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Abstract 

Malaria remains a prominent public health concern in Cameroon, with the potential for epidemic outbreaks, necessitating 

a robust understanding of its dynamics. This paper uses routinely collected surveillance data from health facilities in the 

Adamawa Region since January 2018. By applying statistical analysis, this study aims to enhance comprehension, enable 

data predictions, and facilitate informed decision-making for public health policy implementation. Focusing on weekly 

health districts data spanning from 2018 to 2022, our analysis employs key statistical metrics for central tendency, data 

spread, distribution shape, and variable dependence. The study reveals distinctive trends, highlighting peak malaria 

transmission periods consistently occurring between August and November each year. The highest weekly recorded case 

count in any health district reached 1,294. The data exhibits leptokurtic distributions, skewed to the left of the median. 

And in 2022, 11% of the population was reported to have contracted malaria. Despite an overall region-wide average 

growth rate of -1.21% over the past five years, maintaining vigilant attention to this critical health issue is imperative. 

Auto dependence analysis indicates that observations are weekly correlated, assuming the time series as stationary. The 

stationarity has been confirmed by ADF and KPSS tests that we performed. This comprehensive data analysis helps our 

understanding of the malaria landscape in the Adamawa Region of Cameroon. The paper also recommends the inclusion 

of additional variables in data collection for a more holistic perspective. These findings provide a basis for the 

formulation and implementation of targeted interventions by relevant stakeholders, aiding in the prediction of future 

cases and ultimately contributing to the effective management of malaria in the region. 
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1. Introduction 
In this section we present the context of the study carried out and relevant related works. 

1.1 Context  
In our study, we turn our attention to a disease of significant global concern: malaria (2024 

ICD-10-CM Diagnosis Code B542). This tropical affliction continues to exact a grievous toll, 

claiming numerous lives within households each year, with a particularly profound impact on 

the African continent (Wahedi, J. A., et al. 2020; Ibrahim O. R., 2021; Ozulonye, O. S., Okolo, 
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A., Torsen, E. & Tiwah O. J., 2022). According to WHO’s World malaria report for 20223, there 

were an estimated 247 million malaria cases worldwide in 2021, an increase from 245 million in 

2020. The WHO African Region, with an estimated 234 million cases in 2021, accounted for 

about 95% of global cases. More than 600,000 people still die of malaria every year, most of 

them children (Ibrahim O. R. et al. 2021; Danwang et al., 2021; Ramirez, J. H. et al. 2020). 

Approximately 3.2 billion individuals across the globe face a heightened risk of contracting this 

ailment. These statistics underscore the persistent and substantial public health concern posed by 

this disease, necessitating dedicated attention from various stakeholders (Ramirez, J. H. et al. 

2020). 

Malaria is classified as potentially epidemiological in Cameroon, among thirty others 

diseases (Sohanang Nodem F. S., Ymele D., Fadimatou M., Fodouop S. C., 2023, Mbouna, A. 

D., et al, 2019) This classification means that special attention must be paid to them when 

implementing public health policies. In order to closely monitor these diseases, the Cameroon 

Ministry of Public Health, through its Health Information Unit, collects data from Health 

Facilities, to measure and monitor the evolution of the diseases. These data sets, structured as 

temporal sequences, offer a fertile ground for the application of specialized analytical 

methodologies. Consequently, this work is primarily motivated by the pronounced potential for 

robust investigation within this context. 

The paper focuses on health data taken as time series. Time series are data collected 

chronologically over an approved period (Hyndman, R. J. & Athanasopoulos, G., 2021). They 

have long been used in economics, finance and meteorology (Makridakis, S., Assimakopoulos, V. 

& Spiliotis, E., 2018); but less so in epidemiology, especially in Africa. We therefore plan to 

carry out several studies, in connection with Data Science (Zhang Q., 2021). The final aim is to 

gain a better understanding of how these data behave over time, so that appropriate prevention 

measures can be taken. The work should lead to recommendations on the use of time series in 

epidemics monitoring and prediction in Africa. But first, we considered it useful to describe the 

data statistically. We therefore turned to a comprehensive descriptive statistics and rates. 

The data we are working on includes cases of malaria in Health Districts of the Adamawa 

Region of Cameroon, in Central Africa. This study area encompasses 11 Health Districts, 88 

Health Areas and 207 Health Units, for a total population estimated at 1,509,210 people in 2022, 

covering an area of 63,701 km2. The 11 districts are, in alphabetical order: Bankim, Banyo, 

Belel, Dang, Djohong, Meiganga, Ngaoundal, Ngaoundere Rural (Ndere_Rur), Ngaoundere 

Urbain (Ndere_Urb), Tibati and Tignère. Ngaoundere is the regional capital and is divided into 

two Health Districts (urban and rural)4. The data are collected weekly via the DHIS5 (District 

Health Information Software) platform. Concerning Cameroon, data are collected weekly, since 

January 2018 and saved in the DHIS data base. These datasets will serve as the foundation for 

our statistical analysis, incorporating key indicators such as measures of concentration, 

dispersion, shape, dependence, as well as the assessment of progression and prevalence rates. 

 

1.2 Related works 
Numerous studies have focused on statistically describing malaria data most of time in view 

of applying preventive measures, or for analyzing and forecasting. 

The work of Landoh et al., 2012, sought to assess the trends of malaria incidence and 

mortality due to malaria in Est Mono district (Togo) from 2005 to 2010. Data on confirmed and 

suspected malaria cases reported were obtained from the district health information system. 

From January 2005 to December 2010, 114,654 malaria cases (annual mean 19,109 ± 6,622) 

were reported with an increase of all malaria cases from 10,299 in 2005 to 26,678 cases in 2010 

(p<0.001). Of the 114,654 malaria cases 52,539 (45.8%) were confirmed cases. The prevalence 
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of confirmed malaria cases increased from 23.1 per 1,000 in 2005 to 257.5 per 1,000 population 

in 2010 (p <0.001). The mortality rate decreased from 7.2 per 10,000 in 2005 to 3.6 per 10,000 

in 2010 (p <0.001), with a significant reduction of 43.9% of annual number of death due to 

malaria. This study showed an increase of malaria prevalence despite the implementation of the 

use of relevant strategies. 

Alhassan, E. A., Adjei, M. I., Aidoo, E., 2017 undertaken their research work with the prior 

motivation to develop an adequate model for forecasting future trends of malaria in the Kasena 

Nankana Municipality (Ghana). Descriptively, the study revealed that, the average number of patients 

diagnosed with malaria is 698.7 having slightly flat tail at right side (positively skewed) which 

implies that the malaria cases are heading towards more positive values with the value of Kurtosis 

being less than 3 hence making them not normally distributed (platykurtic) which means the 

variables exhibit broad peaks or high kurtosis. The model was used to forecast monthly cases of 

malaria for the next two years. 

In their works, Rodríguez, S. N. I., Rodríguez, J. A. I., Rodríguez, J. C. P. & Olivera, M. J., 2021 

describe the malaria mortality rates from 2009-2018 in Colombia. During the study, 148 malaria-

related deaths were registered. The average annual mortality rate was 0.032 deaths/100,000. Two 

peaks were observed in 2010 and 2016. The unstable downward trend of malaria mortality rates calls 

for greater emphasis on surveillance and interventions.  

Dian et al., 2021 in their study aimed to analyse trends of malaria cases in urban Kuala Lumpur 

(Malaysia). All suspected cases presented to a university hospital in Kuala Lumpur from January 

2005 to December 2020 were examined by microscopy. Infection status was analysed using 

descriptive statistics and curve estimation analysis. Of 3,105 blood films examined, 92 (3%) were 

microscopically confirmed malaria cases. Plasmodium vivax infections accounted for the majority 

(36.9%) of all malaria cases. The curve estimation analysis showed significant decreases in malaria 

cases due to P. vivax (R2 = 0.598; p < 0.001) and Plasmodium falciparum (R2 = 0.298, p = 0.029), 

but increases for Plasmodium knowlesi (R2 = 0.325, p = 0.021) during the 16 years. This study 

highlighted the importance of continued vigilance and improved surveillance. 

Finally, the work of Danwang et al. 2021 aims to provide a fine-scale spatiotemporal estimate of 

malaria incidence among Cameroonian under-5, using routine data on symptomatic malaria collected 

in health facilities, between 2012 and 2018. In total, 4,052,216 cases of malaria were diagnosed 

between 2012 and 2018. There was a gradual increase per year, from 369,178 in 2012 to 652,661 in 

2018. After adjusting the data for completeness, the national incidence ranged from 489‰ in 2012 to 

603‰ in 2018. 

In the present research, our primary emphasis is on comprehensive description of the 

dataset, based on statistics approaches and rates. This will open wide ways for predictions, using 

statistical, machine learning and Deep learning methods (Twumasi-Ankrah, S, Pels, W. A., 

Nyantakyi, K. & Addo, D. K., 2019; Yihang, D., 2023). The study takes advantage of the above 

presented works. In addition, the dataset and the environment under consideration are drawn 

directly from the local context. To the best of our knowledge, no prior scientific work has been 

conducted in this specific region, regarding data description. 

The paper begins by putting in place statistical framework. This is followed by a 

comprehensive overview of the methodology employed and the resultant findings. Our 

presentation culminates in an interpretation of the findings within the context of a thorough 

discussion, leading to a conclusive summary. 

 

2. Statistical Framework and Derived Rates 
In this section, we delve into the statistical concepts applied and the rates that have been 

derived through our analysis. 
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2.1 Statistical measures 
The purpose of this paper is to provide a comprehensive understanding of dynamics of 

malaria in the Adamawa Region using statistics and rates. Statistics incorporate a comprehensive 

set of methodologies, encompassing procedures for the measurement, classification, 

computation, description, synthesis, analysis, and systematic interpretation of acquired data 

(Mishra et al., 2019; Yihang, D., 2023). Within the field of statistics, two fundamental branches 

emerge: Descriptive Statistics and Inferential Statistics (Guetterman, T. C., 2019; Kaur, P., 

Stoltzfus, J. & Yellapu, V., 2018). Descriptive Statistics offer a toolbox of numerical and 

graphical techniques designed to succinctly summarize data collections, rendering complex 

information in a comprehensible format. In contrast, Inferential Statistics equips researchers 

with methods to draw meaningful inferences about populations based on observations from a 

sample.  For the focus of this discussion, our primary emphasis lies on descriptive statistics. This 

particular facet of statistical analysis holds significant importance within the realm of biomedical 

research (Binu, V. S., Mayya, S. S. & Dhar, M., 2014; Satake, E. B., 2015; Guetterman, T. C., 2019). 

It serves as a vital tool to depict the foundational characteristics of data under study. In essence, 

it empowers researchers to delve into the intricacies of data, ultimately facilitating the generation 

of informed conclusions and decisions based on a solid data-driven foundation. Descriptive 

statistics comprises four pivotal measures: central tendency, dispersion, shape and dependences 

(Alhassan, E. A., Adjei, M. I., Aidoo, E., 2017; Guetterman, T. C., 2019; Mishra et al., 2019; 

Twumasi-Ankrah, S, Pels, W. A., Nyantakyi, K. & Addo, D. K., 2019; Yihang, D., 2023).  

Measures of the central tendency provide information about the center of the observations. 

Among them, we have mean, median and quartiles. Let remind that quartiles are the three points 

that divide the dataset into four equal groups. Each group comprising a quarter of the data, for a 

set of data values which are arranged in either ascending or descending order. Each dataset has 

three quartiles, (Q1, Q2, and Q3) representing the first, second, and third quartile’s value. Q2 

corresponds to the median. 

Measures of dispersion indicate how much observations tend to deviate from the average or 

central values. We focus in this work on some of them, namely: Variance, Standard deviation, 

Range and Inter Quartile Range (IQR). 

Measures of shape are commonly skewness and kurtosis (Demir, S. 2022, Hatem et al. 2022). 

Skewness is the measure of the horizontal distance between mode and mean. It represents the 

asymmetry of data or the symmetric distortion. It’s the third statistical moment, after mean and 

variance. Kurtosis provides information about the shape of a distribution, specifically the 

heaviness or lightness of its tails. It is the fourth statistical moment and serves as a measure of 

the degree of curvature, indicating whether the distribution is more or less peaked than a normal 

distribution. Let recall that the statistical moments are quantitative measure that describes the 

specific characteristics of a probability distribution. It is also the way to measure how spread out 

or concentrated the number in a dataset is around the central value, such as the mean (Novák, L.; 

Novák, D. 2020). 

As well as the time series we are working on are univariate, the measures of dependence will 

focus on autocorrelation function (ACF) and partial autocorrelation function (PACF). These 

functions can help to assume whether or not a time series is stationary. Stationarity has then to 

be confirmed by tests such as the Augmented Dickey-Fuller (ADF) (Mushtaq, R., 2011; 

Paparoditis, E. & Politis, D. N., 2018) or the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) (Shin, 

Y., Schmidt, P., 1992; Hornok, A., & Larsson, R. 2000). A stationarity series reflects the time-

invariance of all process characteristics. This property is a prerequisite for the application of a 

number of statistical and machine learning methods on time series. It also open wide 

possibilities for time series forecasting. ACF can be used to identify autoregressive (AR) 

dependencies, and PACF is used for moving average (MA) dependencies (Brockwell, P. J. & 

Davis R. A., 2016). The autocorrelation function is a measure of the correlation between 

observations of a time series that are separated by k time units (xt and xt–k). Meanwhile, the 

partial autocorrelation function is a measure of the correlation between the observations of a 

time series that are separated by k time units (xt and xt–k), after adjusting for the presence of all 
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the other terms of shorter lag (xt–1, xt–2, ..., xt–k–1). 

Refer to Table 1, for mathematical representations of these measures. 

 

2.2 Progression and prevalence rates 

Time series show the evolution of a statistical variable over time. One of the tools used to define 

changes in time series is the progression rate. These tools measure variations in an observation 

between two or more dates, with or without a regular time step. In this work, we use both the annual 

progression rate and the average progression rate, based on the geometric mean. The progression rate 

measures the gross change and the direction (positive or negative) of a quantity in relation to a 

reference situation V0. The geometric mean of n positive values xi is defined as the nth root of the 

product of these values. It is used to establish average rates, particularly annual average rates (Satake, 

E. B., 2015; Twumasi-Ankrah, S, Pels, W. A., Nyantakyi, K. & Addo, D. K., 2019; Mousa, A. et al. 

2020; Danwang et al., 2021; Esum, M. E., Ndip, R. N. & Sumbele I., 2022; Adewole, A. I., 

Amurawaye, F. F. & Oladipupo J. O., 2023).  

According to the dictionary of the Académie de Médecine6, prevalence in epidemiology is the 

total number of cases of a given disease existing in a defined population, without distinction between 

new and old cases, over a defined period of time or at a defined moment in time. It is usually 

expressed by a ratio where the numerator is the total number of cases and the denominator is the size 

of the population in question. 

To summarize this section, Table 1 represents mathematical formulas used to figure main 

measures. Source of tables and figures is from authors. 

 

Table 1. Main measures and their formula 
Measure Formula 

i-th Quartile 𝑄𝑖 = [𝑖 ∗ (𝑛 + 1)/4]𝑡ℎ, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2 𝑜𝑟 3 

Skewness 𝑆𝑘 =
1

𝑛
∗

∑ (𝑥𝑖 + �̅�)3𝑛
1

𝑠3  

Kurtosis 𝐾 =
1

𝑛
∗

∑ (𝑥𝑖 + �̅�)4𝑛
1

𝑠4  

Auto Correlation Function 𝜌(ℎ) =
𝐶𝑜𝑣(𝑥𝑡 , 𝑥𝑡+ℎ)

√𝑥𝑡 ∗ 𝑥𝑡+ℎ

 

Annual progression rate 𝑝𝑖 =
𝑣𝑡+1

𝑣𝑡
− 1 

Geometric mean for four rates 𝑔𝑚 = √(1 + 𝑝1)(1 + 𝑝2)(1 + 𝑝3)(1 + 𝑝4)
4

 

Prevalence rate 𝑝𝑟 =
𝑐𝑎𝑠𝑒𝑠

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 

Main variables 
n = number of observations, vt = number of cases at year t 

xi = measure of i-th observation, 𝑖 = 1. . 𝑛  

 

After this recall, we now move to the presentation of the approach we used. 

 

3. Methodology 
The methodology we adopt for the present work encompasses three main steps. They are: 

Data extraction, checking and plotting; Rates evaluation; and finally statistical description. This 

last step includes: Concentration, Dispersion, Shape and Dependance analysis. 

Before moving to data extraction, we need to describe them. 

 

3.1 Data description 

The data come from the DHIS platform7, set up by the Cameroon Ministry of Public Health. 

The platform contains data on several diseases collected from Health Facilities and aggregated 

on a weekly basis to obtain data at upper geographical granularities. The top granularity is the 

national level, where data are aggregated for the whole country. Data are selected according to 

                                                      
6 www.academie-medecine.fr/le-dictionnaire 
7 https://dhis-minsante-cm.org 
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the disease, period and geographical scale required. They are then extracted as .csv or .xls files. 

These files serve as datasets. In this dataset, we have 4 categorical variables and 11 numerical 

ones. The categorical variables all refer to the same information, i.e., the week in which data 

were collected. The 11 numerical variables represent values collected for each of the 11 Health 

Districts. In addition, there is a further 12th numerical variable, which is the cumulative sum for 

each week of the 11 Health Districts. This last variable represents the total number of cases for 

the entire region.  

The data on which we are working are discrete quantitative data. For experimentation, we 

use the scientific programming language Python8. It is adapted for statistics, through several 

specialized libraries. These libraries include Statistics9 for descriptive statistics; Pandas10 for 

numerical computing; Mathplotlib11 combined with Seaborn12 for graphics and data 

visualization. We also used Timeserieslab (Lit, R., Koopman, S.J., and Harvey. A.C. 2023) to 

corroborate some of the results. 

We take into account data between January 2018 and December 2022. The designated region 

(Adamawa Region), in conjunction with the specified timeframe spanning from 2018 to 2022, 

encompasses no fewer than 70 distinct time series datasets. We will base the studies on data at 

the Health District granularity level. The data will afterward be aggregated to the regional level. 

 

3.2 Extraction, checking and plotting data 

Data extraction is about getting data from relevant sources, according to criteria and goal we 

need to achieve. This step helps then extracting and gathering relevant data for the project. The 

sources are health databases. After that, we check if the extracted values are completed, well-

typed, and that there are not outliers. We then select relevant variables to work with. Data 

plotting is used to produce graphs for a better understanding of behaviours of the datasets. This 

phase is known as data visualization. Graph types commonly used in univariate time series 

analysis include line graphs, histograms, density and boxplots. For the present work, we will 

restrict ourselves to the linear representation of time series. 

 

3.3 Rates evaluation 

The rates evaluation helps us determining the changes in the time series at different given 

dates. We evaluate the annual progression rate and the average progression rate. The progression 

rate is based on geometric mean. The formulas for annual progression rate, geometric mean and 

prevalence rate are given in Table 1. 

 

3.4 Data analysis 

This stage, which is the most intensive, involves carrying out analyses in order to come out 

with described and synthesized data. It is broken down into several sub-steps. Concentration 

analysis will determine the central indices of the time series. These include mean, median and 

quartiles. Dispersion analysis will enable us to understand the spread of the data in the series, 

relative to the central values. Shape analysis is based on Kurtosis and Skewness indices. 

Dependency analysis highlight relationships between the values in a series, at different points in 

time, and here will be focused of ACF and PACF. We find formulas used in Table 1. 

Applying the methodology leads us to results. 

 

4. Results 
Results will be presented according to the methodology points. 

 

 

                                                      
8 www.python.org  
9 https://docs.python.org/3/library/statistics.html  
10 https://pandas.pydata.org/  
11 https://matplotlib.org/  
12 https://seaborn.pydata.org/  

http://www.python.org/
https://docs.python.org/3/library/statistics.html
https://pandas.pydata.org/
https://matplotlib.org/
https://seaborn.pydata.org/
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4.1 Extraction, checking and plotting data 

As we previously stated, data are extracted from DHIS platform and stored in .csv files as 

time-series. These files serve as datasets for the work. What we can notice here is that, the 

Health Information Unit is doing a great job. When extracting data from the database, we remark 

that the values are completed and well-typed, for all the Health District. There are also no outlier 

data. For each Health District, there is a variable called periodid, representing weeks. Every 

value of periodid is associated to a number, representing cases occurring each week in that area. 

These constituted datasets open ways for next steps.  

The curves in Figure 1 show the cases occurring in the 11 Health Districts, between 2018 

and 2022, on a weekly basis. The Figure is spilt into two, to allow better visibility. Figure 1a 

represent data for the first 6th Health Districts and Figure 1b for the rest. 

 

 
Figure 1a. Data time series for 6th first Health Districts. 

 

 

 
 Figure 1b. Data time series for the rest of Health Districts.  

Figure 1. Data time series for Health Districts. 

 

 

 Observing figure 2, we note that the process reproduces itself identically over an approximative 

annual period (52 weeks). The series peaks around week 42 of each year. In other words, the 

Adamawa Region is much more affected by malaria between the 33rd and 50th week each year. 

This period runs from mid-August to mid-December, as delimitated on Figure 2 with blue lines. We 

notice the same observations in Alhassan, E. A., Adjei, M. I., Aidoo, E., 2017 and Eunice, A., 
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Wanjoya, A. & Luboobi, L. 2017, where periods with highest cases occurring are respectively between 

June to November and August to November. Those are periods characterized by high rainfall, 

followed by a transition between the rainy season and the dry season. Figure 3, for data of the year 

2018 illustrate it more. It is the same case for years 2019, 2020 and 2021 (see Appendices, Figures 6 

to 8). However, year 2022 (see Appendices, Figure 9) don’t follow the same trend, assuming that a 

special policy has been deployed in that period of the year.  

 

 

Figure 2. Time series data for the Adamawa Region. 

 

 

 
Figure 3. Health Districts data for year 2018. 

 

 

4.2 Progression and prevalence rates  

Table 2 shows (rows 1 to 5) the total number of cases occurring each year in each Health 

Districts. It also shows the total number of cases over 5 years (row 6). The information is used to 

determine the annual progression rate of the disease. They are presented in rows 7 to 10. And 

row 11 is the rate for the whole studied period (2018 to 2022). Columns are the 11 Health 

Districts and the total for the Region. From the 04 annual progression rates obtained (row 7 to 

10), we calculate the average progression rate over the entire period. This rate is based on the 

geometric mean, and is found in row 11. Refer to Table 1 for different formulas. 
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Table 2. Progression rate of cases 
N° Year Bankim Banyo Belel Dang Djohong Meiganga Ngaoundal Ndere_Rur. Ndere_Urb. Tibati Tignère Total 

 Total cases per year and for the whole period 
1 2018 11,419 13,219 9,299 9,910 17,349 20,608 14,609 19,184 36,913 13,780 16,127 182,417 
2 2019 13,217 14,617 8,034 9,709 17,450 22,842 16,523 19,209 41,215 14,595 14,378 191,789 
3 2020 13,175 12,470 6,203 11,135 12,692 21,161 16,492 18,922 33,687 13,850 10,480 170,267 

4 2021 13,395 12,316 5,973 5,973 12,325 24,019 17,785 18,546 36,912 18,287 14,659 180,190 

5 2022 12,538 11,422 6,275 13,003 9,353 22,974 20,471 15,029 33,325 16,029 13,328 173,747 

6 18-22 63,744 64,044 35,784 58,907 69,175 111,604 85,880 90,890 182,059 76,541 68,972 907,600 

 Rates per year and for the whole period 
7 

18-19 15.75% 
10.58

% 
-13.60% -2.03% 0.58% 10.84% 13.10% 0.13% 11.65% 5.91% -10.85% 5.14% 

8 

19-20 -0.32% 

-

14.69

% 

-22.79% 14.69% -2.,27% -7.36% -0.19% -1.49% -18.27% 
-

5.10% 
-27.11% -11.22% 

9 
20-21 1.67% 

-

1.23% 
-3.71% -46.36% -2.89% 13.51% 7.84% -1.99% 9.57% 

32.04

% 
39.88% 5.83% 

10 
21-22 -6.40% 

-

7.26% 
5.06% 117.7% -24.11% -4.35% 15.10% -18.96% -9.72% 

-
12.35

% 

-9.08% -3.58% 

11 
18-22 2.36% 

-
3.59% 

-9.37% 7.03% -14.31% 2.75% 8.80% -5.92% -2.52% 3.85% -4.65% -1.21% 

 

The highest annual growth rate is seen in Dang District, between 2021 and 2022, where 

there was an increase of more than 100% in the number of cases. The number of cases rose from 

5,973 in 2021 to 13,003 in 2022. Next, between 2020 and 2021, we have Tibati and Tignère, 

which recorded a growth rate of over 30% i.e., 32.04% and 39.88% respectively. 

The biggest drop was again in Dang, this time between 2020 and 2021. We had a drop of -

46.36% in the number of cases recorded. In the Djohong Health District, we have only seen 

decreases. Over the 5 years, the average growth rate is -14.31%, dropping from 17,349 cases in 

2018 to 9,353 cases in 2022. Djohong is followed by the Bélel Health District, with a growth 

rate of -9.37%. 

On the other hand, the Health Districts of Ngaoundal and Dang show a significant increase 

in the number of cases, when considering the data for the entire collection period. Between 2018 

and 2022, the number of cases rose from 9,910 to 13,003 in Dang, and from 14,609 to 20,471 in 

Ngaoundal. This gives an average growth rate of 7.03% and 8.80% for Dang and Ngaoundal 

respectively. 

Although the growth rate for the whole Region is slightly below zero (-1.21%), the number 

of cases remains significant. It represents 907,600 cases over the 5 years, with 173,747 cases 

occurring in 2022. 

In order to determine the most affected Health Districts over the population, we determined 

the prevalence rate. We based our calculations on the year 2022, for which we have complete 

population data. The results are shown in Table 3. 

 
Table 3. Prevalence rate 

Indicator Bankim Banyo Belel Dang Djohong Meiganga Ngaoundal Ndere_Rur. Ndere_Urb. Tibati Tignère Total 

Population 125,043 172,457 533,86 93,038 85,827 179,081 99,087 118,947 388,865 116,674 130,192 1,562,596 

Cases 12,538 11,422 6,275 13,003 9,353 22,974 20,471 15,029 33,325 16,029 13,328 173,747 
Prevalence 10% 7% 12% 14% 11% 13% 21% 13% 9% 14% 10% 11% 

 

According to the results containing in Table 3, only the Districts of Banyo and Ngaoundéré 

Urbain have a prevalence rate below 10%. For the rest, at least 10% of the total population was 

affected by malaria in 2022. The District of Ngaoundal beats the record with a prevalence rate of 

21%, followed by the Health Districts of Dang and Tibati, each with 14%. For the Region as a 

whole, the prevalence rate is 11%. So, out of 1,562,596 people living in the Adamawa Region in 

2022, 173,747 were infected. 

Let’s explore now statistical characteristics of the dataset. 

 

4.3 Data description 

From the statistical description of the data, we obtain 05 tables corresponding to the 05 

study years, and 01 table for the entire studied period. The statistical summaries for the annual 
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tables are available in the Appendices (Tables 7 to 11). We present here the statistical summary 

table for the entire studied period (Table 4). 

 
Table 4. Statistical synthesis of data between 2018 and 2022 

Indicator Bankim Banyo Belel Dang Djohong Meiganga Ngaoundal Ndere_Rur Ndere_Urb Tibati Tignère 

μ (mean) 244.23 245.38 137.10 225.70 265.04 427.60 329.04 348.24 697.54 293.26 264.26 

σ²  3,870.2 5,535.4 1,991.1 6672.7 15791.13 11,948.2 13,081.53 8,644.56 27,356.05 4,538.0 6,939.18 

σ 62.21 74.40 44.62 81.69 125.66 109.31 114.37 92.98 165.40 67.36 83.30 

Min 107 125 11 45 79 198 160 19 379 122 97 

Max 466 559 270 495 622 728 1,053 692 1,294 488 532 

Q1 197 195 109 171 167        352 265 285 595     242 206 

Me or Q2 240 231 130 226 238 415 311 328 654 297 256 

Q3 279 280 161 273 356              494 365 405 754   340 313 

IQR 82 85 52 102 189 142 100 120 159 98 107 

Range 359 434 259 450 543 530 893 673 915 366 435 
Skewness 0.6444 1.13 0.6217 0.4061 0.6426 0.4332 2.66 0.6926 1.24 0.0520 0.5919 

Kurtosis 3.54 4.74 3.38 3.46 2.65 2.88 14.05 4.37 4.56 2.95 3.25 

 

The abbreviation of indicators collected, for the sample, are summarized in Table 5. 

 

Table 5: Abbreviation of indicators 

Indicator Meaning Indicator Meaning 

μ Expected or plausible value Q1, Q2, Q3 First, Second and Third quartile 
σ2 / σ Variance / Standard deviation Me Median also representing second quartile (Q2) 

Min/Max Minimum / Maximum value IQR Interquartile range 

 

Table 4 summarizes, for the 05 years of the study (2018 to 2022), the statistical indicators 

for the observations recorded each week. It encompasses central, spread, and shape indices. 

The average number of weekly cases varies between 137 (Bélel District) and 697 

(Ngaoundéré Urban District). The deviation from the central value is 44 in Bélel (the lowest 

value) and 165 in Ngaoundéré Urbain (the highest value). The week with the fewest cases is also 

in Bélel, with only 11 cases recorded (30/2019, corresponding to the end of June 2019). It is 

followed by Ngaoundéré Rural, with 19 cases (35/2019, corresponding to the beginning of 

August 2019). On the other hand, the week with the highest number of cases recorded has 1,294 

cases (43/2018, corresponding to the end of September 2018). This record is beaten by 

Ngaoundéré urban District. It is followed by Ngaoundal, with 1,053 cases recorded in one week 

(24/2022, corresponding to mid-May). 

Concerning shape indicators, all the 11 distributions obtained from the Adamawa Health 

Districts show positive skewness. This suggests that the distributions are shifted to the left of the 

median and that the tail of the distribution is therefore skewed to the right. Similarly, the 

kurtosis coefficients are all positive. This may mean that the curves are all leptokurtic i.e., their 

ends are thicker than normal. All the coefficients are greater than 3, except for the Districts of 

Djohong, Meiganga and Tibati. For Districts with a coefficient greater than 3, the distributions 

should follow Laplace's law (Chen, K., van Laarhoven, T. & Marchiori, E. 2021). And for those 

below 3, which are all above 2, the distribution should be hyperbolic secant (M. Hilton, R. 

Alexandru and P. L. Dragotti, 2021). 

Figures 4 and 5 show respectively autocorrelation and partial autocorrelation of the time 

series representing cases for the whole region. We can see from these figures that, as delays or 

lags increase (on the x-axis), the values of autocorrelations and partial autocorrelations decrease 

very rapidly and are contained in the insignificance area around zero. This rapid decrease 

suggests that the observations are weakly correlated with each other, meaning that the series 

may be stationary. The stationarity has been confirmed by ADF and KPSS tests, as shown in 

Table 6. 

 
Table 6: ADF and KPSS tests of unit root 

Augmented Dickey-Fuller (ADF) Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 

Statistic = -5.71 
P-value = 8.9224e-06; Lags = 4 

H0: unit root is present, Test result:  reject H0 

Statistic = 0.0563 
P-value > 0.1000; Lags = 9 

H0: series is stationary, Test result: do not reject H0 
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Figure 4. Autocorrelation graph. 

 

 
Figure 5. Partial Autocorrelation graph. 

 

At the end of that section, we get data entirely described and rates evaluated. We can now 

move to discussion and concluded the work. 

 

5. Discussion 
The overarching theme of this work revolves around the application of time series analysis in 

epidemics monitoring and prediction. The ultimate objective is to create models, characterize, 

analyze, and predict based on time series data. Our goal, in the present preliminary work, is to 

generate a statistical summary of the collected data and ascertain growth and prevalence rates. 

The primary limitation of this study lies in the lack of relevant data for multivariate analysis. 

We only have access to data on weekly cases, with no information regarding age, sex, 

environmental conditions, social status, or mortality. Including these variables would have 

enhanced the relevance of our analysis. It's essential to acknowledge that the statistical 

description provided here may not be exhaustive. Nevertheless, it offers a necessary and 

sufficiently comprehensive foundation for understanding and further work on time series 

analysis and prediction. 

The study revealed the following key findings: 

 Peak periods of contamination are mostly between August and November, during raining 

season. Whereas, periods of relaxation are found at the beginning of the year (January to 

March). The highest level of cases recorded in one week is 1,294, in the Ngaoundéré 

Urbain Health District, on October 2018. The less one is 11 cases, in Belel Health 

District, recorded on July 2019. The average number of weekly cases varies between 137 

(Bélel District) and 697 (Ngaoundéré Urban District). All the skewness measures are 
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positive, showing that distributions are shifted to the left of the median. Likewise, 

kurtosis coefficients are all positive and above 2, showing that curves are leptokurtic. 

Concerning autodependences, we can notice that autocorrelation and partial 

autocorrelation values decrease rapidly, as lags grow. This points that the observations 

are weakly correlated with each other, and that the time series can be stationary. The 

stationarity of the times series has been confirmed by ADF and KPSS tests that we 

performed. 

 The highest annual growth has been recorded between the years 2021 and 2022 in the 

Dang District, with an increase of 117,70%. And the less one has also been recorded in 

Dang, between years 2020 and 2021, with an increase rate of -46,36%. On the entire 

period (2018 to 2022), Djohong Health District recorded the less average rate (-14,31%), 

whereas Ngaoundal District recorded the highest growth rate (8,80%). For the whole 

Region, the growth rate is slightly below zero (-1,21%). But the total number of cases 

(907,600 over the 5 years, with 173,747 cases occurring in 2022) remain really important, 

and thus need special attention. 

 For the year 2022, the Health District of Ngaoundal has the highest prevalence rate 

(21%), and Banyo Health District the less one (7%). For the whole Region, the prevalence 

rate is 11%, revealing that on 2022, over 173,747 persons were infected over a population 

of 1,562,596 persons. This corroborates the previous point. 

As for recommendations, the first one pertains to strengthening disease prevention measures, 

which may include the use of insecticides, insecticide-treated nets, rapid diagnostic tests, 

artemisinin-based combination therapy, preventive and anti-malarial drugs, and improvements in 

environmental sanitation, as also suggested in references Talipouo, 2019; Esayas, 2020; Mousa, 

A. et al. 2020; Li, G. et al. 2022. This is particularly crucial, given that not all patients seek 

medical care at health facilities. Many individual resort to self-medication, employing 

conventional or non-conventional treatments. 

The second recommendation, which holds significant value for our research, is to gather data 

exhaustively, including information on age, sex, environmental conditions, social status, and 

mortality. This comprehensive dataset would enable more relevant and meaningful multivariable 

data analysis, and afterward focus on data predictions, using statistical, machine leaning and 

deep learning methods (Moskalaï Ngossaha, J., Ynsufu, A., Batoure Bamana, A., Djeumen, R., 

Bowong Tsakou, S. & Ayissi Eteme, A., 2024). 
In our forthcoming work related to these dataset, spatial frameworks, and statistical analysis, 

we already furthering works on time series analysis and forecasting using Machine Learning and 

Deep Learning methods (Batoure Bamana, A., Shafiee Kamalabad, M., and Oberski, D. L., 2024). This 

will lead to create models and predictions based on time series data, in the field of disease with 

epidemiological potential, such as Malaria. 

 

6. Conclusion 
At the end of this study, which focused on the statistical description of data on malaria cases 

occurring weekly from 2018 to 2022 in the Adamawa Region of Cameroon, we can state that 

malaria continues to be highly prevalent, claiming numerous lives within households each year, 

with a particularly profound impact on the African continent. Appropriate measures should be 

taken throughout the year, and reinforced during periods of high contamination. This is a matter 

for Government, Partners and general public alike. The present work is a preliminary to others 

that will also be related to epidemics time-series studies, and focusing on ways of predictions 

using Machine Learning and Deep Learning methods, along with Big Data and Artificial 

Intelligence. 
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Appendices: 
 
 

Table 7. Statistics of 2018 
Indicator Bankim Banyo Belel Dang Djohong Meiganga Ngaoundal Ndere_Rur. Ndere_Urb. Tibati Tignère 

μ 219.60 254.21 178.83 190.58 333.63 396.31 280.94 368.92 709.87 265 310.13 

σ² 2,990.16 7,062.01 1,931.68 5,428.86 15,901.77 18,358.75 4,259.29 11,219.49 40,810.89 5,386.46 7,171.12 

σ 54.68 84.04 43.95 73.68 126.10 135.49 65.26 105.92 202.02 73.39 84.68 

Median 220 248.50 179.50 170.50 343.50 378 280 344.50 647 259 322.50 

Min 107 136 77 75 143 198 169 191 449 122 146 

25% 185.25 183.25 146 133 223.75            307.25 220.75 288.75 577.75     214 245.50 

75% 257 320.50 206.50 248.75 400.50             461.75 332.50 426 736.50  300 376.75 

IQR 71,75 137,25 60,5 115,75 176,75 154,5 111,75 137,25 158,75 86 131,25 

Max 328 493 270 380 622 718 429 692 1294 461 470 

Range 221 357 193 305 479 520 260 501 845 339 324 
Kurtosis 2.30 2.72 2.39 2.32 2.56 2.61 2.01 3.92 4.04 2.74 2.15 

Skewness -0.1062 0.5254 0.0969 0.5295 0.4495 0.6413 0.1584 1.07 1.27 0.3337 -0.1454 

Sum Ann. 11,419 13,219 9,299 9,910 17,349 20,608 14,609 19,184 36,913 13,780 16,127 
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Table 8. Statistics of 2019 
Indicator Bankim Banyo Belel Dang Djohong Meiganga Ngaoundal Ndere_Rur. Ndere_Urb. Tibati Tignère 

μ 254.17 281.10 154.50 186.71 335.58 439.27 317.75 369.40 792.60 280.67 276.50 

σ² 2,659.49 9,931.28 3,000.06 7,157.47 18,921.09 10,988.27 4,104.96 12,279.13 28,782.70 2,953.87 12,268.90 

σ 51.57 99.66 54.77 84.60 137.55 104.82 64.07 110.81 169.65 54.35 110.77 

Median 250.50 240 162.50 177.50 368.50 434.50 333.50 369 774.50 282.50 275.50 

Min 167 125 11 45 85 242 160 19 540 144 97 

25% 211.75 216.25 123 121.50 213.50 358.25 276.50 301.25 636.75 245 180 

75% 294 330.25 195.25 247.50 432.50 499.50 367.25 438.50 880.50 328.50 340 

IQR 82,25 114,00 72,25 126,00 219,00 141,25 90,75 137,25 243,75 83,50 160,00 

Max 371 559 270 407 577 677 451 660 1214 380 532 

Range 204 434 259 362 492 435 291 641 674 236 435 
Kurtosis 2.40 3.09 2.85 2.48 1.87 2.48 2.45 4.34 2.73 2.66 2.58 

Skewness 0.4373 0.9377 -0.4632 0.3355 -0.1481 0.2557 -0.4915 -0.0545 0.6858 -0.4266 0.4683 

Sum Ann. 13,217 14,617 8,034 9,709 17,450 22,842 16,523 19,209 41,215 14,595 14,378 

 

 

 

Table 9. Statistics of 2020 
Indicator Bankim Banyo Belel Dang Djohong Meiganga Ngaoundal Ndere_Rur. Ndere_Urb. Tibati Tignère 

μ 248.58 235.28 117.04 210.09 239.47 399.26 311.17 357.02 635.60 261.32 197.74 

σ² 5,179.49 2,940.43 687.06 3,857.14 8,248.06 7,778.31 10,130.93 6,382.58 9,948.39 3,156.75 2,192.46 

σ 71.97 54.23 26.21 62.11 90.82 88.19 100.65 79.89 99.74 56.18 46.82 

Median 245 227 117 210 234 395 277 327 639 241 189 

Min 146 137 69 71 83 220 199 228 379 156 112 

25% 192 195 93 174 173 342 247 291 586 220 162 

75% 285 263 135 244 291 442 341 427 695 311 228 

IQR 93,00 68,00 42,00 70,00 118,00 100,00 94,00 136,00 109,00 91,00 66,00 

Max 439 361 177 373 481 649 645 527 835 362 305 

Range 293 224 108 302 398 429 446 299 456 206 193 
Kurtosis 3.16 2.76 2.27 2.88 2.75 3.21 5.79 1.98 2.96 1.87 2.50 

Skewness 0.7612 0.5386 -0.097 0.2069 0.5263 0.4932 1.78 0.4254 -0.3880 0.1531 0.3879 

Sum Ann. 13,175 12,470 6,203 11,135 12,692 21,161 16,492 18,922 33,687 13,850 10,480 

 

 

 

Table 10. Statistics of 2021 
Indicator Bankim Banyo Belel Dang Djohong Meiganga Ngaoundal Ndere_Rur. Ndere_Urb. Tibati Tignère 

μ 257.60 236.85 114.87 291.35 237.02 461.90 342.02 356.65 709.85 351.67 281.90 

σ² 4,003.86 2,514.28 670.65 6335.65 1,1785.83 7,808.70 3,984.13 5,725.30 33,796.17 3,405.80 2,561.93 

σ 63.28 50.14 25.90 79.60 108.56 88.37 63.12 75.67 183.84 58.36 50.62 

Median 247 231 111.50 268.50 197 434 336.50 344.50 635 344 273 

Min 168 146 50 182 89 312 216 212 473 252 171 

25% 213 200 97 233.50 159.50 413.25 291.75 310 585 311.50 246.50 

75% 292.50 270.25 133.25 328.75 310 525.75 370.25 395.75 776.75 386.75 314 

IQR 79,50 70,25 36,25 95,25 150,50 112,50 78,50 85,75 191,75 75,25 67,50 

Max 466 369 180 495 498 689 509 579 1186 488 426 

Range 298 223 130 313 409 377 293 367 713 236 255 
Kurtosis 4.10 2.63 2.92 3.15 2.76 2.67 3.09 3.65 2.92 2.62 3.31 

Skewness 1.01 0.4104 0.0900 1.03 0.8162 0.5994 0.5907 0.7622 1.06 0.4222 0.5846 

Sum Ann. 13,395 12,316 5,973 5,973 12,325 24,019 17,785 18,546 36,912 18,287 14,659 

 

 

 

Table 11. Statistics of 2022 
Indicator Bankim Banyo Belel Dang Djohong Meiganga Ngaoundal Ndere_Rur. Ndere_Urb. Tibati Tignère 

μ 241.12 219.65 120.67 250.06 179.87 441.81 393.67 289.02 640.87 308.25 256.31 

σ² 3,579.72 3,087.03 473.14 2,733.86 5,879.50 11,574.92 35,872.84 3,127.67 7,381.92 2,180.26 3,453.37 

σ 59.83 55.56 21.75 52.29 76.68 107.59 189.40 55.93 85.92 46.69 58.77 

Median 233.50 209 120 237.50 161.50 427 337 287.50 644 314 243 

Min 147 143 77 163 79 278 173 182 441 167 144 

25% 194.50 170 108.50 217.75 114 366.75 291.50 256.75 591.75 288.50 225.75 

75% 276 268.25 132 278.25 231.75 509.50 391.25 319 697 336 285 

IQR 81,50 98,25 23,50 60,50 117,75 142,75 99,75 62,25 105,25 47,50 59,25 

Max 411 342 173 379 350 728 1053 414 861 396 458 

Range 264 199 96 216 271 450 880 232 420 229 314 
Kurtosis 2.95 1.97 2.81 2.67 2.27 3.09 5.68 2.55 2.94 3.72 4.84 

Skewness 0.6860 0.3553 0.2913 0.5573 0.6193 0.7359 1.79 -0.0032 -0.1460 -0.5746 1.01 

Sum Ann. 12,538 11,422 6,275 13,003 9,353 22,974 20,471 15,029 33,325 16,029 13,328 
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Figure 6. Health Districts data for year 2019. 

 
Figure 7. Health Districts data for year 2020. 

 

 
Figure 8. Health Districts data for year 2021. 
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Figure 9. Health Districts data for year 2022. 

 


