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Abstract
This study applied the Gompertz model to quail growth data, assuming symmetric and asymmetric ho-
moscedastic and heteroscedastic error distributions (Normal, t-Student, Skew normal, and Skew t), under
a Bayesian framework. Model selection criteria included the Bayesian Deviance Information Criterion
(DIC) and the analysis of residual standard deviation (σ), as well as graphical assessment of the fit. For both
homoscedastic error structures (males: DIC=7.186; σ=10.73) and (females: DIC=5.572; σ=11.88) as well as
heteroscedastic structures (males: DIC=6.493; σ=0.795) and (females: DIC=4.405; σ=0.824), the best fits
were obtained by considering the Skew t distribution for errors. In homoscedastic fits, significant residual
asymmetry (λ) was observed only for female quails (CI(λ)=[-8.039;-0.340]), whereas in heteroscedastic
fits, the parameter was not significant for both sexes. Additionally, heteroscedasticity (δ) captured in the
fits was significant for both sexes (males: CI(δ)=[1.66;2.13] and females: CI(δ)=[1.80;2.26]). Understan-
ding animal growth is crucial for optimizing management and feeding practices, reducing time and costs
in production. In this case, the use of nonlinear models considering heteroscedastic and/or asymmetric
residual structures contributes to greater accuracy in decision-making.
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1. Introduction
Understanding the process of animal growth is of great importance for production systems, as it

allows for the identification of moments in the animal’s life when growth occurs more or less rapidly,
and even when growth stops. This makes it possible to adopt different nutritional management
strategies at various stages of animal growth. Studying this field involves summarizing information
about the lives of animals using nonlinear regressions applied to a set of mathematical parameters
with biological interpretations (Lopes et al., 2016).

In the literature, there are several nonlinear models that describe animal growth, and particularly
for quails, models such as Brody (B), Gompertz (G), Logistic (L), and Von Bertalanffy (V), among
others, can be used (Ribeiro et al., 2020; Rossi et al., 2017). The choice of using nonlinear models is
driven by the fact that the entire growth process can be described by a few parameters, which are
biologically meaningful (Louzada et al., 2014).

Assuming normality and independence of residuals for nonlinear regression models is a common
practice because it makes the models easily applicable in widely used statistical software. However,
the assumption of normality is quite restrictive and lacks robustness when data exhibits deviations
from normality, particularly in the presence of skewness. For such situations, there are proposals in
the literature, such as asymmetric distributions (Azzalini, 1985; Campos & Andrade, n.d.; Louzada
et al., 2014; Sahu et al., 2003).

Frequentist approaches tend to encounter problems in parameter estimation and convergence,
primarily due to the bounded parameter space for asymmetry coefficients. Alternatively, the Bayesian
approach is more flexible and may provide better inferences (Campos, 2011; Gelman et al., 2013). In
this regard, the use of alternative methods, such as Bayesian methods, can lead to more consistent
and parsimonious results.

The aim of this study was to analyze the fitting of the Gompertz growth curve to quail growth
data, separated by sex, considering both symmetric and asymmetric distributions (Normal, t-Student,
Skew normal, and Skew t) within homoscedastic and heteroscedastic error structures under a Bayesian
framework.

2. Matherials and methods
2.1 Data

The data were collected through an experiment conducted in accordance with the regulations
proposed by the Committee for Animal Experimentation Ethics of the State University of Mar-
ingá, Paraná (UEM) under protocol number 061/2012 (Grieser, 2012). A total of 400 broiler quails
Japanese (Coturnix Coturnix Coturnix) were used, with 238 males and 162 females. The experimen-
tal period lasted from 1 to 42 days, with weekly weighings. Individual weight measurements were
monitored using a precision balance (1500g x 0.01g). This process allowed for the empirical obser-
vation of growth curves for quails by sexes during the specified period.

2.2 Modeling
In the literature, various models and parameterizations are available to fit different animal growth

curves. Some models provide a biological explanation for their parameters. It is also possible to
assume different error distributions and adapt their dispersion over time. In this study, the Gompertz
growth curve will be considered for modeling with different distributions for errors, as well as
homoscedastic and heteroscedastic structures.

The presence of homogeneity of variances was verified by Levene test (Almeida et al., 2008).
The Gompertz (1825) model, is given by
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yi = β1e–β2e–β3xi + ϵi (1)

where β1 is the parameter representing the asymptotic weight value of the response variable, β2
is a constant representing the initially observed value, and β3 is the growth rate of the response
variable, indicating the speed at which the value approaches the maximum observed value, thereby
determining the efficiency of growth.

2.3 Asymmetric Errors
The asymmetric t-Student distribution is an extension of the t-Student distribution (T) and is

used in cases where, in addition to residual asymmetry, there are extreme values present, that is, data
with asymmetric and/or heavy-tailed structures. It is more effective than the asymmetric normal
distribution Azzalini (1985) because it is more robust in such cases (De La Cruz & Branco, 2009;
Mangueira et al., 2016).

Godoi (2007) shows that if a random variable Z is referred to as the standard asymmetric t-
Student or Skew t (ST) with skewness parameter λ and kurtosis ν, its probability density function
is given by:

fz(Z) = 2tν(z)Tν+1

(
λz

√
1 + ν

ν + z2

)
(2)

in which tν is the probability density function of a standard t-Student distribution with ν degrees
of freedom, Tν+1 is the cumulative distribution function of a standard t-Student distribution with
ν + 1 degrees of freedom, and –∞ < z < +∞.

The parameter λ represents the shape of the distribution. If λ < 0, there is negative skewness;
if λ > 0, there is positive skewness, and if λ = 0, the distribution is symmetric and equivalent to the
t-Student distribution and for n → ∞, the normal or gaussian distribution (N).

2.4 Homoscedastic Errors
The Gompertz model adjustments were carried out considering homoscedastic error distribu-

tions: Normal (N), t-Student (T), Skew normal (SN), and Skew t (ST) for each of the models (Ama-
ral, 2009; Azzalini, 1985; Cancho et al., 2010; De La Cruz & Branco, 2009; Freitas, 2005; Louzada
et al., 2014; Rossi et al., 2017; Rossi & Santos, 2014; Sahu et al., 2003).

2.5 Heteroscedastic Errors
In this stage, the best fit from the previous step was considered, but now with a multiplicative

heteroscedastic structure (Guler et al., 2022; Rossi et al., 2017), where the variance of errors is pro-
portional to an unknown power (δ) of one of the explanatory variables:

Var(ϵi) = σ2
i = σ2xδi (3)

where δ is the degree of heteroscedasticity and σ2 is a common standard among all error variances
(Buzolin, 2005; Mazucheli et al., 2011).
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2.6 Estimation
All inferential procedures were conducted using Bayesian methods, and for this purpose, the data

were analyzed in the R software (R Development Core Team, 2023) through the BRugs package
(Ligges, 2006) linked to OpenBUGS (Spiegelhalter et al., 2007). The Gibbs Sampler algorithm was
employed within the MCMC (Markov Chain Monte Carlo) framework for simulations.

The modeling used was proposed by De La Cruz & Branco (2009), which makes the Skew
normal (SN) distribution a particular case of the Skew t (ST) (Rossi & Santos, 2014).

For the implementation, the following hierarchical structure is employed in the models:

yij |xij,β,σ2, λ,ν, δij, zij ∼ N
(
f (xij,β) – µϵij + λzij, δ–1

ij σ
2
)

(4)

where Zij ∼ N(0, δ–1
ij )I(zij>0) and δij ∼ Gamma

(
ν
2 , ν2

)
, and assuming β ∼ T(0, 10–2, 2),

σ ∼ U(0, 100), λ ∼ T(0, 10–2, 2), and ν ∼ Exp(10–1)I(2.5,∞) as prior distributions.
For δ = 0 and excluding the prior distribution for ν, the errors follow a Skew normal (SN)

distribution.
Frequentist estimates were used as initial values for the model parameters. A total of 110,000

iterations were generated, with 10,000 discarded to avoid initial effects. To eliminate autocorrelation
between iterations, a spacing of 10 points was used. Thus, a final chain with 10,000 observations
was obtained for each parameter. The coda package (Plummer et al., 2006) was used to assess the
convergence of chains, considering the criteria of Heidelberger & Welch (1983) (1983) and Geweke
(1992).

The model selection criterion used was the Bayesian Deviance Information Criterion (DIC),
in which lower values indicate higher plausibility for the model, that is, a better fit to the data
(Spiegelhalter et al., 2002).

Checking the proper fit of the model to the data was performed using probability quantile-
quantile (QQ-Plot) graphs, in which linear patterns are expected (Fernandes, 2019).

The significance testing of all model parameters, particularly skewness (λ) and heteroscedasticity
(δ), is determined by examining whether or not the zero value falls within the corresponding Cre-
dibility Interval (CI) of the parameters (95% CI=[P2.5%;P97.5%]). In other words, if CI(λ) contains
zero, the distribution is considered symmetric; otherwise, it is considered asymmetric. Similarly,
for heteroscedasticity, if CI(δ) contains zero, then homoscedastic adjustment is sufficient, whereas
if it does not contain zero, it suggests a heteroscedastic adjustment.
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3. Results and Discussion
A descriptive summary of the mean weight and standard deviation of observations in the ana-

lyzed quails, at each age by sex, is presented in Table 1.
The Levene’s test (p < 0.01) supports the presence of heteroscedasticity in the data for both sexes.

Table 1. Mean weight (g) and standard deviation (SD) at different ages (days) of the quails

Sex Age
1 7 14 21 28 35 42

Male weight 8.86 31.36 78.19 131.41 182.20 216.10 238.10
SD 0.68 6.56 11.50 16.10 19.90 19.37 23.49

Female weight 8.80 32.61 81.60 137.67 190.40 236.60 282.80
SD 0.73 6.31 12.30 17.24 27.19 28.16 34.38

It is possible to observe an increasing trend in the standard deviation as age increases in both sex,
indicating a potential presence of heteroscedasticity in the data.

Female quails exhibit a greater variation in growth rate compared to male quails, showing a
higher standard deviation in six out of seven measurements taken (Figure 1)

Figure 1. Boxplot of quail weights (g) by sexes.
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All chains of the posterior distributions of parameters in the assumed models were assessed using
the criteria of Heidelberger & Welch (1983) and Geweke (1992).

In Tables 2 and 3, parameter estimates of the considered models and DIC values are presented
for both sexes, considering homoscedastic and heteroscedastic error structures, respectively.

Table 2. Parameter estimates of the Gompertz model considering distribution Normal, t-Student, Skew normal and t-Skew
for errors homoscedastic

Homoscedastic

Er
ro

r

Pa
ra

m
et

er

Male Female

Mean (SD) P2.5% – P97.5% Mean (SD) P2.5% – P97.5%

β1 274.293 (3.560) (267.819 ; 281.898) 368.436 (10.658) (348.792 ; 391.356)
β2 3.786 (0.086) (3.626 ; 3.963) 3.648 (0.087) (3.488 ; 3.826)

N β3 0.0788 (0.0019) (0.0747 ; 0.0826) 0.0615 (0.0024) (0.0567 ; 0.0665)
τ 0.0039 (0.0001) (0.0036 ; 0.0043) 0.0021 (0.0001) (0.0019 ; 0.0024)
σ 15.854 (0.375) (15.145 ; 16.609) 21.560 (0.604) (20.431 ; 22.793)
DIC 7,381 5,841

6*T β1 269.602 (3.134) (263.902 ; 275.972) 358.057 (7.880) (343.521 ; 375.219)
β2 3.754 (0.059) (3.641 ; 3.876) 3.726 (0.052) (3.625 ; 3.827)
β3 0.0797 (0.0015) (0.0766 ; 0.0827) 0.0652 (0.0017) (0.0614 ; 0.0686)

T ν 3.300 (0.487) (2.493 ; 4.387) 2.230 (0.190) (2.008 ; 2.713)
τ 0.0087 (0.0009) (0.0071 ; 0.0107) 0.0076 (0.0008) (0.0060 ; 0.0093)
σ 17.696 (1.984) (15.282 ; 22.348) 54.834 (86.468) (23.954 ; 173.716)
DIC 7,260 5,674

6*SN β1 274.390 (3.503) (267.570 ; 281.615) 369.906 (9.645) (351.815 ; 390.011)
β2 3.634 (0.087) (3.466 ; 3.811) 3.793 (0.107) (3.594 ; 4.013)
β3 0.076 (0.0019) (0.073 ; 0.080) 0.0629 (0.0024) (0.0583 ; 0.0677)

SN λ 16.175 (1.685) (12.591 ; 19.128) -20.858 (4.133) (-25.820 ; -11.847)
τ 0.0066 (0.0008) (0.0051 ; 0.0083) 0.0034 (0.0005) (0.0024 ; 0.0044)
σ 12.343 (0.748) (10.966 ; 13.879) 17.071 (1.288) (14.922 ; 20.243)
DIC 7,249 5,744

6*ST β1 270.182 (3.259) (263.884 ; 276.759) 355.707 (7.346) (342.061 ; 370.845)
β2 3.720 (0.085) (3.560 ; 3.894) 3.856 (0.086) (3.690 ; 4.034)
β3 0.0792 (0.0018) (0.0756 ; 0.0829) 0.0666 (0.0019) (0.0630 ; 0.0703)

ST λ 1.116 (1.977) (-2.773 ; 5.003) -4.247 (1.968) (-8.039 ; -0.340)
ν 3.403 (0.504) (2.615 ; 4.557) 2.694 (0.176) (2.505 ; 3.159)
τ 0.0087 (0.0008) (0.0071 ; 0.0106) 0.0071 (0.0008) (0.0057 ; 0.0087)
σ 10.727 (0.544) (9.692 ; 11.832) 11.885 (0.644) (10.673 ; 13.176)
DIC 7,186 5,572
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Table 3. Parameter estimates of the Gompertz model considering distribution Normal, t-Student, Skew normal and t-Skew
for errors heteroscedastic

Heteroscedastic

Er
ro

r

Pa
ra

m
et

er

Male Female

Mean (SD) P2.5% – P97.5% Mean (SD) P2.5% – P97.5%

β1 278.312 (3.374) (271.827 ; 284.967) 327.339 (6.183) (315.820 ; 339.773)
β2 3.722 (0.012) (3.698 ; 3.747) 3.881 (0.018) (3.847 ;3.917)
β3 0.0767 (0.0008) (0.0750 ; 0.0784) 0.0722 (0.0011) (0.0701 ; 0.0744)

N δ 1.875 (0.046) (1.781 ; 1.965) 2.076 (0.048) (1.980 ; 2.169)
σ 0.857 (0.056) ( 0.755 ; 0.977) 0.782 (0.054) (0.682 ; 0.897)
DIC 6,537 5,044

β1 276.101 (3.191) (269.914 ; 282.508) 326.890 (5.945) (315.487 ; 338.608)
β2 3.716 (0.012) (3.692 ; 3.741) 3.880 (0.016) (3.848 ;3.914)
β3 0.0773 (0.0008) (0.0756 ; 0.0789) 0.0726 (0.0011) (0.0705 ; 0.0753)

T δ 16.978 (0.207) (16.577 ; 17.396) 18.673 (0.332) (17.973 ; 19.321)
ν 1.870 (0.050) (1.769 ; 1.970) 2.064 (0.053) (1.956 ; 2.166)
σ 12.951 (5.162) ( 6.851 ; 26.656) 14.037 (6.804) (6.611 ; 32...078)
DIC 6,524 5,037

β1 275.896 (5.4828) (265.463 ; 287.471) 358.920 (13.850) (333.099 ; 388.452)
β2 3.775 (0.088) (3.617 ; 3.960) 3.537 (0.107) (3.326 ;3.764)
β3 0.0778 (0.0777) (0.0366 ; 0.0823) 0.0636 (0.0029) (0.0577 ; 0.0697)

SN λ 0.171 (8.643) (-15.384 ; 17.124) 12.627 (16.503) (2.795 ; 49.879)
δ 1.884 (0.048) (1.785 ; 1.976) 2.062 (0.051) (1.964 ; 2.159)
σ 0.848 (0.057) (0.746 ; 0.972) 0.789 (0.058) (0.685 ; 0.907)
DIC 6,579 5,580

β1 275.922 (4.656) (265.162 ; 284.369) 355.475 (18.437) (353.426 ; 397.560)
β2 3.752 (0.070) (3.636 ; 3.942) 3.714 (0.167) (3.438 ;4.147)
β3 0.0778 (0.0020) (0.0744 ; 0.0828) 0.0647 (0.0044) (0.0561 ; 0.0741)

ST λ -0.273 (1.721) (-4.105 ; 3.103) 1.048 (6.379) (-11.691 ; 11.381)
δ 1.907 (0.119) (1.664 ; 2.133) 2.028 (0.111) (1.801 ; 2.258)
ν 14.024 (7.553) (3.981 ; 32.261) 24.968 (13.890) (5.967 ; 59.295)
σ 0.795 (0.142) (0.550 ; 1.108) 0.824 (0.132) (0.583 ; 1.118)
DIC 6,493 4,405

Among the fits considering different distributions, as well as different error structures (N, T, SN,
and ST), in both cases, it was found that the fits considering the Skew t distribution (ST) for errors
were the best-fitting to the data, exhibiting the lowest DIC values as well as the smallest standard
deviations (σ).

In the homoscedastic structure, it was observed that there is no significant asymmetry (λ) of er-
rors for male quails (CI(λ)=[-2.8;5.0]), but it is significant for females (CI(λ)=[-8.0;-0.3]). However,
in the heteroscedastic structure, it was observed that there was no significant asymmetry (λ) in both
sexes (CI(λ)=[-4.105;3.103] and CI(λ)=[-11.691;11.381], for males and females, respectively).

In the heteroscedastic structure, the significance of the heteroscedasticity parameter in errors (δ)
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was observed for both sexes (CI(δ)=[1.664;2.133] and CI(δ)=[1.801;2.258], for males and females,
respectively), indicating a more parsimonious model with biological reality.

The plot of standardized residuals and theoretical quantiles for Gompertz fit with homoscedastic
errors (Figures 2 and 3) support the presence of positive and negative skewness for male and female
quails, respectively, and suggest a potential lack of fit for the homoscedastic models indicated by
these criteria. To enhance the precision of inferences about the parameters in models fitted to the
data and achieve significant time and cost savings in production, an alternative could be to consider
heteroscedastic errors.

Figure 2. The Gompertz fit considering homoscedastic Skew t errors for male quails.

Figure 3. The Gompertz fit considering homoscedastic Skew t errors for female quails.

In Figures 4 and 5, the fits, standardized residuals, and theoretical quantiles of the Gompertz
fits considering ST errors for heteroscedastic structures, respectively, for males and females are pre-
sented. A significant decrease in DIC values was observed among all models fitted considering a
heteroscedastic error structure (Table 2).
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Figure 4. The Gompertz fit considering heteroscedastic Skew t errors for male quails.

Figure 5. The Gompertz fit considering heteroscedastic Skew t errors for female quails.

It can be seen that female quails have a significantly higher asymptotic weight, since their res-
pective credibility interval do not intersect (β̂1 = 275.92; CI= [265.16; 284.37] and β̂1 = 355.48;
CI= [353.43; 397.56], respectively, males and females). The analysis is analogous for the other pa-
rameters (Table 2 and Figure 6).
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Figure 6. Gompertz fits with homoscedastic and heteroscedastic Skew t errors for male and female quails, respectively.

Rossi et al. (2017) fit the same models analyzed in this study to the weight of quails from three
different lineages, one for meat production and two for egg-laying, separated by sexes, using a
Bayesian approach to find the best model that described the data and compared the parameters
among different quail lineages. They reported that the Gompertz model, in general, is considered
the best fit for quail growth data (Guler et al., 2022; Mazucheli et al., 2011; Rossi & Santos, 2014).
However, they mention that depending on the data structure and factors, such as the animal species,
other models may provide better fits (Flinn & Midway, 2021).

Ribeiro et al. (2020) fitted the Brody, Von Bertalanffy, Richards, Logistic, and Gompertz models
to the weight of meat quails from different lineages, using frequentist cluster analysis (centroid
method). They assessed the similarities between the models based on the mean parameter estimates.
They stated that the Richards model was the most suitable for describing the growth curves for
the analyzed data and added that the Logistic model yielded similar results in the analysis without
distinguishing between lineages.

Guler et al. (2022) employed a frequentist approach to fit and compare the Gompertz, Logistic,
Von Bertalanffy, and Richards curves for two quail lineages (yellow and brown). They presented
similar results regarding the asymptotic weights of the quails for the analyzed lineages.

Mazucheli et al. (2011) fitted the Gompertz model to quail weight data as a function of age,
considering assumptions of homoscedasticity and multiplicative heteroscedasticity of variances, from
both frequentist and Bayesian perspectives. They found that the heteroscedastic model provided the
best fit to the data, as it did not overestimate the parameters of the birds’ asymptotic mean weight.

Diniz et al. (2012) employed the Von Bertalanffy model to fit growth data of female Kubbard
chickens under a Bayesian framework. They compared homoscedastic and multiplicative heteros-
cedasticity models of variances and concluded that accounting for the presence of heteroscedasticity
significantly impacted the credibility intervals of the parameters, reducing them and leading to a
decrease in the slaughter age of the chickens.

Louzada et al. (2014) proposed growth models considering heteroscedasticity and different error
distributions (Normal and Skew normal) applied to chicken growth data. They demonstrated that
the Skew normal distribution is a viable option for modeling growth curves with heteroscedasticity,
allowing capturing the asymmetry and non-constant variability in the observed data.
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4. Conclusions
The Gompertz model with heteroscedastic Skew t errors was the best fit for the weight data in

relation to the ages of meat quails.
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