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Abstract
The major objective of the paper is to review the theory for an hidden Markov model, a very general type
of probabilistic model for sequences of symbols. In order for the hidden Markov model to be applicable
to real-world applications, three key problems about the model must be addressed, and to do this, first
we go over how to choose the best state sequence to explain an observation sequence, then we go over
how to calculate the probability of an observation sequence, and finally we go over how to compute the
maximization of the probability of the observation sequence. From these three angles, we review the
mathematical concept behind the identification of CpG islands. The entire process and study of the out-
comes have been tackled by examining both hypothetical and real DNA sequences side by side. We use
well-known biological sequence analysis servers to carry out the experiment. Analytical and algorithmic
approaches are compared while taking the hypothetical DNA sequence example into consideration.

Keywords: Viterbi algorithm; Forward algorithm; Backward algorithm; Posterior decoding; Baum-
Welch algorithm

1. Introduction
A statistical model known as an hidden Markov model (HMM) can be used to explain how

observable events evolve as a result of internal, indirectly visible causes. The seen event is referred to
as a symbol, while the unobservable element underlying the observation is referred to as a state. Two
stochastic processes — one invisible with hidden states and the other visible with observable symbols
— combine to form an HMM. The observed symbol’s probability distribution is determined by the
underlying state, which is made up of hidden states that form a Markov chain (Compeau & Pevzner,
2015).

Since many practical problems involve categorising raw observation into a variety of categories
or class labels that are more understandable to us, modelling observation in these two layers — one
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visible and the other unseen — is quite helpful. For illustration, let us look at the speech recogni-
tion issue, for which HMMs have been widely employed for many years. Predicting the spoken
word from a recorded audio signal is what speech recognition is all about. In order to identify
the phonemes (states) that led to the actual sound (observations) produced, the speech recognizer
searches for them. The original phonemes must be predicted because there can be a significant
difference in how a word is actually pronounced.

The cell is the fundamental unit of life, comprising various organelles that perform special-
ized functions within a membrane-bound structure. Cells can be categorized as prokaryotic or
eukaryotic, differing in their complexity and presence of a nucleus. Genetic information is stored in
nucleic acids, including DNA (deoxyribonucleic acid) and RNA (ribonucleic acid). DNA consists
of double-stranded helical molecules, encoding genetic instructions. RNA, often single-stranded,
aids in protein synthesis. The basic structure of nucleic acids consists of nucleotides, each composed
of a phosphate group, a sugar molecule (deoxyribose in DNA, ribose in RNA), and a nitrogenous
base. The four types of nitrogenous bases in DNA are adenine (A), thymine (T), cytosine (C), and
guanine (G); in RNA, thymine is replaced by uracil (U). Genes within DNA encode details for
protein synthesis, a process known as gene expression. The flow of genetic information involves
DNA, RNA, and proteins, occurring through transcription and translation in the central dogma of
molecular and cell biology (Alberts et al., 2017).

Transcription is the process where RNA is synthesized from a DNA template. RNA polymerase
reads the DNA sequence and produces a complementary RNA strand, allowing genetic information
transfer. Translation is the process in protein synthesis where mRNA (messenger RNA) is decoded
by ribosomes to assemble a corresponding sequence of amino acids, forming a functional protein in
cells. The general gene structure in eukaryotic species includes a start codon (a triplet of nucleotides),
typically AUG, signaling the initiation of protein synthesis, and a promoter region upstream that
regulates transcription. The 5′ UTR precedes the start codon, serving a regulatory role, while
exons, the coding regions, contain information for protein synthesis. Introns, non-coding regions
interspersed between exons, are removed during RNA splicing. The 3′ UTR follows the stop codon,
with regulatory functions. Signals in the intermediate scheme define exon/intron boundaries. After
splicing, a mature mRNA comprises only exonic regions, primed for translation (Rocha & Ferreira,
2018).

In biological sequence analysis, HMMs are frequently employed. Typically, a biological se-
quence is made up of smaller substructures that each serve a different purpose, and various functional
areas frequently exhibit different statistical characteristics. Proteins, for instance, in most cases have
a number of domains, as is widely known. Predicting a new protein’s composition domains (cor-
responding to one or more HMM states) and where they are located in the amino acid sequence
(observations) would be intriguing. We could also want to determine in which protein family, this
novel protein sequence belongs to. HMMs have been used to build a variety of sophisticated se-
quence analysis techniques that effectively describe biological sequences (Birney, 2001; Durbin et
al., 1998; Yoon, 2009).

CpG islands are specific DNA sequences or regions in a genome characterized by a high fre-
quency of a particular dinucleotide called CpG (cytosine followed by guanine) and they play a signif-
icant role in gene regulation and epigenetics. The process by which a cell manages the expression of
its genes to generate particular proteins or functional RNA molecules at the proper time and in the
proper quantity is known as gene regulation, whereas epigenetics is the study of heritable changes
in gene expression, which frequently involve chemical changes like DNA methylation and histone
modifications, that change gene expression without changing the underlying DNA sequence. The
identification of potential CpG islands has advanced our knowledge of the epigenetic origins of
cancer in addition to assisting in the prediction of the promoters of numerous tissue-specific and
housekeeping genes - a class of genes in all cells of an organism that are essential for basic cellular
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functions and maintenance. We know that the regions of genes responsible for initiating their ex-
pression are known as promoters. Genes tend to be "turned off" or silenced when these CpG islands
in their promoter regions are methylated, meaning that methyl groups are added to them. This
prevents the gene from being transcribed and from producing the appropriate protein or RNA, i.e.,
increased methylation within promoter regions can indicate potential cancer-associated changes
(Robeva et al., 2013).

In the context of evolutionary biology, one might wonder why DNA exhibits CpG islands.
From an evolutionary standpoint, CpG islands are present in DNA because they serve a crucial role
in governing gene activity. These islands often mark the initiation points of genes and contribute
to the regulation of gene expression, which is essential for the adaptability and survival of organisms
throughout the course of evolution. On a different note, when methylated C undergoes spontaneous
deamination, a chemical transformation occurs, converting cytosine to thymine. Consequently, this
process can lead to the transformation of a CpG pair into a TpG pair. This prompts the question
of whether a high frequency of TpG is a distinctive feature of non-CpG islands. We know that
methylation-associated deamination produces a significant increase in TpG prevalence outside of
CpG islands, which provides the explanation. This finding clarifies the complex chemical processes
behind DNA alterations and their consequences for evolution (David et al., 2007).

A key tool for locating CpG islands in a DNA sequence is the concept of an HMM. Hidden
Markov models usually include two states: one for the CpG island state and another for the non-CpG
island state when it comes to CpG island identification. These states are connected by transitions
that evaluate the probability of moving in or out of a CpG island. Each state’s emission probabilities
represent the possibility of finding particular nucleotide inside that state. The hidden Markov process
can scan DNA sequences and estimate the most likely locations of CpG islands by learning the
underlying sequence patterns through training on predetermined regions of CpG islands. The
hidden Markov process is a useful method to advance our knowledge of genomic annotation and
gene regulation (Fuentes-Beals et al., 2022; Lan et al., 2009).

In the present article, we review the theory for HMM by following Isaev’s approach (Isaev,
2006). We concentrate on the three core issues with HMM design, namely: the identification of
the optimal sequence for model states; the assessment of an observational sequence’s probability
(or likelihood) given a certain HMM; and the adjustment of model parameters to best explain the
observed sequence (Coelho et al., 2019; Rabiner, 1989; Rocha & Ferreira, 2018). Based on these three
angles of views, we review how the mathematical concept works behind the identifying CpG islands.
Both hypothetical and realistic DNA sequences have side by side been considered to address the
whole procedure and analyze the results. We employ established biological sequence analysis servers
for experimentation and discuss the comparison between analytical and algorithmic approaches,
with a focus on a hypothetical DNA sequence.

2. Foundation pillars of the mathematical structure
2.1 The subject of Markov models

In this short article, to understand the HMM, we have to introduce the basic structure of Markov
chains, or Markov models. To do that, first we take into account a finite collection X of all potential
states G1, G2, ..., GN , where one of these states is occupied by a Markov chain at each of the time
points t = 1, 2, 3, .... In each of the time steps t to t + 1, the process either remains in the same
state or switches to another state in X. If the process is in state Gi at time t, then with certain
probability at time t + 1 the process goes through every potential state Gj – specifically, including
itself and any other states. Such probabilities pGiGj or simply pij depend only on the states that the
process occupied before to the state Gi. The probabilities pij, i, j = 1, 2, ..., N are referred to as the
Markov chain transition probabilities. We select specific transition probability estimates based on the
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available biological data where data are used to estimate transition probabilities. In such application,
the connectivity of the chain is fixed in advance.

Basically, a Markov chain is a method for creating every feasible sequence with a predetermined,
finite length L ≥ 2 of the form x1x2...xL, where xj ∈ X. To initiate the process, we need the
initialization probabilities P(Gj) for all j = 1, 2, ..., N, and the process shifts with probability pij from
state Gi to state Gj. Thus, the probability of a particular sequence x = x1x2...xL is determined by

P(x) = P(x1)px1x2px2x3 × ... × pxL–1xL . (1)

Since a general representation of a sequence entails L symbols with state nature, the total number
of sequences is L!. Each sequence’s existence is associated with a probability, and the sum of these
probabilities equals 1, because the values of P(x1) and pij are derived from the L! possible sequences.
A Markov chain can therefore be defined by initialization probabilities in the form of a vector and
transition probabilities in the form of a matrix.

In most situations involving symbol representation, a sequence of letters is denoted by x. How-
ever, in Markov models, there is no distinction between a state sequence and a letter sequence in the
sense that both are given in terms of a Markov chain. In this context, a state sequence can directly
be characterized by a sequence of DNA alphabets. The reason for using x for both letter sequences
and state sequences is that they share the same representation. On the other hand, in an HMM,
a letter sequence and a state sequence are not equivalent. Only the state sequence is given by a
Markov chain. Therefore, we need to use distinct symbols for letter sequences and state sequences.
To represent the sequences, we consider two mathematical variables: x for the letter sequence and
π for the state sequence comprising state elements such as Gis. Both variables can take any specific
sequence of numeric as well as symbolic elements.

In our theoretical groundwork, we confine ourselves only to biological DNA sequences in
prokaryotic organisms – simple cells without a nucleus, like bacteria. A prokaryotic gene is made
up of a coding region that is flanked by a start codon at the beginning and a stop codon at the end.
Each triplet of nucleotides (codon) between the start and stop codons codes for an amino acid. Such
an arrangement is called open reading frames (ORFs). Here, to use real DNA data, we consider a
set of n prokaryotic DNA sequences, and for such a collection, we can set the transition probabilities
by the following formulation

pab =
Hab∑

c∈Q
Hac

, (2)

where the number of times in the data that nucleotide b follows nucleotide a is expressed as Hab, and
Q is the DNA alphabet. Applying such a concept, we can also calculate the initialization probability
P(a) as nucleotide a’s frequency at the start of the sequences divided by n. The Markov chain that is
created as a result is referred to as a model for the n sequences that are used to calculate the parameters.
The collection of n sequences is also called training data.

Now, if we consider the unannotated DNA sequence x = x1...xL generated by Markov chain,
then the probability P(x) of x is found from our known formula. At this position, if the value of P(x)
is large, then we can infer that x is derived from a prokaryotic gene; otherwise, the training data and
x probability have no relationship. To calculate P(x) we consider a Markov chain with begin state;
we denote it by B. Similarly, we add an end state E as an absorbing state. B and E do not transform
into each other. With these two states, the Markov chain takes the form Bx1x2...xL–1xLE where
the calculation formula for P(x) changes to

P(x) = pBx1px1x2px2x3 × ... × pxL–1xLpxLxE . (3)
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It is important to mention that for simplification, B and E are often denoted by 0. We keep in mind
that non-trivially connected model means if a path from B to Gj exists, then a path from Gj to E
also exits in the graphical presentation of Markov chain connectivity, where states are represented
by circles and transitions are denoted by arrows.

Rolling two six-sided dice, one of them fair and one unfair, is a classic example of a simple
Markov chain. In the Markov process π of switching between two consecutive events, the state
space of two elements is described by theQ = {f , u} with one specific value of transition probabilities
pff = 0.95, pfu = 0.05, puf = 0.10 and puu = 0.90, where the initial distribution is p0f = 0.5 and
p0u = 0.5. Based on this information, we can compute any path of this process. As, for example,
P(π) = P(fufu) = p0f ×pfu×puf ×pfu = 0.5×0.05×0.10×0.05 = 0.000125. Generally, Markov chains
can be applied for modeling situations with inherent randomness and sequential dependencies.

2.2 The subject of hidden Markov models
According to the definition of hidden Markov model (HMM), an HMM is a typical discrete time

finite Markov chain of transition probabilities p0j, pij, pj0, i, j = 1, 2, ..., N of states G1, ..., GN , which
at each state emits a symbol of the alphabet Q in the sense that an emission probability qGk (a) = qk(a)
is defined for each state and each symbol a ∈ Q. In this context, the Markov chain is referred to
as the HMM’s underlying Markov chain. Basically, an HMM is a process of sequence generation.
On the one way, we can think of an HMM as a method for producing a pair of sequences (x,π)
where a sequence of letters from Q is x and π represents a sequence of Markov chain non-zero state
path. Both x and π have equal length. We take x = x1x2...xL and π = Bπ1π2...πLE = 0π1π2...πL0 =
π1π2...πL, where element xj is emitted at the state πj for j = 1, 2, ..., L. For increasing the number
of such model, it is justified to mention that state Gk emits an element a with probability qk(a). On
the other way, HMM can also be viewed as a method that creates letter sequences from Q where we
disregard pathways along which sequences are formed. Clearly, this way is useful when unknown
pathways exist in the underlying Markov chain. Similar to Markov chains, HMMs are also derived
from given training data in which estimates can be made of the transition and emission probabilities.

Now, if we let x = x1...xL be a sequence of letters from Q and π = π1...πL be a path that is the
same length, then the probability P(x,π) of the pair (x,π) is given by the following expression

P(x,π) = p0π1qπ1 (x1)pπ1π2qπ2 (x2) × ... × pπL–1πLqπL (xL)pπL0. (4)

The expression can be interpreted as this is the probability of the sequence x being formed along
the path π. However, the above formula is useless in practice because we generally do not know the
path for biological sequences. In such a situation, we find all paths that maximize P(x,π) across all
paths π of length equal to x’s length, where we are also able to define the total probability P(x) of x
as

P(x) =
∑

all π of length L
P(x,π). (5)

Thus, we define an HMM by four different collections of sets:

1. Set of observations O = {O1, O2, ..., OM}.
2. Set of states S = {B, G1, G2, ..., GN , E}.
3. Set of transition probabilities, T , such that changing from state i to state j including itself is pij

where clearly
∑

j∈{G1,G2,...,GN ,E} pij = 1, for every i ∈ {B, G1, G2, ..., GN}.
4. Set of emission probabilities, R, such that the probability of observation Oj in state k is qk(Oj)

where clearly
∑

Oj∈O qk(Oj) = 1.
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And in the field of hidden Markov models we have three basic intentions:
First intention: Based on the observation sequence x = x1x2...xL and a model M = (T ,R), we

determine a corresponding optimal state sequence π = π1π2...πL in the sense it best explains the
observation.

Second intention: We compute P(x), the probability of the observation sequence, where the
observation sequence x = x1x2...xL and a model M = (T ,R) are given.

Third intention: From the maximized P(x), we adjust the model parameter M = (T ,R).
In the occasionally dishonest casino example (Durbin et al., 1998), the loss of a game is decided

by the outcome 5 or 6 of a rolling die, where same as previous, one fair six-sided die and one unfair
six-sided die are used to conduct the game. The unfair die has a higher probability, P(6) = 0.5, of
landing on number 6, whereas P(i) = 0.1 for i = 1, 2, 3, 4, 5. Here, switching between the dice is
an hidden Markov process, and the observations are a sequence of wins (Ws) and losses (Ls) that
result from the dice rolls. The determined values of emission probabilities are qf (W) = 0.67, qf (L) =
0.33, qu(W) = 0.4 and qu(L) = 0.6. Based on this information, we can accurately compute any
observed sequence of wins and losses if the exact path of a Markov chain of the same length is
known. As, for example, if x = 6563 = LLLW and π = fufu, we obtain P(x,π) = p0f × qf (L)× pfu ×
qu(L) × puf × qf (L) × pfu × qu(W) = 0.00000327. Whenever the exact Markov path is unknown,
either we find out the path π∗ for which the probability P(x,π) is maximized or we compute P(x)
for all possible hidden sequences π.

2.2.1 Elaboration of first intention
We are aware that decoding is a specific type of HMM-based search. In most of the situations,

we wish to know a likely path for a sequence of letters x through the underlying Markov chain.
Under the term “likely”, one such intention is to search for a path π∗ that maximizes the probability
P(x,π) among all pathways π with length equal to the length of x. It is important to note that
the most probable obtained path may not be the only one. Also, we determine the path through
recursive method because application of the direct approach is not practical where the number of
possible paths increases exponentially with the length of the considering sequence. Here, the first
intention is explained by Viterbi algorithm.

Assume we are given an HMM with an underlined Markov chain that has a state set of S ′ =
{G1, G2, ..., GN}, begin and end states, and transition probabilities of p0j, pij, pj0, i, j = 1, 2, ..., N.
For the given sequence x = x1...xL, we introduce the following quantity

vk(i) = max
π1,...,πi–1∈S′

p0π1qπ1 (x1)pπ1π2qπ2 (x2) × ...

×pπi–2πi–1qπi–1 (xi–1)pπi–1Gkqk(xi),

where i = 2, ..., L and k = 1, ..., N. Thus, we have

vk(i + 1) = qk(xi+1) max
l=1,...,N

(vl(i)plk) (6)

for all i = 1, ..., L – 1 and k = 1, ..., N. Additionally, we define a set Vk(i) of all integers m for
which vm(i)pmk = maxl=1,...,N (vl(i)plk), i = 1, ..., L – 1, k = 1, ..., N, and the set V(L) consists of all
integers m for which vm(L)pm0 = maxl=1,...,N (vl(L)pl0). Through the traceback procedure, we can
determine the most probable Viterbi path. If we choose the states such that mL ∈ V(L), mL–1 ∈
VmL (L–1), mL–2 ∈ VmL–1 (L–2), ..., m1 ∈ Vm2 (1), then for the resulting path π∗ = 0Gm1Gm2 ...GmL0 =
Gm1Gm2 ...GmL we get the maximum value of the probability term P(x,π). The complete procedure
steps are the following:



Brazilian Journal of Biometrics 313

• Initialization step:

vk(1) = p0kqk(x1), k = 1, ..., N. (7)

• Iteration step:

vk(i) = qk(xi) max
l=1,...,N

(vl(i – 1)plk), i = 2, ..., L, k = 1, ..., N, (8)

Vk(i) = max
l=1,...,N

(vl(i)plk), i = 1, 2, ..., L, k = 1, ..., N. (9)

• Termination step:

P = max
k=1,...,N

vk(L), (10)

V(L) = max
l=1,...,N

(vl(L)pl0). (11)

To understand the procedure more deeply, as the base example we take into account the HMM
whose underlying Markov chain is depicted in Figure 1 in which A and B are the two letters of the
alphabet Q and whose probabilities of emission are as follows

q1(A) = 0.5, q1(B) = 0.5,
q2(A) = 0.1, q2(B) = 0.9,
q3(A) = 0.9, q3(B) = 0.1.

Here, for x = ABA we determine the unique Viterbi path π∗. We have

v1(1) = 0.2 × 0.5 = 0.1,
v2(1) = 0.3 × 0.1 = 0.03,
v3(1) = 0.5 × 0.9 = 0.45,
v1(2) = 0.5 × 0.1 × 0.3 = 0.015, V1(1) = {1},
v2(2) = 0.9 × 0.45 × 0.3 = 0.1215, V2(1) = {3},
v3(2) = 0.1 × 0.45 × 0.3 = 0.0135, V3(1) = {3},
v1(3) = 0.5 × 0.015 × 0.3 = 0.00225, V1(2) = {1},
v2(3) = 0.1 × 0.1215 × 0.4 = 0.00486, V2(2) = {2},
v3(3) = 0.9 × 0.1215 × 0.4 = 0.04374, V3(2) = {2}.

As a result, we have

max
all π of length 3

P(x,π) = 0.04374 × 0.4 = 0.017496,

and

V(3) = {3}.

Following the trackback procedure, we get m3 = 3, m2 = 2, m1 = 3, that is, the unique Viterbi path
for x is π = G3G2G3.

Now, by using Viterbi algorithm, we can calculate the most likely path for the same sequence on
the MATLAB Online - MathWorks. Here, the transition matrix and emission matrix respectively
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Figure 1. Graphical presentation of underlying Markov chain.

are given by: trans = [0, 0.2, 0.3, 0.5, 0; 0, 0.3, 0.3, 0.3, 0.1; 0, 0, 0.4, 0.4, 0.2; 0, 0, 0.3, 0.3, 0.4; 0,
0, 0, 0, 1] and emis = [0, 0; 0.5, 0.5; 0.1, 0.9; 0.9, 0.1; 0, 0]. The probability of transition from state
i to state j is given by trans(i, j) and the probability of symbol A is emitted from state k is given
by emis(k, A). To generate the sequence, x = ABA, we use the function hmmgenerate. Given the
sequence ABA, the function hmmviterbi calculates the most likely path as 4 3 4, which is same as
above obtained unique Viterbi path G3G2G3.

2.2.2 Elaboration of second intention
To reach our intention, we will go over an algorithm for figuring out the total probability

P(x) of a sequence x = x1...xL of letters from the Q alphabet. Just like the Viterbi algorithm, we
use the recursive method to determine the total probability P(x) because in the direct approach,
enumerating all possible paths is not practical. The algorithm is referred to as the forward algorithm
since it reads the sequence x forward. We introduce the following quantity

fk(i) =
∑

π1,...,πi–1∈S′

p0π1qπ1 (x1)pπ1π2qπ2 (x2) × ...

×pπi–2πi–1qπi–1 (xi–1)pπi–1Gkqk(xi),

where i = 2, ..., L and k = 1, ..., N. Thus, we have

fk(i + 1) = qk(xi+1)
N∑
l=1

fl(i)plk (12)

for all i = 1, ..., L – 1 and k = 1, ..., N. The complete procedure steps are the following:

• Initialization step:

fk(1) = p0kqk(x1), k = 1, ..., N. (13)

• Iteration step:

fk(i) = qk(xi)
N∑
l=1

fl(i – 1)plk, i = 2, ..., L, k = 1, ..., N. (14)
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• Termination step:

P(x) =
N∑

k=1

fk(L)pk0. (15)

To understand the procedure more deeply, we take into account the base example of HMM and
find P(x), where x = BBA. We have

f1(1) = 0.2 × 0.5 = 0.1,
f2(1) = 0.3 × 0.9 = 0.27,
f3(1) = 0.5 × 0.1 = 0.05,
f1(2) = 0.5 × 0.1 × 0.3 = 0.015,
f2(2) = 0.9(0.1 × 0.3 + 0.27 × 0.4 + 0.05 × 0.3) = 0.1377,
f3(2) = 0.1(0.1 × 0.3 + 0.27 × 0.4 + 0.05 × 0.3) = 0.0153,
f1(3) = 0.5 × 0.015 × 0.3 = 0.00225,
f2(3) = 0.1(0.015 × 0.3 + 0.1377 × 0.4 + 0.0153 × 0.3) = 0.006417,
f3(3) = 0.9(0.015 × 0.3 + 0.1377 × 0.4 + 0.0153 × 0.3) = 0.057753.

As a result, we have

P(x) = 0.00225 × 0.1 + 0.006417 × 0.2 + 0.057753 × 0.4 = 0.0246096.

Another approach that can be used to calculate P(x) is the backward algorithm. The reason
this algorithm has a different name from the forward algorithm is because the sequence x is read in
reverse order, starting from the end and proceeding towards the beginning. The forward algorithm
calculates the probability of observing a sequence, given a model, by summing over all possible paths.
In contrast, the backward algorithm calculates the probability of observing the remaining part of
the sequence, given a state and model, by summing over possible future paths. We introduce the
following quantity

bk(i) =
∑

πi+1,...,πL∈S′

pGkπi+1qπi+1 (xi+1)pπi+1πi+2qπi+2 (xi+2) × ...

×pπL–1πLqπL (xL)pπL0,

where i = 1, ..., L–1 and k = 1, ..., N. Based on this quantity, the full procedure’s steps are as follows:

• Initialization step:

bk(L) = pk0, k = 1, ..., N. (16)

• Iteration step:

bk(i) =
N∑
l=1

pklql(xi+1)bl(xi+1), i = 1, ..., L – 1, k = 1, ..., N. (17)

• Termination step:

P(x) =
N∑

k=1

p0kqk(x1)bk(1). (18)
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To understand the procedure more deeply, we take into account the base example of HMM and
find P(x), where x = BBA. We have

b1(3) = 0.1,
b2(3) = 0.2,
b3(3) = 0.4,
b1(2) = 0.3 × 0.5 × 0.1 + 0.3 × 0.1 × 0.2 + 0.3 × 0.9 × 0.4 = 0.129,
b2(2) = 0.4 × 0.1 × 0.2 + 0.4 × 0.9 × 0.4 = 0.152,
b3(2) = 0.3 × 0.1 × 0.2 + 0.3 × 0.9 × 0.4 = 0.114,
b1(1) = 0.3 × 0.5 × 0.129 + 0.3 × 0.9 × 0.152 + 0.3 × 0.1 × 0.114 = 0.06381,
b2(1) = 0.4 × 0.9 × 0.152 + 0.4 × 0.1 × 0.114 = 0.05928,
b3(1) = 0.3 × 0.9 × 0.152 + 0.3 × 0.1 × 0.114 = 0.04446.

As a result, we have

P(x) = 0.2 × 0.5 × 0.06381 + 0.3 × 0.9 × 0.05928 + 0.5 × 0.1 × 0.04446 = 0.0246096.

We obtain the same result as before.
Now, for the given HMM, we define the sample space

Ω =
{

(y,π) : y is sequence of letters and π has same path length

through the underlying Markov chain
}

.

Next, we define two events E(x) and Ei,k such that for a fixed sequence x = x1...xL the event

E(x) =
{

(y,π) ∈ Ω : y = x
}

,

and the event

Ei,k =
{

(y,π) ∈ Ω : 1 ≤ i ≤ L with length of sequences ≥ i

and 1 ≤ k ≤ N with πi = Gk

}
.

Thus, the conditional event Ei,k|E(x) is defined as the state Gk emitting the ith element xi of x ,i.e.,
event Ei,k occurring given that event E(x) has occurred. Therefore, through a simple calculation,
we can show that

P(Ei,k|E(x)) =
P(Ei,k ∩ E(x))

P(E(x))

=
P(Ei,k ∩ E(x))

P(x)

=
fk(i)bk(i)

P(x)
(19)

for i = 1, ..., L and k = 1, ..., N. Here, the probability P(Ei,k|E(x)) is called the posterior probability
of state Gk at observation i given x.
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For decoding the posterior probabilities, we introduce the set B(i) which is the collection of
the most probable states for xi, i = 1, ..., L, i.e., the set B(i) contains all states Gm ∈ S ′ for which
P(Ei,m|E(x)) = maxk=1,...,NP(Ei,k|E(x)).

To understand the procedure more deeply, we take into account the base example of HMM and
find posterior decoding, where x = BBA. We have

P(E1,1|E(x)) = 0.25928906, P(E1,2|E(x)) = 0.65038034,
P(E1,3|E(x)) = 0.0903306, P(E2,1|E(x)) = 0.07862785,
P(E2,2|E(x)) = 0.85049737, P(E2,3|E(x)) = 0.07087478,
P(E3,1|E(x)) = 0.00914277, P(E3,2|E(x)) = 0.05215038,
P(E3,3|E(x)) = 0.93870685,

and the posterior decoding is

B(1) = {G2}, B(2) = {G2}, B(3) = {G3}.

Consequently, decoding yields a single path

π = G2G2G3,

where we obtain

P(x,π) = p02q2(B)p22q2(B)p23q3(A)p30

= 0.3 × 0.9 × 0.4 × 0.9 × 0.4 × 0.9 × 0.4
= 0.0139968.

Here, Viterbi algorithm and posterior decoding procedure give the same result.
Unless there is a problem with the HMM parameters or the observation sequence is quite unclear,

Viterbi and posterior decoding rarely yield significantly different outcomes in practice. To under-
stand the difference in the outcomes of Viterbi algorithm and posterior decoding, we take into ac-
count the HMM with state set {G1, G2}, whose transition probabilities of underlying Markov chain
are given by p11 = 0.6, p12 = 0.4, p21 = 0.3, p22 = 0.7 where the initial distribution is p01 = 0.45,
p02 = 0.55. A and B are the two letters of the alphabet Q and whose probabilities of emission are as
follows

q1(A) = 0.3, q1(B) = 0.7,
q2(A) = 0.6, q2(B) = 0.4.

Here, for x = BA we determine the unique Viterbi path π∗ = G2G2 with probability P(x,π∗) =
0.0924, whereas decoding yields a single pathπ = G1G2 with probability P(x,π) = p01q1(B)p12q2(A) =
0.0756. In this case, the emission probability for observation B, q1(B) = 0.7, is higher for state G1
than q2(B) = 0.4 for state G2 while initial distribution of G2 is greater than G1. This creates am-
biguity because depending on the observations at each step, the Viterbi algorithm may select a
sequence that maximizes the joint probability, but posterior decoding may select a sequence with
greater probabilities for individual states. This is why the Viterbi algorithm is commonly favored
when our focus lies in deducing the optimal state sequence for the entire observation x. Conversely,
the posterior-decoding approach is favored when our priority is to predict the optimal state at a
particular position (Yoon, 2009).

Now, by using hmmdecode algorithm, we can calculate the posterior state probabilities, log-
arithm of the probability, forward and backward probabilities of the same sequence BBA on the
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MATLAB Online - MathWorks. To consider the effect of pk0, we have to take the sequence BBAZ
where at the end we include an additional symbol Z having q0(Z) = 1. However, all calculation are
performed under the assumption of pk0 being equal to 1, i.e., the transition probability vector of end
states [0.1; 0.2; 0.4] is replaced by [1; 1; 1]. Regarding such replacement, the backward probability
matrix [bk(i) : (k, i)thelement]3×3 takes the matrix form of [0.184500, 0.450000, 1.000000; 0.156000,
0.400000, 1.000000; 0.117000, 0.300000, 1.000000] and the probability of the sequence P(x) is equal
to 0.06642 instead of 0.0246096. We note that P(BBA) = pA0pBApBBp0B, and get scaling factors
as S = [pA0 : 1.000, p0B : 0.4200, pBB : 0.4000, pBA : 0.3954], i.e., P(BBA) = 0.06642 (Gunder-
sen, 2022). Here, the posterior state probabilities PSTATES are the array presentation of conditional
probabilities in which (i, j)th element gives the probability of jth symbol of observed sequence being
at state i. Similarly, 5 × 4 forward probability array, FORWARD, at (k, i)th position gives the scaled
probability value of fk(i) while 5× 4 backward probability array, BACKWARD, at (k, i)th position gives
the scaled probability value of bk(i). Set the sequence as [2 2 1]. On that position, the function
hmmdecode calculates the following quantities: PSTATES = [0, 0, 0; 0.2778, 0.1016, 0.0339; 0.6341,
0.8293, 0.0966; 0.0881, 0.0691, 0.8695; 0, 0, 0], logpseq = –2.7118, FORWARD = [1.0000,
0, 0, 0; 0, 0.1 ÷ (0.1 + 0.27 + 0.05) = 0.2381, 0.015 ÷ (0.015 + 0.1377 + 0.0153) = 0.0893,
0.00225 ÷ (0.00225 + 0.006417 + 0.057753) = 0.0339; 0, 0.27 ÷ (0.1 + 0.27 + 0.05) = 0.6429,
0.1377 ÷ (0.015 + 0.1377 + 0.0153) = 0.8196, 0.006417 ÷ (0.00225 + 0.006417 + 0.057753) =
0.0966; 0, 0.05 ÷ (0.1 + 0.27 + 0.05) = 0.1190, 0.0153 ÷ (0.015 + 0.1377 + 0.0153) = 0.0911,
0.057753 ÷ (0.00225 + 0.006417 + 0.057753) = 0.8695; 0, 0, 0, 0], BACKWARD = [1.0000, 1.0623,
1.4670, 1.0000; 1.1037, 0.184500 ÷ (0.4000 × 0.3954) ≈ 1.1667, 0.450000 ÷ 0.3954 ≈ 1.1382,
1.0000; 0.9160, 0.156000÷(0.4000×0.3954) ≈ 0.9864, 0.400000÷0.3954 ≈ 1.0117, 1.0000; 0.6870,
0.117000 ÷ (0.4000 × 0.3954) ≈ 0.7398, 0.300000 ÷ 0.3954 ≈ 0.7588, 1.0000; 0, 0, 0, 1.0000].
The PSTATES data clearly determine the most likely path G2G2G3, and all other generated results
are identical to those already obtained.

2.2.3 Elaboration of third intention
We will describe how one might select parameter values for a given training dataset in a logical

manner in order to clarify the third intention. The components of a training dataset are either
a collection of pairs of sequences (x1,π1), ..., (xn,πn) or a collection of sequences x1, ..., xn, where
a finite sequence of letters is xj and a path of the same length is πj. We will try to choose the
parameter values so that P(x1,π1) × ... × P(x1,π1) is maximally possible for datasets of the first
type and that P(x1) × ... × P(xn) is maximally possible for datasets of the second type. We can
easily determine how many times each specific transition or emission is utilized in the collection
of training sequences for the first type. If these be indicated by Hαβ and Jl(a), respectively, with
α = B, 1, ..., N, β = 1, ..., N, E , then we get

pαβ =
Hαβ∑

γ=1,...,N,E
Hαγ

, ql(a) =
Jl(a)∑

b∈Q
Jl(b)

. (20)

The estimating processes for the second type of datasets are more difficult than those for the
first, where paths are unknown. In this case, we want to select parameter values that maximize the
likelihood P(x1)× ...× P(xn). The Baum-Welch training algorithm is a specific iteration technique
that is frequently employed for the special situation of maximization of the function P(x1)×...×P(xn).

The algorithm will now be thoroughly explained. Similar to previous, we define the event

Ei,(k,l) =
{

(y,π) ∈ Ω : 1 ≤ i ≤ L with length of sequences ≥ i + 1

and 1 ≤ k, l ≤ N with πi = Gk, πi+1 = Gl

}
.
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Therefore, through a simple calculation, we can show that

P(Ei,(k,l)|E(x)) =
P(Ei,(k,l) ∩ E(x))

P(E(x))

=
P(Ei,(k,l) ∩ E(x))

P(x)

=
fk(i)pklql(xi+1)bl(i + 1)

P(x)
(21)

for i = 1, ..., L – 1 and k, l = 1, ..., N. The probability that xi and xi+1 are released at states Gk and Gl,
respectively, is given by the expression P(Ei,(k,l)|E(x)). Next, on the assumption that states B and E
emit symbols B and E , respectively with a probability of 1, one can get the following relation

P(E0,(B,l)|E(x)) =
fB(0)pBlql(x1)bl(1)

P(x)

=
p0lql(x1)bl(1)

P(x)
= P(E1,l |E(x)),

(22)

P(EL,(k,E)|E(x)) =
fk(L)pkEqE (L + 1)bE (L + 1)

P(x)

=
fk(L)pk0

P(x)
= P(EL,k|E(x)).

The Baum-Welch algorithm starts with initial parameter values p(0)
αβ, q(0)

k (a), α = B, 1, ..., N, β =
1, ..., N, E , where to set the initial values we could take previous information about the training data

into account. Let the training data be represented as xr = xr
1...xr

mr , r = 1, ..., n, and let p(s)
αβ, q(s)

k be the

parameter values at the algorithm’s sth step. Also, P(s)(xr), f r(s)
k (i) and br(s)

l (i) denote usual parameter
values for the sequence xr , i = 1, ..., mr . Now using formulas (21) and (22), we can determine the
recursion step for the following transition probabilities

H(s)
kl =

n∑
r=1

1
P(s)(xr)

mr–1∑
i=1

f r(s)
k (i)p(s)

kl q(s)
l (xr

i+1)br(s)
l (i + 1),

H(s)
Bl =

n∑
r=1

p(s)
0l q(s)

l (xr
1)br(s)

l (1)

P(s)(xr)
, (23)

H(s)
kE =

n∑
r=1

f r(s)
k (mr)p

(s)
k0

P(s)(xr)
,

and using the first formula in (20), the transition probabilities p(s+1)
αβ are calculated from H(s)

αβ. Fi-
nally, based on the formula (19), we can determine the recursion step for the following emission
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probabilities

J (s)
l (a) =

n∑
r=1

1
P(s)(xr)

∑
{i=1,...,mr :xr

i =a}

f r(s)
l (i)br(s)

l (i), (24)

and using the second formula in (20), the emission probabilities q(s+1)
l (a) are calculated from J (s)

l (a).
Now, to understand the procedure more deeply, we take into account the connectivity in Figure

2 and suppose the following training data are given to us

x1 : BAB
x2 : BAA
x3 : BA.

Here, we apply the Baum-Welch algorithm to adjust the model parameter M = (T ,R) under the
maximized P(x). Basically, using the Baum-Welch procedure, we provide an estimate and update
for emission and transition probabilities. Set the initial parameters to the following values

p(0)
01 = 1, p(0)

02 = 0,

p(0)
11 =

1
2

, p(0)
12 =

1
2

, p(0)
10 = 0,

p(0)
21 = 0, p(0)

22 = 0, p(0)
20 = 1,

q(0)
1 (A) =

1
4

, q(0)
1 (B) =

3
4

,

q(0)
2 (A) =

1
2

, q(0)
2 (B) =

1
2

.

To each of the three training sequences, we apply the forward and backward algorithms, and we
get

f 1(0)
1 (1) =

3
4

, f 1(0)
2 (1) = 0, f 1(0)

1 (2) =
3
32

, f 1(0)
2 (2) =

3
16

, f 1(0)
1 (3) =

9
256

, f 1(0)
2 (3) =

3
128

, f 2(0)
1 (1) =

3
4

,

f 2(0)
2 (1) = 0, f 2(0)

1 (2) =
3
32

, f 2(0)
2 (2) =

3
16

, f 2(0)
1 (3) =

3
256

, f 2(0)
2 (3) =

3
128

, f 3(0)
1 (1) =

3
4

, f 3(0)
2 (1) = 0,

f 3(0)
1 (2) =

3
32

, f 3(0)
2 (2) =

3
16

, b1(0)
1 (1) =

1
32

, b1(0)
2 (1) = 0, b1(0)

1 (2) =
1
4

, b1(0)
2 (2) = 0, b1(0)

1 (3) = 0,

b1(0)
2 (3) = 1, b2(0)

1 (1) =
1
32

, b2(0)
2 (1) = 0, b2(0)

1 (2) =
1
4

, b2(0)
2 (2) = 0, b2(0)

1 (3) = 0, b2(0)
2 (3) = 1,

b3(0)
1 (1) =

1
4

, b3(0)
2 (1) = 0, b3(0)

1 (2) = 0, b3(0)
2 (2) = 1, P(0)(x1) =

3
128

, P(0)(x2) =
3

128
, P(0)(x3) =

3
16

.

Consequently, the initial value of the likelihood is

P(0)(x1)P(0)(x2)P(0)(x3) =
27

262144
.

Next, by using formulas (23) and (24) we calculate the following quantities

H(0)
11 = 2, H(0)

12 = 3, H(0)
21 = 0, H(0)

22 = 0,

H(0)
B1 = 3, H(0)

B2 = 0, H(0)
1E = 0, H(0)

2E = 3,
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Figure 2. Graphical presentation of connectivity.

J (0)
1 (A) = 2, J (0)

1 (B) = 3, J (0)
2 (A) = 2, J (0)

2 (B) = 1.

Thus, new parameter values are

p(1)
01 = 1, p(1)

02 = 0,

p(1)
11 =

2
5

, p(1)
12 =

3
5

, p(1)
10 = 0,

p(1)
21 = 0, p(1)

22 = 0, p(1)
20 = 1,

q(1)
1 (A) =

2
5

, q(1)
1 (B) =

3
5

,

q(1)
2 (A) =

2
3

, q(1)
2 (B) =

1
3

.

Applying the forward algorithm further to each of the three training sequences with the updated
parameter values, we obtain

f 1(1)
1 (1) =

3
5

, f 1(1)
2 (1) = 0, f 1(1)

1 (2) =
12
125

, f 1(1)
2 (2) =

6
25

, f 1(1)
1 (3) =

72
3125

, f 1(1)
2 (3) =

12
625

, f 2(1)
1 (1) =

3
5

,

f 2(1)
2 (1) = 0, f 2(1)

1 (2) =
12
125

, f 2(1)
2 (2) =

6
25

, f 2(1)
1 (3) =

48
3125

, f 2(1)
2 (3) =

24
625

, f 3(1)
1 (1) =

3
5

, f 3(1)
2 (1) = 0,

f 3(1)
1 (2) =

12
125

, f 3(1)
2 (2) =

6
25

, P(1)(x1) =
12
625

, P(1)(x2) =
24
625

, P(1)(x3) =
6
25

.

Consequently, the likelihood value following a single iteration of the Baum-Welch algorithm is

P(1)(x1)P(1)(x2)P(1)(x3) =
1728

9765625
,

which is in fact higher than the initial figure that has been previously determined. For a specific ob-
servation, this result can be compare with the Baum-Welch algorithm result for the three sequences
of x1 : ABA, x2 : ABB, x3 : AB, under the same transition matrix and emission matrix (Isaev, 2006).

Now, by using the Baum-Welch algorithm, we can estimate the HMM parameters for the same
problem on the MATLAB Online - MathWorks. Here, the transition matrix and emission matrix
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respectively are given by: trans = [0, 1, 0, 0; 0, 1
2 , 1

2 , 0; 0, 0, 0, 1; 0, 0, 0, 1] and emis = [0,
0; 1

4 , 3
4 ; 1

2 , 1
2 ; 0, 0]. The probability of transition from state i to state j is given by trans(i, j) and

the probability of symbol A is emitted from state k is given by emis(k, A). To generate the three
considering sequences of lengths 3, 3, 2, respectively, we use the function hmmgenerate. After,
combining these three sequences in a cell array, the function hmmtrain estimates the transition
probabilities as estTR = [0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 1, 0; 0, 0, 0, 1] and the emission probabilities as
estE = [0, 0; 0, 1; 4

5 , 1
5 ; 0, 0]. The input argument tolerance takes the default value 10–6 which

controls the number of execution steps of the hmmtrain algorithm. The difference between two
consecutive steps of the algorithm defines the value of the tolerance.

3. Study of identifying CpG islands
In order to apply an HMM for detecting CpG islands in a DNA sequence, we consider two

possible hidden states {+, –} analogous to the fair and unfair dice, where the CpG island in a DNA
sequence is labeled by + region and the non-CpG island in a DNA sequence is labeled by – region.
Since each of these hidden states has the ability to emit a nucleotide, the configuration has an eight-
element state space S = { A+, A–, C+, C–, G+, G–, T+, T–} corresponding to the constructed element
set Q = { A, C, G, T } of a DNA sequence x. By using formula 2, from the given training data (a
set of sequences of some genes), we can compute the transition probabilities for CpG islands and
non-CpG islands. Here, we define two probability terms, p of the consecutive transition staying in
a CpG island and q of the consecutive transition staying in a non-CpG island. Two procedures are
used to identify whether x is coming from a CpG island or not.

In the first procedure of a short stretch of genome sequence, we compute the probability of a
sequence x in a CpG island, P(x|+), and the probability of a sequence x in a non-CpG island, P(x|–),
by assigning p = 1 and q = 1 in Table 1, respectively. Therefore, the odd ratio or the log-odds

ratio, logP(x|+)
P(x|–) = log

ΠL
i=1P+

xi–1xi
ΠL

i=1P–
xi–1xi

=
∑L

i=1 log
P+

xi–1xi
P–

xi–1xi
is computed to determine CpG islands by verifying

whether the value of this ratio is greater than the threshold value 0. If we consider the sequence
x = GCGCA, then the value of log-odds ratio is equal to log 0.34

0.25 +log 0.27
0.08 +log 0.34

0.25 +log 0.17
0.32 > 0. Thus,

the sequence, GCGCA, is a part of a CpG island. However, for a long sequence this procedure does
not work (Franzese & Iuliano, 2018).

In the second procedure of a long sequence, we have to incorporate both CpG islands and non-
CpG islands into a single model, where each nucleotide can be emitted by either of the two states
and thus the character of a one-to-one correspondence between the states and the symbols does not
preserve. That is why we can not uniquely determine the path of a nucleotide sequence x in such

Table 1. The transition probabilities in CpG and non-CpG island

pab A+ C+ G+ T+ A– C– G– T–

A+ 0.18p 0.27p 0.43p 0.12p 1–p
4

1–p
4

1–p
4

1–p
4

C+ 0.17p 0.37p 0.27p 0.19p 1–p
4

1–p
4

1–p
4

1–p
4

G+ 0.16p 0.34p 0.37p 0.13p 1–p
4

1–p
4

1–p
4

1–p
4

T+ 0.08p 0.36p 0.38p 0.18p 1–p
4

1–p
4

1–p
4

1–p
4

A–
1–q
4

1–q
4

1–q
4

1–q
4 0.30q 0.20q 0.29q 0.21q

C–
1–q
4

1–q
4

1–q
4

1–q
4 0.32q 0.30q 0.08q 0.30q

G–
1–q
4

1–q
4

1–q
4

1–q
4 0.25q 0.25q 0.29q 0.21q

T–
1–q
4

1–q
4

1–q
4

1–q
4 0.18q 0.24q 0.29q 0.29q
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configuration. In that situation, we can intuitively detect that this problem is similar to HMM of
occasionally dishonest casino dice. However, the emission probability, qn∗ (n), of each of the eight
states, n∗, is exactly 1 for the particular nucleotide n and 0 for any other nucleotide.

Now, we consider a hypothetical example of a 100-nucleotide DNA sequence with a CpG is-
land: ATGCATGCATGCATGCGCAGCTACGATGCATGCGCAGCTACGATGCATGCG
CAGCTACGATGCATGCGCAGCTACGATGCATGCGCAGCTACG, and before go to the
HMM procedure, we use a computational technique known as sliding window algorithm to identify
potential CpG islands in DNA sequences. In this technique, to characterize the genomic regions
with higher frequency of CG dinucleotides than expected based on the overall nucleotide compo-
sition, we measure two quantities: % C + G (percentage of Cytosine + Guanine) and O/E CpG
(observed/expected CpG ratio). The % C + G of a sequence is calculated by the following formula:

% C + G = (Number of Cs)+(Number of Gs)
Total number of nucleotides in the sequence × 100, and the formula to determine the

O/E CpG ratio is as follows: O/E CpG = Observed CpG frequency
Expected CpG frequency , where the expected number of

CpG dinucleotides in a sequence of a specific length would be Number of Cs×Number of Gs
Length of the sequence . The

default threshold values, % C + G ≥ 50% and O/E CpG ≥ 0.6 or 0.65, indicate a potential CpG
island. The sliding windows algorithm starts by defining a fixed-size window (the size defined by
a number of base pairs) that moves one base pair at a time, from the 5′ (start) end to the 3′ (end)
end of the sequence. The starting and terminating positions of a DNA strand are determined by
the pentose carbon atoms at 5′ and 3′, respectively. DNA is read in the 5′ to 3′ direction, with
the complementary strand running in the opposite direction. At each position of the window, the
algorithm calculates the % C + G and the O/E CpG. The sensitivity and specificity of CG island
detection are impacted by the size of the sliding window. Smaller windows can give more false
positives but are more sensitive to smaller islands. After the entire sequence has been scanned, in the
post-processing steps merging of identified islands that are very close to each other can help to refine
the result and reduce redundancy (Takai & Jones, 2002). For the identification of CpG islands in our
DNA sequence, we set window size 20, minimum length of island 30, minimum O/E CpG ratio
0.6, minimum percentage 50% on EMBOSS Cpgplot. We observe that in the final output a CpG
island of length 68 starts at position 9 and extends to position 76. Instead of 20 if we use window size
5, then the sequence is characterized by a CpG island of length 89 with genomic coordinate (6...92).
To improve accuracy and reduce false positives in CpG island prediction, we are often using sliding
window algorithm as a preprocessing step in more complex methods, such as HMMs.

We observed that CpG island starts at position either 6 or 9 and extends to position either 92 or
76 which is identified by a high density of Cytosine-Guanine pairs. At this position, taking p = 0.9,
q = 0.95 and assuming the uniform initial distribution of eight hidden states equal to 0.125, we re-
identify this CpG island region by using algorithms related to HMM. The predicted path through
the hidden states produced by Viterbi algorithm is used to identify CpG islands. Here, to generate
the predicted path of the 100-nucleotide DNA sequence with HMM parameters, we use a user-
friendly web server HMMTeacher. We assume that in CpG islands, the hidden states, A+ and T+,
are suppressed with probability 0.3, i.e., emission probability, qA+ (A) = 0.7 and qT+ (T) = 0.7 instead
of 1. Similarly, in non-CpG islands, the hidden states, C– and G–, are suppressed with probability
0.3, i.e., emission probability, qC– (C) = 0.7 and qG– (G) = 0.7 instead of 1.

The Viterbi algorithm is used to find the most likely sequence of hidden states that generates
the observed DNA sequence. Applying the algorithm, we get the following Viterbi path of eight
hidden states: A-T-G-C-A-T-G-C-A-T-G-C-A-T+G+C+G+C+A+G+C+T+A+C+G+A+T+G+
C+A+T+G+C+G+C+A+G+C+T+A+C+G+A+T+G+C+A+T+G+C+G+C+A+G+C+T+A+C+G+A+
T+G+C+A+T+G+C+G+C+A+G+C+T+A+C+G+A+T+G+C+A+T+G+C+G+C+A+G+C+T+A+C+
G+. The probability of the path corresponding to the most probable sequence of hidden states
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is 7.51013181035043 × 10–70. We observe that the CpG island starts at position 14 and extends
to position 93. Both the forward and backward algorithms are used to compute the probability of
observing the DNA sequence which is equal to 4.495059133983972×10–66. By using the backward
algorithm, we see that the probability that the position 9 (A) is emitted by hidden state C+ is 0 . In
case of state G+, it is also equal to 0, whereas the probability that the position 15 (G) is emitted by
hidden state G+ is equal to 0.6639258973546764. Thus, the total probability that the position 15
(G) is emitted by other remaining seven hidden states is 0.33607410264. At each position of the
DNA sequence, Figure 3 illustrates this scenario graphically using posterior decoding presentation.
We know that by using Bayes’ theorem posterior probability can be calculated by the following

formula: P(Hidden state k at position i|O) = fk(i)×bk(i)
P(O) . It aims to find the probabilities of states at

each position having specific nucleotide. As a result, at each position, we can select the hidden state
with highest posterior probability, and like Viterbi algorithm, this is a probabilistic approach to
finding the most likely state sequence in an HMM.

For the simple version of the same problem of finding CpG islands in the same DNA sequence,
we consider only two hidden states: ‘ + ’ for CpG island and ‘ – ’ for non-CpG island. The initial
probabilities for both hidden states are 0.5, while the transition probabilities between these two hid-
den states are the following: p++ = 0.7, p+– = 0.3, p–+ = 0.4 and p–– = 0.6. The emission probabilities,
which represent the probability of observing a particular nucleotide, are also taken into account
as: q+(A) = 0.1, q+(C) = 0.4, q+(G) = 0.4, q+(T) = 0.1 and q–(A) = 0.4, q–(C) = 0.1, q–(G) = 0.1,
q–(T) = 0.4. For these hidden Markov parameters, we determine the following Viterbi path of two
hidden states: --++--++--++--+++++++--++--++--+++++++--++--++--+++++++--++--++--+++++++
--++--++--+++++++--++. The probability of the path corresponding to the most probable sequence
of hidden states is 1.8702432948975872×10–66. Merging of identified islands, the CpG island starts
at position 3 and extends to position 61. Here, the calculated probability of finding the DNA se-
quence is 7.638069058758216 × 10–57. By calculating the posterior probability, we see that the
probability that the position 6 (T) is emitted by CpG island is 0.2673005494858582. As a result, that
positioned T is emitted with probability 0.73269945051 by non-CpG island.

We know that through computational and bioinformatic methods without experimental con-
firmation, the presence of genes can be predicted based on various features and patterns found in
the DNA. Among the various features, the presence of CpG islands which is associated with gene
promoter regions is a valuable clue in gene prediction where the promoter region which is a critical
section of DNA towards the 5′ end of a gene controls when and to what extent a gene is transcribed
into messenger RNA (mRNA) and subsequently translated into a protein. Therefore, investigat-
ing predicted genes by identifying CpG islands is an important research approach to conclude the
predicted gene to be an actual gene.

Now, we collect few predicted genes from NCBI site, and by identifying CpG islands, we
examine whether they are actual genes. To determine the overlapping genomic coordinate, we use
BLAST - a search tool for DNA/protein sequence similarity.

• Predicted sequence_1: Onychostoma macrolepis major histocompatibility complex class I-
related gene protein-like (LOC131534978), mRNA, NCBI Reference Sequence (Version No.):
XM_058768130.1. This record is derived from a genomic sequence (NC_081179), NCBI Ref-
erence Sequence (Version No.): NC_081179.1.
Investigating predicted gene by identifying CpG islands: Examine the 16.69kb region from
base 1027548 to 1044240. Under the default settings, both DBCAT and EMBOSS Cpgplot are
used to identify CpG islands. Here, the predicted gene does not appear to be a real gene from
Onychostoma macrolepis, the bony fishes. There is one possible CpG island found from position
15461 to position 15681 with a length of 221 nucleotides and GC content of 52%. Clearly, it
is not associated with promoter region. However, on the EMBOSS Cpgplot, we identify one
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CpG island of genomic coordinate (1539...1748) with a length of 210 nucleotides and it may be
part of promoter region. Another supporting evidence includes similarity to 56 other proteins.
• Predicted sequence_2: Canis lupus familiaris 28S ribosomal protein S22, mitochondrial-like (

LOC119878138), mRNA, NCBI Reference Sequence (Version No.): XM_038588866.1. This
record is derived from a genomic sequence (NC_049260.1), NCBI Reference Sequence (Version
No.): NC_049260.1.
Investigating predicted gene by identifying CpG islands: Examine the 9.17kb region from
base 12056432 to 12065599. The predicted gene does appear to be a real gene from Canis
lupus familiaris, the dog. There are four possible CpG islands found. The first one is found
from position 1929 to position 2417 with a length of 489 nucleotides and GC content of 62%.
Clearly, it is associated with promoter region. Other three identified CpG islands respec-
tively are: (4170....4601, length of 432, GS content of 50%), (5820....6045, length of 226,
GS content of 50%), (7876....8570, length of 695, GS content of 57%). However, on the EM-
BOSS Cpgplot, we identify only one CpG island of genomic coordinate (7968...8469) with a
length of 502 nucleotides. Similarity to five proteins and RNAseq alignments that encompass
88% of the specified genomic feature provide additional supportive data.
• Predicted sequence_3: Pan troglodytes colony stimulating factor 2 receptor subunit alpha

(CSF2RA), transcript variant X1, mRNA, NCBI Reference Sequence (Version No.): XM_05
5078641.1. This record is derived from a genomic sequence (NC_072422), NCBI Reference
Sequence (Version No.): NC_072422.1.
Investigating predicted gene by identifying CpG islands: Examine the 35.54 kb region from base
1575812 to 1611349. The predicted gene does appear to be a real gene from Pan troglodytes,
the chimpanzee. There are twenty three possible CpG islands found. The first one is found from
position 1 to position 230 with a length of 230 nucleotides and GC content of 60%. Clearly, it is
associated with promoter region. Other identified CpG islands respectively are: (2593....2866,
length of 274, GS content of 53%), (3092....3788, length of 697, GS content of 52%),.......,
(35148....35402, length of 255, GS content of 56%). On the EMBOSS Cpgplot, we identify
eleven possible CpG islands. Another supporting evidence includes similarity to 2 other proteins.
• Predicted sequence_4: Oreochromis niloticus immunoglobulin lambda-1 light chain (LOC1

06097410), transcript variant X1, mRNA, NCBI Reference Sequence (Version No.): XM_019
357348.2. This record is derived from a genomic sequence (NC_031986.2), NCBI Reference
Sequence (Version No.): NC_031986.2.
Investigating predicted gene by identifying CpG islands: Examine the 13.15 kb region from base
27423744 to 27436896. The predicted gene does not appear to be a real gene from Oreochromis
niloticus, the Nile tilapia. There are two possible CpG islands found. The first one is found
from position 2048 to position 2448 with a length of 401 nucleotides and GC content of 54%.
Clearly, it is not associated with promoter region. The second one, which has a GC content of
51% and a length of 229 nucleotides, is located between positions 11325 and 115553. On the
EMBOSS Cpgplot, there is no CpG island. Similarity to two proteins and RNAseq alignments
that encompass 97% of the specified genomic feature provide additional supportive data.

4. Conclusion
The theory of the HMM is reviewed in this paper. The use of HMMs has grown in popular-

ity during the past few decades. Fundamentally, because the HMMs are so rich in mathematical
structure, they can serve as the theoretical foundation for a variety of applications. Additionally, the
models perform well in practice for many applications when used correctly. Because of this, we
make an effort to concisely and methodically study the theoretical background of this kind of sta-
tistical modelling. Hidden Markov models have been used to model voice signals with success, and
they are now one of the most used tools for analyzing biological sequences. Indeed, for modelling
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and analyzing biological sequences, HMMs offer a solid mathematical framework.
In genomic annotation, HMMs are essential, especially when it comes to predicting functional

components in DNA sequences. In this context, the inherent complexity and unpredictability of
genomic sequences are modelled using an HMM. Each state in the HMM represents a specific bi-
ological feature, such as exons, introns, promoters, or intergenic regions. An HMM can be trained
to predict the position and boundaries of genes, splice sites, and other functional elements inside
genomic sequences by using a dataset of known gene structures. This predictive power is crucial for
genome annotation because it allows researchers to detect and characterise genes and regulatory el-
ements within a DNA sequence without the need for time-consuming and expensive experimental
procedures. Complex tasks such as modelling non-coding RNAs, epigenetic changes, or alternative
splicing can be accomplished with advanced HMMs. Typically, genomic annotation is not a simple,
yes-or-no, black-and-white task, i.e., not a binary operation; elements may overlap or be nested.
It could be necessary to do post-processing procedures to improve the annotation and clear up any
ambiguities (Ejigu & Jung, 2020; Mathé et al., 2002).

Practically, HMMs are commonly constructed on large molecular sequence databases, where
bioinformatics systems use the computed HMM parameters to predict the structure or function of
new molecular sequences. In fact, the majority of applications of HMMs may need a lot of data
to accurately estimate the model parameters. On the other hand, the number of hidden states,
which is necessary for HMMs but can be tricky to estimate, must also be specified. In addition,
since HMMs are statistical learning techniques, the accuracy of obtained outcomes may vary across
different scenarios. The current study has been carried out within this context, and we observed
that the results obtained from both the pure/manual algorithm of sliding window procedure and the
mathematics-based algorithm of the HMM procedure are nearly identical for specific values of model
parameters. Therefore, in order to avoid the time-consuming critical procedure, the examination
of the appropriateness of such comparison method between pure and mathematical algorithms to
adjust the model parameters must be included in our next research endeavor.
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