematically,

Logloss = –
1
N

i=1∑
N

(log(pi)) (34)

where p is the predicted probability and N is population size.

3. Results and Discussion
3.1 Experimental Setup

The main experimental setup of this research is to assess the effectiveness of six machine learn-
ing models – specifically K Nearest Neighbors (KNN) Naive Bayes (NB) Support Vector Machine
(SVM), Decision Tree (DT) Linear Discriminant Analysis (LDA) and Logistic Regression (LR) – in
predicting a binary target variable within a dataset that was oversampled. To maximize the predic-
tive potential of these models, three calibration methods namely Isotonic Regression, Sigmoid, and
Beta calibration were employed. Throughout this evaluation process, we extensively used various
evaluation metrics to gain an understanding of how well these models performed. These metrics
covered a range of aspects, including accuracy measurements and more nuanced indicators like
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Stratified Brier Score, F1 Score, Precision, Recall, ROC-AUC, Log Loss, MCC, and Jaccard Score.
By employing this set of metrics we were able to evaluate the models’ predictive capabilities in detail
in the presence of various calibration methods.

Performances of these classifiers on unsampled and oversampled data using the aforementioned
metrics, validate the need for feature selection and resampling to avoid overfitting and gross in-
accuracy. The Confusion matrices for the original dataset across all six classifiers showed gross
inaccuracy in their predictions (Figure 2). The sum of the right diagonal of each matrix which
represents the incorrect prediction is higher than the sum of the left diagonal which represents the
correct prediction. This shows the poor predictive abilities of our model trained with unsampled
data which begs the need for a structured sampling method. Therefore, the Synthetic Minority
Oversampling Technique (SMOTE) was applied to the simulated and real health data to train the
classifiers for correct predictions. Addressing the class imbalance in datasets is a critical challenge in
machine learning, particularly when one class is significantly underrepresented compared to others,
as it is in this study. SMOTE plays a pivotal role in methodologies dealing with such imbalanced
datasets. This technique becomes necessary due to the inherent biases and suboptimal predictive
performance that can result from models trained on imbalanced data.

The primary purpose of SMOTE is to rectify class imbalance by oversampling the minority
class, usually the underrepresented class in the dataset (Fernández et al., 2018) . It achieves this by
generating synthetic samples that closely resemble the existing minority class instances, thereby bal-
ancing the class distribution. By creating synthetic samples through interpolation between existing
minority class instances, SMOTE enriches the dataset without simply duplicating data points. This
process effectively provides the model with a more balanced representation of both classes. One
of the key advantages of using SMOTE is its ability to enhance model performance. Imbalanced
datasets can cause machine learning algorithms to prioritize the majority class, leading to biased
models that perform poorly in predicting the minority class. By synthesizing new samples for the
minority class, SMOTE ensures that the model learns equally from both classes, reducing bias and
improving its ability to generalize to new, unseen data. Moreover, SMOTE helps mitigate the
risk of overfitting that might occur if the model were trained solely on duplicated minority class
samples. It allows the model to learn from a more diverse set of instances, preserving the intrinsic
characteristics and patterns present in the original data. Additionally, SMOTE’s compatibility with
various machine learning algorithms makes it a versatile and widely used technique in addressing
class imbalance. It seamlessly integrates into different methodologies, ensuring that models trained
on imbalanced datasets can benefit from a more representative and balanced distribution of classes.

We used two datasets with similar degrees of imbalance in this study. Specifically, one simulated
dataset and a real-life health data on anemia. We split each of these into train, test, and validation sets
of 60, 20, and 20 divides, respectively. We induced probability estimators via calibration over the
train sets using six distinct classifiers: SVM, KNN, NB, LDA, LR, and DT which were selected due
to their popularity and demonstrated performance in accurately estimating probabilities (Wallace
& Dahabreh, 2014). To measure the probability estimation performance, we recorded overall Brier
scores for both unsampled and oversampled datasets. We report the results achieved using standard
Platt scaling versus those achieved by oversampling prior to scaling for both simulated and anemia
datasets. We also show the results of calibrated over independently drawn balanced bootstrap samples
of the training datasets. The test set is used to evaluate the performance of the classifiers in order to
obtain sustainable and reliable results (Flach, 2019).
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3.2 Simulation Study
A simulated experiment was carried out using simulated data from 500 Bernoulli-distributed

samples, where each sample contains 20 features. These results were recorded in Table 1. To inten-
tionally create an imbalance, one class accounts for 90% of the samples while the other class makes
up the remaining 10%. Out of all the features, there are 10 that provide information and help dis-
tinguish between classes. Additionally, there are five features introduced as noise. A class separator
parameter that separates the classes from each other was introduced, and approximately 5% of the
samples have labels that were randomly assigned. Each class is represented by n clusters per class,
which emphasizes the distinction between classes.

Table 1. Results on Simulated Data
Classifier Performance Metrics

Calibration
Method

ROC
AUC

F1
Score

Jaccard
Score

Brier
Score

Log
Loss

ACC MCC PREC REC

LR Uncalibrated 0.6429 0.3333 0.2000 0.2500 8.6348 0.7500 0.2182 0.2500 0.5000
Sigmoid 0.7429 0.3509 0.2128 0.1420 0.4459 0.7897 0.2421 0.2857 0.4545
Isotonic 0.7486 0.3846 0.2380 0.1382 0.7839 0.8182 0.2856 0.3333 0.4545
Beta 0.7651 0.3810 0.2353 0.1440 0.5573 0.7330 0.1723 0.2222 0.4545

NB Uncalibrated 0.6558 0.3188 0.2273 0.1932 6.6724 0.8068 0.2673 0.3125 0.4545
Sigmoid 0.7836 0.3704 0.2273 0.1346 0.4276 0.8068 0.2673 0.3125 0.4545
Isotonic 0.7757 0.4390 0.2812 0.1130 0.3769 0.8693 0.3667 0.4737 0.4091
Beta 0.7857 0.4651 0.3030 0.1125 0.3650 0.8693 0.3909 0.4762 0.4545

LDA Uncalibrated 0.6331 0.3188 0.1897 0.2670 9.2236 0.7330 0.1990 0.2340 0.5000
Sigmoid 0.7538 0.3548 0.2157 0.1446 0.4453 0.7727 0.2459 0.2750 0.5000
Isotonic 0.7516 0.3793 0.2240 0.1490 0.8039 0.7954 0.2768 0.3056 0.5000
Beta 0.7547 0.3667 0.2245 0.1469 0.4603 0.7841 0.2610 0.2895 0.5000

SVM Uncalibrated 0.7792 0.5833 0.4118 0.1136 1.8179 0.8864 0.5206 0.5385 0.6364
Sigmoid 0.8450 0.5000 0.3333 0.0867 0.2889 0.8864 0.4394 0.5556 0.4545
Isotonic 0.8438 0.4615 0.3000 0.0845 0.7904 0.8807 0.3998 0.5294 0.4091
Beta 0.8099 0.4444 0.2857 0.1001 2.5459 0.8864 0.3968 0.5714 0.3636

DT Uncalibrated 0.6429 0.3446 0.2083 0.2159 7.4574 0.7841 0.2343 0.2778 0.4545
Sigmoid 0.6886 0.3673 0.2250 0.1244 0.4091 0.8238 0.2681 0.3333 0.4091
Isotonic 0.6874 0.3721 0.2286 0.1208 0.3978 0.8466 0.2848 0.3809 0.3636
Beta 0.6494 0.3571 0.2174 0.2045 5.2132 0.7955 0.2502 0.2941 0.4545

KNN Uncalibrated 0.7532 0.4688 0.3061 0.1932 6.6724 0.8068 0.3930 0.3571 0.6818
Sigmoid 0.7975 0.4081 0.2564 0.1105 0.4014 0.8352 0.3158 0.3703 0.4545
Isotonic 0.7841 0.4186 0.2647 0.1079 1.3994 0.8580 0.3379 0.4285 0.4091
Beta 0.8099 0.4444 0.2857 0.1001 2.5459 0.8864 0.3968 0.5714 0.3636

The simulated imbalanced data from a Bernoulli distribution is defined by: X ∼ Bernoulli(p)
where X represents the simulated data, and p is the probability of generating data from the minority
class. The probability mass function (pmf ) of the Bernoulli distribution is given as f (x; p) = px(1 –
p)1–x where x is a binary random variable that takes the value 1 with probability p and the value
0 with probability 1 – p. By adjusting the value of p, we generate imbalanced data with a smaller
proportion of 1’s (the minority class) and a larger proportion of 0’s (the majority class). To generate
imbalanced data, we set p = 0.1, then 10% of the data generated is from the minority class, while
90% is from the majority class. The selected aforementioned classifiers were employed to predict
the instances in the oversampled data. This was done to understand how the models perform using
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evaluation metrics that describe the predictive capabilities of the classifiers. For LR, the Isotonic and
Beta Calibration improved the ROC-AUC score from 0.6429 to 0.7486 and 0.7651 respectively.

Brier Score, Jaccard Score, and MCC were also improved by a significant percentage. The
log loss improved from 8.6348 to 0.7839 and 0.5573 using Isotonic and Beta calibration methods
respectively. Beta Calibration enhanced the NB classifier across the evaluation metrics employed.
It greatly reduced the log loss from 6.6724 to 0.3650; the Brier score from 0.1932 to 0.1125; the
ROC-AUC from 0.6558 to 0.7857. LDA was greatly improved using Isotonic and Beta calibration
but Beta calibration had greater performance as the log loss was reduced from 9.2236 to 0.4603,
ROC-AUC increased from 0.6331 to 0.7547, and Brier score was reduced from 0.2670 to 0.1469.

Also, SVM greatly improved across the three calibration methods namely Sigmoid, Isotonic, and
Beta calibrations as can be seen in Table 1. However, Isotonic greatly enhanced all metric scores
significantly, revealing a great predictive capability for an Isotonic calibrated model employed on
oversampled data. It is also worthy of note that while the Beta calibration method increased the
log loss from 1.8179 to 2.5459, it performed excellently across other evaluation metrics. Only Iso-
tonic Regression could improve the DT classifier across all metrics. Even though, the ROC-AUC
scores were just fairly improved from 0.6429 to 0.6874 while log-loss was reduced from 0.2159 to
0.1208. Beta greatly enhanced the metrics significantly. The Brier scores for both calibrations were
reduced from 0.1105 to 0.1001. Even though, this method barely reduced the log-loss from 6.6724
to 2. 5459 and 2.6257 respectively. In summary, the calibration methods employed to enhance the
model performances across all classifiers showed that the Beta calibration method has a consistently
improved impact on the classifiers’ predictive ability. This experiment showed that the Beta cali-
bration, introduced in this study as an emerging calibration method performed greatly using key
evaluation metrics across all classifiers. It performed better and in some cases alongside, Isotonic and
Sigmoid Calibration methods. This result is in agreement with the work of Kull et al., 2017. These
results highlight the usefulness of using simulated data, for model assessments in situations where
there is limited availability of real-world data.

3.3 Results from Anemia Dataset
However, in order to validate our claims, we apply these methods using the evaluation metrics

aforementioned on real health data. The results of this performance across all classifiers are recorded
in Table 2. For LR, ROC-AUC improved from 0.6491 to 0.7915 and 0.7818, log loss reduced from
13.1769 to 0.5470 and 0.5678, Brier score was reduced from 0.3815 to 0.1835 and 0.1942 for Isotonic
and Beta calibration respectively. Naive Bayes also improved across all metric scores for both Beta
and Isotonic calibration. Its log loss reduced significantly for both Calibrations from 13.8158 to
0.5810 and 0.5794 respectively (Fig. 1, 2).
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Figure 1. Target Variable.

Figure 2. Anemia Data Confusion Matrices.
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LDA was also improved across all evaluation metrics for both Beta and Isotonic calibration. Its
predictive power was enhanced by both methods and validated by its increase on ROC-AUC from
0.6761 to 0.7985 and 0.8031 respectively. SVM, DT and KNN were also enhanced using Beta
calibration yielding a significant improvement in the key performance metrics as recorded in Table
2.

Table 2. Results on Anemia Data
Classifier Performance Metrics

Calibration
Method

ROC
AUC

F1
Score

Jaccard
Score

Brier
Score

Log
Loss

ACC MCC PREC REC

LR Uncalibrated 0.6491 0.4407 0.2826 0.3815 13.1769 0.6185 0.2451 0.6923 0.7027
Sigmoid 0.7833 0.4485 0.2892 0.1961 0.5718 0.6590 0.2593 0.3429 0.6486
Isotonic 0.7915 0.5714 0.4000 0.1835 0.5470 0.8092 0.4495 0.5500 0.5946
Beta 0.7818 0.4673 0.3049 0.1942 0.5678 0.6705 0.2880 0.3571 0.6757

NB Uncalibrated 0.6848 0.4434 0.3093 0.3873 13.8158 0.6127 0.3034 0.3333 0.8108
Sigmoid 0.7442 0.4786 0.3146 0.2158 0.6176 0.6473 0.3079 0.3500 0.7568
Isotonic 0.7500 0.4776 0.3137 0.1897 0.5810 0.7977 0.3568 0.5333 0.4324
Beta 0.7421 0.4742 0.3108 0.1958 0.5794 0.7052 0.3011 0.3833 0.6216

LDA Uncalibrated 0.6761 0.4717 0.3086 0.3237 11.1804 0.6763 0.2949 0.3623 0.6757
Sigmoid 0.7982 0.4630 0.3012 0.1911 0.5592 0.6647 0.2813 0.3521 0.6757
Isotonic 0.8031 0.5121 0.3443 0.1777 0.5279 0.7687 0.3655 0.4667 0.5676
Beta 0.7985 0.4706 0.3077 0.1871 0.5518 0.6879 0.2639 0.3692 0.6486

SVM Uncalibrated 0.6747 0.4819 0.3175 0.2486 8.5849 0.7514 0.3242 0.4348 0.5405
Sigmoid 0.7444 0.4883 0.3231 0.1720 0.5592 0.7457 0.3291 0.4286 0.5676
Isotonic 0.7526 0.5208 0.3521 0.1827 0.5674 0.7341 0.3681 0.4237 0.6757
Beta 0.7550 0.4026 0.2520 0.4412 1.8391 0.4682 0.1801 0.2650 0.8378

DT Uncalibrated 0.6489 0.4444 0.2857 0.2890 9.9825 0.7110 0.2650 0.3774 0.5405
Sigmoid 0.6597 0.3636 0.2222 0.1776 0.5361 0.7572 0.2188 0.4138 0.3432
Isotonic 0.6397 0.2769 0.1607 0.1835 0.5486 0.7283 0.1153 0.3214 0.3636
Beta 0.5801 0.3421 0.2063 0.2890 7.3661 0.7110 0.1572 0.3333 0.3512

KNN Uncalibrated 0.6454 0.4381 0.2805 0.3410 11.7793 0.6590 0.2441 0.3382 0.6216
Sigmoid 0.7048 0.4197 0.2656 0.1779 0.5409 0.7283 0.2457 0.3864 0.4595
Isotonic 0.7033 0.3562 0.2167 0.1796 0.5581 0.7283 0.1841 0.3611 0.3514
Beta 0.7198 0.4410 0.2586 0.1941 3.1326 0.7514 0.2535 0.4167 0.4054

4. Discussion
The calibration results highlighted in Tables 1 and 2 represent those with high performances

across all the model evaluation metrics, indicating improvements in the uncalibrated model perfor-
mances. The Beta calibration method introduced in this study as an emerging calibration method
performed notably well across all classifiers both in simulated and real health data. It is worthy of
note that calibration methods that performed well on each classifier in simulated data remained con-
sistent on real health data. It also reveals the potency of the Beta calibration method as an efficient
way of improving model performance. Naive Bayes scores improved after calibration and produced
better results with Isotonic Regression than Platt/Sigmoid Scaling. SVM demonstrated some stabil-
ity in terms of probabilities and higher reliability. We can also observe that the F1 Score of SVC
+ Sigmoid is better than that of SVC + Isotonic. Platt Scaling is most effective when the distortion
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in the predicted probabilities is sigmoid-shaped while Isotonic Regression is a more powerful cali-
bration method that can correct any monotonic distortion although it is prone to over-fitting. In
summary, SVM, LDA, and DT classifiers were the best classifiers due to their accuracy, ROC-AUC
values, and well-calibrated probabilities. While accuracy is a popular metric for evaluation, it is
crucial to consider other metrics like precision, recall, F1 score, and MCC to fully understand the
implications of positives and false negatives in the context of imbalanced data (Figures 3 and 4).

Figure 3. Uncalibrated Confusion Matrices.
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Figure 4. Calibrated Confusion Matrices.

The comparison of how the classifiers performed on both simulated and real-life data emphasizes
that the ROC-AUC values align closely. Overall, when comparing the performances of models
trained on real-life data, we observe alignment in the classifier’s performances on both real data and
simulated data using ROC-AUC values as the referenced performance metrics. The findings indicate
that the behavior of the data closely resembles real-life scenarios, which provides an argument for
using it in initial model assessments or when actual data is scarce.

4.1 Friedman’s Tests
The performance evaluation of algorithms, across the datasets, involves the use of the Friedman

test, which is a statistical non-parametric test that does not depend on any specific assumptions about
the data. This test was employed to assess metrics such as ROC-AUC, F1 Score, Jaccard Score, Brier
Score, Log Loss, ACC, MCC, PREC and REC. It is particularly valuable when the data does not
meet the requirements of tests like having a normal distribution. To analyze the results of the
Friedman test we compared the p-value of each metric with a significant level of 0.05. The result of
our Friedman test is shown in Table 3.

Table 3. Test Statistics for Friedman Test

Metrics Test Statistic p-value

1 Roc Auc 11.3571 0.0779
2 F1 Score 10.0714 0.1217
3 Jaccard Score 11.0357 0.0872
4 Brier Score 12.6188 0.0495
5 Log Loss 11.8654 0.0650
6 Acc 4.3857 0.6246
7 Mcc 11.0357 0.0872
8 Prec 7.7143 0.2598
9 Rec 9.9821 0.1254
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Based on our findings from this analysis, we observe a difference in performance for the Brier
Score metric. Its p-value was calculated to be 0.049504. On the other hand, all other metrics had
p-values greater than 0.05 implying that there were no significant differences in their performance
across all models tested. Specifically looking at ROC-AUC, F1 Score, Jaccard Score and MCC
metrics showed p-values of 0.05 indicating some variations in model performance without reaching
the statistical significance threshold. Furthermore; Log Loss, ACC, PREC and REC metrics had p
values indicating even less evidence supporting significant differences, in their performance. To sum
up, based on the results of the Friedman test it was found that only the Brier Score metric displayed
a variation, among all the models. The absence of disparities in the metrics could be attributed to
similar performance across all models.

5. Conclusions
In this work, we have presented Beta calibration, a fairly novel approach to calibration that

improves on previous methods in several respects. It transforms the data to provide appropriate scal-
ing for "over-confident" models and it was identified as the most effective calibration method for
improving class probability estimates in health data classification with imbalanced and asymmetric
responses. Our work highlights the potential implications and applications of novel calibration tech-
niques in real-world healthcare scenarios. There are future research directions to further enhance
class probability estimation in health data classification. For instance, it is unknown how to choose
the right amount of data for calibration. Finally, there may be more efficient and clever ways to
obtain a calibration like the brute-force cross-validation approach, which would greatly improve
the efficiency of the calibration methods. Spline-based calibration methods would also be examined
in our future studies. The findings from this study provide valuable insights into selecting the most
suitable calibration methods for enhancing class probability estimates in healthcare-related machine
learning tasks.
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