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Abstract 

This study aims to determine an optimal policy to deal with a situation where a retailer should have enough stock to 

meet customer demands and prevent supply loss and deterioration. In this study, we demonstrate the impact of partial 

backlogging, shortages, and inflation on decaying items to provide the most relevant solutions to this problem. The 

model uses a two-parameter Weibull deterioration distribution with an exponential demand rate. Numerical results and 

sensitivity analysis are combined with a graphical demonstration, and the proposed approach is reliable and accurate, 

providing a new explanation for a different type of system. This paper determines the total cost and optimal production 

run time by developing an inventory model. Sensitivity analysis is carried out to demonstrate the proposed model. 
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1. Introduction 
Decay refers to the change, rotting, destruction, damage, spoilage, evaporation, degradation, 

etc., in the marginal value of a product or utility that decreases the value of the original or fresh 

product in stock. Seafood, medicine, blood, fruits, gasoline, vegetables, clothes, machinery, 

chemicals, and other products have a finite shelf-life cycle, and deterioration begins immediately 

after replenishment. In addition, deterioration is typically observed in some commodities during 

the average storage period.  

Maximum inventory models consider that the demand is either backlogged in the period of 

no stock or that all demand is lost, which is unrealistic. In the actual situation, some customers 
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want to wait until replenishment, mainly if the waiting period is short or because of certain 

regions, such as personal relationships. It is also observed that some products, such as medicines 

and vegetables, are required instantly to fulfil their requirements; they must go elsewhere to 

satisfy their demand. The backlogging rate is also critical in replenishment and depends on the 

time. The longer the customers wait, the more significant the fraction of lost sales. Most 

researchers working on the same concept must simultaneously consider the facts, such as 

demand, deterioration rate, inflation, and shortage.  

To provide the most relevant solution for these problems, a two-parameter Weibull 

deterioration distribution is considered with an exponential demand, increasing with time. 

Shortages are allowed which are partially backlogged. Furthermore, we consider inflation. In 

this study, we determine an optimal policy to deal with a situation where a retailer should have 

sufficient stock to meet customer demands and prevent stock-out and deterioration. This study 

also demonstrates the impacts of partial backlogging, shortages, and inflation on decaying items. 

The numerical results and sensitivity analysis are combined with a graphical demonstration. 

A mathematical formation of the model is presented to support the theory, and sensitivity 

analysis is carried out to validate the model.  

 

2. Literature Review 
It is always observed that there is a shortage of inventory in case of an emergency or calamity. At that 

time, fulfilling demand for every consumer becomes difficult as inventory storage problems arise. 

Therefore, warehouses can be used to store inventories during emergencies. The use of warehouses is an 

essential and beneficial way to maintain inventory. The warehouse inventory issue has received 

considerable attention in recent years. Many researchers have developed several models using one or 

more warehouses. In a multi-warehouse system, it is assumed that the merchant owns the warehouse 

(OW) with an unchanging capability and a quantity that should be stocked in the borrowed warehouse. 

Chung, K.-J., & Huang, T. S. (2007) discussed the inventory models of two warehouses for deteriorating 

items; on the other hand, Singh, S. R. and Bhatia, D. (2011) proposed two warehouse models through 

inflation-induced demand, whereas Chang, J. and Lin, F. (2010) discussed the improved model 

considering optimal replenishment policy under the demand price dependent on stock. Recently, 

Sindhuja and Aarthi (2023) elaborated an inventory policy for perishable commodities and used the 

preservation technology with time-based demand. Some researchers believe in a warehouse with 

unlimited capacity because it can be challenging to select which type of warehouse should be filled or 

vacant first in the case of owned and rented warehouses. To overcome this problem, we are considering 

a warehouse with unlimited capacity. 

Khanra, S., Ghosh, S. K. and Chaudhuri, K. S. (2011) discussed an inventory model for decaying 

items with quadratic demand under the permissible delay payments condition and similar work also 

done by Liang, Y., & Zhou, F. (2011) considered a concept identical to that of a two-warehouse for the 

permissible delay in payment. Recently, Handa, N., Singh, S. R., and Punetha, N. (2021) investigated a 

production policy that considered ramp-type demand for the inventory system with shortages and 

inflation.  Goel, A. and Ali, M. A. (2022) considered a model for incremental holding costs with the 

effect of stock-dependent deterioration, including partial backlogging. Samih Antoine Azar (2023) 

discussed a scheme without backorders and non-deterministic demand.  

Singh, S. R., Gupta, V. and Goel, A. (2013) consider an EOQ model with a trade credit policy for 

items that deteriorate with time, and the demand changes with the change in the selling price; Kumar, 

M., Chauhan, A., Singh, S. J. and Sahni, M. (2020) recently extended the above research on trade credit 

with preservation technology under demand depending on advertisement, time, and selling price. Singh, 

A. and Goel, A. (2024) developed a mathematical framework for managing decaying products in 

multiple warehouses within a retail setting under a trade credit policy.  Atama. A, Madaki and Sani. 

B. A (2024) suggested a manufacturing inventory policy with linear time-related demand and 

https://www.inderscience.com/filter.php?aid=130358
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constant holding cost. They allowed shortages in their study. 

Yadav, A. S. and Swami, A. (2018) discussed the inventory lot size model for partially backlogging with 

the holding cost as time-varying and Weibull deterioration. Singh, S. R. and Rana, K. (2020) discussed 

and proposed a mathematical model considering the optimal refill policy for the new product and take-

return of used product quantity for deteriorating items with the concept of lead time. Goel, A. & Singh, 

A. (2024) examined a model for perishable commodities with different degradation rates. To slow down 

a product's rate of deterioration, Shah, N. H., Jani, M. Y., and Chaudhari (2018) considered preservation 

investment. Arora, R., Singh, A. P., Sharma, R., & Chauhan, A. (2021) created a traditional EOQ model 

with shortage considering a fuzzy environment and provided an appropriate structure to handle such 

uncertain parameters. Recently, Mou, J. J., & Jiang, Y. M. (2021) discussed an integrated cold chain policy 

for the Weibull deterioration rate based on inventory performance. Md. Al-Amin Khan, Leopoldo, 

Eduardo. (2024) analyzed the effects of flexible advance payments on cost and inventory decisions 

with an energy demand model and nonlinear holding costs under carbon cap and price regulation. 

After a critical review, it is observed that realistic scenarios, such as shortages, partial backlogging, 

time-dependent deteriorating items, and the effect of inflation, are not considered simultaneously by 

most researchers. 

Therefore, in the present study, we incorporate all the above-discussed scenarios, consider shortages, 

and obtain the optimal ordering policy, which deals with the situation in which a retailer should have 

enough stock to meet the customer's demands to prevent stock-out and deterioration. 

 

3. Assumptions and Notations 
 The demand pattern is assumed to be time-dependent. 

 The production rate is dependent on the demand of the product i.e., 𝑷(𝒕) = 𝜶𝑫(𝒕) . 
 The rate of product deterioration is the function of time "t". 

 The role of inflation was also considered. 

 The partial backlogging of shortages is admissible. 

 The warehouse has limitless capacity. 

 Deteriorating products are rejected entirely. 

 

𝑰(𝒕) The stock level at a certain moment "t". 

𝑨 The set-up cost per cycle. 

𝒉 Per unit time holding cost. 

𝜽(𝒕) The deterioration rate is the Weibull distribution of two 

parameters where 𝜽(𝒕) = 𝜷𝜸𝒕𝜸−𝟏𝜷(𝟎 < 𝜷 < 𝟏) is the scale 

parameter and it is a probability density function and𝜸(𝜸 > 𝟎)   is 

the shape parameter. 

𝑫(𝒕) The demand rate is an exponentially increasing function of 

time𝑫(𝒕) = 𝒂 𝒆𝒃𝒕, where “a” and “b” are the demand parameters. 

𝑷(𝒕) The manufacturing rate depends on the demand rate, i.e.𝑷(𝒕) =
𝜶 𝒂𝒆𝒃𝒕 where 𝜶 > 𝟏 

𝑺 Maximum stock level. 

𝑻  Cycle length 

𝒗 Stock level when time becomes zero. 

𝒕𝟏 The time up to which production occurs. 

𝒅 Per unit time Deterioration cost. 

𝒑 The production cost per unit of time. 

𝒔 Per unit time shortages cost. 

𝒍 The lost sales per unit time. 

𝜹 The rate of backlogging.                         

𝒓 The rate of inflation. 
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M Retailers trade credit period, which the supplier provides. 

𝒊𝒆 Interest earned by retailer. 

𝒊𝑷 Interest paid by the retailer 

 

4. Mathematical Modelling 
In this model, the producer starts production at the time 𝑡 = 0, and continues until the time 

after satisfying the demand for deterioration during the complete cycle. There is a decline in the 

inventory level, which becomes zero because of the outcome of the demand and deterioration 

only before the shortage occurs. The suggested model shows variations in inventory level over 

an assumed period while also considering the impact of inflation. 𝑡 = 𝑡1[𝑡1, 𝑣]. 

The basic process is explained with the help of the following figure 1.  

 
Figure 1. Representation of different levels of inventory. 

 

Differential equations always show a change in one variable or parameter for another 

variable or parameter, so the differential equations that described the above system are: 
𝑑𝐼1(𝑡)

𝑑𝑡
= 𝑃(𝑡) − [𝐷(𝑡) + 𝜃(𝑡)𝐼1(𝑡)]                   0 ≤ 𝑡 ≤ 𝑡1        (1)                                                      

𝑑𝐼1(𝑡)

𝑑𝑡
+ 𝛽𝛾𝑡𝛾−1𝐼1(𝑡) = 𝑎𝑒

𝑏𝑡(𝛼 − 1) 

𝑑𝐼2(𝑡)

𝑑𝑡
+ 𝜃(𝑡)𝐼2(𝑡) = −𝐷(𝑡)      𝑡1 ≤ 𝑡 ≤ 𝑣                                                                   (2)                                                                                                                                                 

𝑑𝐼2(𝑡)

𝑑𝑡
+ 𝛽𝛾𝑡𝛾−1𝐼2(𝑡) = −𝑎𝑒

𝑏𝑡    

Boundary conditions for the above equations concerning the considered model are given 

below. 

𝐼1(0) = 0, 𝐼2(𝑡1) = 𝑆    

   

  (3) 

 

Solutions for the above equations considering boundary values are as follows: 

𝑰𝟏(𝒕) = 𝒂(𝜶 − 𝟏)𝒆
−𝜷𝒕𝜸 (

𝜷

𝜸+𝟏
𝒕𝜸+𝟏 +

𝒃

𝟐
𝒕𝟐 + 𝒕)𝟎 ≤ 𝒕 ≤ 𝒕𝟏    (4) 

 

𝐼2(𝑡) = {𝑆𝑒
𝛽𝑡1

𝛾

+ 𝑎 ((𝑡1 − 𝑡) +
𝑏

2
(𝑡1
2 − 𝑡2) +

𝛽

𝛾+1
(𝑡1
𝛾+1

− 𝑡𝛾+1))} 𝑒−𝛽𝑡
𝛾
, 𝑡1 ≤ 𝑡 ≤ 𝑣  (5) 

 

If 𝐼2(𝑣) = 0. 

From equation (5), We have 

𝑆 = 𝑎 {(𝑣 − 𝑡1) +
𝑏

2
(𝑣2 − 𝑡1

2) +
𝛽

𝛾+1
(𝑣𝛾+1 − 𝑡1

𝛾+1
)} 𝑒−𝛽𝑡1

𝛾

                                     (6) 

T 

Inventory 

S 

Time 
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5. Analysis of Different Costs 

 
5.1 Set-Up Cost: 

The setup cost associated with this model is displayed as follows:   

  Setup Cost = 𝐴                             (7)  

 

5.2 Carrying or Holding Cost: 

The holding cost (H.C.) involved in this model is given as: 

  𝐻. 𝐶.= ℎ {∫ 𝑒−𝑟𝑡. 𝐼1(𝑡)𝑑𝑡 + ∫ 𝐼2(𝑡)𝑒
−𝑟𝑡𝑑𝑡

𝑣

𝑡1

𝑡1
0

}                                                                    (8) 

           (See appendix (a)) 

                                                                                                                                      

5.3 Deterioration Cost: 

The deterioration cost (D.C.) associated with this model is as follows: 

Deteriorated units = d (Total production cost - total det. cost)  

      = 𝑑 {∫ 𝛼𝑎𝑒𝑏𝑡𝑒−𝑟𝑡
𝑡1

0
𝑑𝑡 − ∫ 𝑎𝑒𝑏𝑡𝑒−𝑟𝑡𝑑𝑡

𝑣

0
} 

𝐷. 𝐶.= 𝑑 {∫ 𝛼𝑎𝑒(𝑏−𝑟)𝑡
𝑡1

0

𝑑𝑡 − ∫ 𝑎𝑒(𝑏−𝑟)𝑡𝑑𝑡
𝑣

0

} 

𝑫.𝑪.= 𝒅 {𝒂(𝜶𝒕𝟏 − 𝒗) + 𝒂(𝒃 − 𝒓) (
𝜶𝒕𝟏
𝟐

𝟐
−
𝒗𝟐

𝟐
)}                                       (9) 

 

5.4 Production Cost: 

The production cost (P.C.) associated with this model is given below: 

Total produced unit= 𝑝∫ 𝛼
𝑡1

0
𝑎𝑒𝑏𝑡𝑒−𝑟𝑡𝑑𝑡 

𝑃. 𝐶. = 𝑎𝛼𝑝 (𝑡1 + (𝑏 − 𝑟)
𝑡1
2

2
)      (10)

  

5.5 Shortage Cost: 

The shortage cost (S.C.) associated with this model is given by: 

Total shortages= 𝛿𝑠 ∫ 𝑎𝑒𝑏𝑡𝑒−𝑟𝑡𝑑𝑡
𝑇

𝑣
 

    𝑆. 𝐶.= 𝑎𝑠𝛿 ((𝑇 − 𝑣) +
(𝑏−𝑟)

2
(𝑇2 − 𝑣2))                (11) 

5.6 Lost Sale Cost: 

Lost sale cost (L.S.C) associated with this model is given by: 

𝐿. 𝑆. 𝐶 = 𝑙.∫ (1 − 𝛿
𝑇

𝑣

)𝑎𝑒𝑏𝑡𝑒−𝑟𝑡𝑑𝑡 

𝐿. 𝑆. 𝐶 = 𝑎𝑙(1 − 𝛿) (𝑇 − 𝑣 +
(𝑏−𝑟)

2
(𝑇2 − 𝑣2))                                   (12) 

6.  Cases of Permissible Delay in Payment: 
Now for the case of permissible delay in payment, the following three cases arise:  

 

6.1 When𝟎 ≤ 𝑴 ≤ 𝒕𝟏: 

In this case, interest payable = 𝑰𝑷𝟏 = 𝒑𝒊𝒑 [∫ 𝑰𝟏(𝒕)𝒆
−𝒓𝒕𝒅𝒕

𝒕𝟏

𝑴
+ ∫ 𝑰𝟐(𝒕)𝒆

−𝒓𝒕𝒅𝒕
𝒗

𝒕𝟏
]   

(See appendix (b)) 

 Interest earned = 𝑰𝑬𝟏 = 𝒑𝒊𝒆 ∫ 𝑫(𝒕)𝒕𝒆−𝒓𝒕𝒅𝒕
𝑴

𝟎
=

𝒑𝒊𝒆𝒂[𝟑−𝟐(𝒃−𝒓)]𝑴
𝟐

𝟔
 

6.2 When𝒕𝟏 ≤ 𝑴 ≤ 𝒗: 

 In this case, interest payable = 𝐼𝑃2 = 𝑝𝑖𝑝[∫ 𝐼2(𝑡)𝑒
−𝑟𝑡𝑑𝑡

𝑣

𝑀
] 

(See appendix (c)) 
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 Interest earned = 𝐼𝐸2 = 𝑝𝑖𝑒 ∫ 𝐷(𝑡)𝑡𝑒−𝑟𝑡𝑑𝑡
𝑀

0
=

𝑝𝑖𝑒𝑎[3−2(𝑏−𝑟)]𝑀
2

6
 

6.3 When𝑻 ≤ 𝑴: 
 In this case, there is no interest payable. 

 Interest earned is given as 

 𝐼𝐸2 = 𝑝𝑖𝑒 [∫ 𝐷(𝑡)𝑡𝑒−𝑟𝑡𝑑 𝑡
𝑀

0
+
𝑎(𝑀−𝑡1)(𝑒

(𝑏−𝑟)𝑡1−1)

𝑏−𝑟
] 

     =
𝑝𝑖𝑒𝑎[3 − 2(𝑏 − 𝑟)]𝑀

2

6
+
𝑎(𝑀 − 𝑡1)(𝑒

(𝑏−𝑟)𝑡1 − 1)

𝑏 − 𝑟
 

 

7. Total Average Cost: 
 This model consists of the following total average cost (T.A.C.): 

  𝑇. 𝐴. 𝐶. =
1

𝑇
{

𝑇𝐶1(𝑣, 𝑇) ,  0 ≤ 𝑀 ≤ 𝑡1
𝑇𝐶2(𝑣, 𝑇) , 𝑡1 ≤ 𝑀 ≤ 𝑣

𝑇𝐶2(𝑣, 𝑇) ,  𝑇 ≤ 𝑀

 

 𝑇. 𝐶. = [Set up cost (𝑆)+ production cost(P.C.) + inventory holding cost (I.H.C.) 
          + deterioration cost (D.C.) + shortages cost (S.C.) + lost sale cost (L.S.C) 
          + Interest payable -Interest earned]  

 𝑇𝐶1 = 𝑆 + 𝑃. 𝐶 .+𝐼. 𝐻. 𝐶. +𝐷. 𝐶. +𝑆. 𝐶. +𝐿. 𝑆. 𝐶 + 𝐼𝑃1 − 𝐼𝐸1 

 𝑇𝐶2 = 𝑆 + 𝑃. 𝐶 .+𝐼. 𝐻. 𝐶. +𝐷. 𝐶.+𝑆. 𝐶. +𝐿. 𝑆. 𝐶 + 𝐼𝑃2 − 𝐼𝐸2 

 𝑇𝐶3 = 𝑆 + 𝑃. 𝐶 .+𝐼. 𝐻. 𝐶. +𝐷. 𝐶.+𝑆. 𝐶. +𝐿. 𝑆. 𝐶 − 𝐼𝐸3 
 

8. Numerical Example: 
The model's applicability can be seen in the subsequent numerical example. The values of the involved 

parameters are taken as follows: 

 
Table 1. Value of parameters 

𝑎 100 units 

b 10 units 

𝛽 0.05 

𝛾 2 

𝑙 3 Rs/unit 

ℎ 0.6 Rs/unit 

𝑑 8 Rs/unit 

𝑠 2 Rs/unit 

𝑝 4 Rs/unit 

𝑇 15 

𝛼 1.2 

𝐴 150 Rs/production run 

𝑟 0.05 

𝛿 0.03 

𝑀 3500 

  

Using the above-cited values, the optimal value for the production period (𝑡1) & critical point (𝑣) carried 

the value 0.1253 days and 9.489 days, respectively.  

Analysis is conducted to determine the Total Average Cost's ideal value which is Rs. 352.5180 (𝑇. 𝐴. 𝐶. ) 

The following graphical representation is for the total average cost function, which shows its convex 

nature. 
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     Figure 2. Convexity: total average cost function w.r.t.  at𝑡1𝑣 = 9.4890. 

 

 

 
 

Figure 3. Convexity: total average cost function w.r.t.  at v 𝑡1 = 0.1253. 

 

 

9. Sensitivity Analysis 

The parameters' sensitivity is measured to check their impact on the total average cost. Tables 1 to 11 

represent modification in TAC by considering one parameter at a time and keeping the remaining 

parameter unchanged.(𝑇. 𝐴. 𝐶. )𝑎, 𝑏, 𝛿, 𝛽, ℎ, 𝑑, 𝑠,𝑚, 𝑙, 𝛼, 𝑟 
 

Table 2. Sensitivity study of demand parameter 𝒂 
 

𝑎 𝑣 𝑡1 𝑇. 𝐴. 𝐶. 

80 9.5437 0.2019 80.0942 

85 9.5275 0.1781 149.1460 

90 9.5132 0.1579 217.4880 

95 9.5004 0.1405 285.2470 

100 9.4890 0.1253 352.5180 

105 9.4786 0.1120 419.3780 

110 9.4693 0.1002 485.8870 

115 9.4608 0.0897 552.0960 

120 9.4530 0.0802 618.0440 

 

 

9.2 9.4 9.6 9.8 10.0

400

450

500

550

600

650

700

t
1
 Time 

T.A.C 

0.11 0.12 0.13 0.14 0.15 0.16 0.17

352.6

352.7

352.8

352.9

353.0

t1 Time 

T.A.C 
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Table 3. Sensitivity study of demand parameter 𝒃 
 

𝑏 𝑣 𝑡1 𝑇. 𝐴. 𝐶. 

8.0 9.5106 0.1669 137.2180 

8.5 9.5042 0.1541 191.2290 

9.0 9.4986 0.1431 245.1000 

9.5 9.4935 0.1336 298.8570 

10.0 9.4890 0.1253 325.5180 

10.5 9.4848 0.1180 406.0980 

11.0 9.4811 0.1115 459.6090 

11.5 9.4777 0.1057 513.0610 

12.0 9.4745 0.1004 566.4620 

 

 

 

 

 

 

Table 4. Sensitivity study of backlogging rate𝜹 
 

𝛿 𝑣 𝑡1 𝑇. 𝐴. 𝐶. 

0.0240 9.4904 0.1254 379.5920 

0.0255 9.4901 0.1254 372.8240 

0.0270 9.4897 0.1254 366.0560 

0.0285 9.4893 0.1253 359.2870 

0.0300 9.4890 0.1253 352.5180 

0.0315 9.4886 0.1253 345.7480 

0.0330 9.4882 0.1253 338.9790 

0.0345 9.4879 0.1252 332.2080 

0.0360 9.4875 0.1252 325.4380 

 
 

 

 

 

 

Table 5. Sensitivity study of deterioration parameter𝜷 
 

𝛽 𝑣 𝑡1 𝑇. 𝐴. 𝐶. 

0.0450 9.82105 0.119584       -1232.3900 

0.0475 9.64926 0.122456         -404.9400 

0.0500 9.48901 0.125362         352.5180 

0.0525 9.33904 0.12831        1048.9000 

0.0550 9.19824 0.13131        1691.6500 

0.0575 9.06569 0.134368        2287.0100 

0.0600 8.94058 0.137492        2840.2800 

0.0625 8.82222 0.140691        3355.9700 

0.0650 8.71001 0.143973        3837.9600 
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Table 6. Sensitivity study of unit holding cost 𝒉 
 

ℎ 𝑣 𝑡1 𝑇. 𝐴. 𝐶. 

0.54 9.7748 0.1069          -881.1870 

0.57 9.6267 0.1162          -237.6390 

0.60 9.4890 0.1253          352.5180 

0.63 9.3605 0.1342          896.1080 

0.66 9.2402 0.1428         1398.8100 

0.69 9.1274 0.1512         1865.3900 

0.72 9.0211 0.1593         2299.8900 

0.75 8.9209 0.1673         2705.7400 

0.78 8.8261 0.1751        3085.8900 

 

 

 
Table 7. Sensitivity study of unit deterioration cost 𝒅 

 

𝑑 𝑣 𝑡1 𝑇. 𝐴. 𝐶. 

5.6 8.8631 0.1622        7211.1600 

6.0 8.9742 0.1553        6132.9300 

6.4 9.0824 0.1487        5028.2500 

6.8 9.1878 0.1425        3897.5200 

7.2 9.2906 0.1365        2741.0900 

7.6 9.3909 0.1308        1559.3100 

8.0 9.4890 0.1253        352.51800 

8.4 9.5849 0.1201        -878.9870 

8.8 9.6787 0.1150       -2134.9000 
 

 

 

 

 

Table 8. Sensitivity study of unit shortage cost 𝒔 
 

𝑠 𝑣 𝑡1 𝑇. 𝐴. 𝐶. 

1.5 9.4853 0.1250 284.8070 

1.6 9.4861 0.1251 298.3520 

1.7 9.4868 0.1251 311.8960 

1.8 9.4875 0.1252 325.4380 

1.9 9.4882 0.1253 338.9790 

2.0 9.4890 0.1253 352.5180 

2.1 9.4897 0.1254 366.0560 

2.2 9.4904 0.1254 379.5920 

2.3 9.4912 0.1255 393.1270 
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  Table 9. Sensitivity study of unit production cost  𝒑 
 

𝑝 𝑣 𝑡1 𝑇. 𝐴. 𝐶. 

1.6 9.4914 0.2422 346.1040 

2.0 9.4908 0.2146 347.6630 

2.4 9.4902 0.1913 348.9660 

2.8 9.4898 0.1713 350.0680 

3.2 9.4895 0.1540 351.0090 

3.6 9.4892 0.1388 351.8180 

4.0 9.4890 0.1253 352.5180 

4.4 9.4888 0.1133 353.1260 

4.8 9.4886 0.1026 353.6570 

 

 

 

 

 

Table 10. Sensitivity study of unit lost sale cost  𝒍 
 

𝑙 𝑣 𝑡1 𝑇. 𝐴. 𝐶. 

2.40 9.3452 0.1152        -2300.3000 

2.55 9.3816 0.1176         1632.1300 

2.70 9.4177 0.1201         -967.2880 

2.85 9.4535 0.1227         -305.7420 

3.00 9.4890 0.1253         352.5180 

3.15 9.5242 0.1280         1007.5100 

3.30 9.5591 0.1308         1659.2400 

3.45 9.5937 0.1337         2307.7300 

3.60 9.6281 0.1366         2952.9900 

 

 

Table 11. Sensitivity study of production coefficient  𝜶 
 

𝛼 𝑣 𝑡1 𝑇. 𝐴. 𝐶. 

0.84 9.4956 0.3750 338.7030 

0.90 9.4930 0.2977 343.0070 

0.96 9.4915 0.2436 346.0530 

1.02 9.4905 0.2032 348.3180 

1.08 9.4898 0.1716 350.0570 

1.14 9.4893 0.1462 351.4250 

1.20 9.4890 0.1253 352.5180 

1.26 9.4887 0.1077 353.4020 

1.32 9.4885 0.0927 354.1240 
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Table 12. Sensitivity study of inflation rate  𝒓 
 

𝑟 𝑣 𝑡1 𝑇. 𝐴. 𝐶. 

0.035 9.5892 0.1202 -221.9760 

0.037 9.5723 0.1210 -124.3730 

0.040 9.5555 0.1219 -27.5211 

0.042 9.5388 0.1227  68.5875 

0.045 9.5221 0.1236 163.9590 

0.047 9.5055 0.1244 258.6000 

0.050 9.4890 0.1253 352.5180 

0.052 9.4725 0.1262 445.7180 

0.055 9.4560 0.1270 538.2060 

 

 

 

 

 

 
 

   Figure 4: Graph of 𝑇. 𝐴. 𝐶. with respect to 𝑎.                    

 

 

 

 
                                                     

                                                                   
 

 

Figure 4. Graph of 𝑻.𝑨. 𝑪. with respect to 𝒂.                    Figure 5.  Graph of 𝑻. 𝑨. 𝑪. w. r.  to 𝒃. 
 

 

 

 
 

  

 Figure 6: Graph of. 𝑇. 𝐴. 𝐶. w. r. to𝛿.                                  Figure 7:   Graph of𝑇. 𝐴. 𝐶. w. r. to𝛽. 

 

 

 

 

 

 

 
 

 

Figure 6. Graph of. 𝑇. 𝐴. 𝐶. w. r. to𝛿.                                    Figure 7.   Graph of𝑇. 𝐴. 𝐶. w. r. to𝛽. 
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 Figure 8.  Graph of𝑇. 𝐴. 𝐶. w. r. toℎ.      Figure 9.  Graph of. 𝑇. 𝐴. 𝐶. w. r. to𝑑. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 10.  Graph of. 𝑇. 𝐴. 𝐶. w. r. to𝑠. Figure 11.  Graph of 𝑇. 𝐴. 𝐶. w. r. to𝑝. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 12.   Graph of 𝑇. 𝐴. 𝐶. w. r. to 𝑙.                                         Figure 13. Graph of 𝑇. 𝐴. 𝐶. w. r. to𝛼. 
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Figure 14. Graph of 𝑇. 𝐴. 𝐶. w. r. to𝑟. 

 

 

10. Result and Discussion 
With the help of the above sensitivity tables, the following observations were made. 

 

 Table 2 and Table 3 demonstrates that on increasing the demand parameter “𝑎” and “b” the value of 

the critical point “𝑣” and the production period “𝑡1” decreases whereas the  𝑇. 𝐴. 𝐶. increases. 

 Table 4 shows that by increasing the backlogging rate “𝛿”, and keeping the remaining parameters 

unchanged, we observe a decrement in the value of 𝑇. 𝐴. 𝐶. Also we see that “𝑣” and “𝑡1” are 

insensitive to the changes in “𝛿”. 

 Table 5 shows that with the rise in the value of the deterioration coefficient “𝛽”,𝑇. 𝐴. 𝐶. immediately 

starts decreasing. 

 Table 6 shows that increasing the unit holding cost “ℎ”,𝑇. 𝐴. 𝐶. rises rapidly. Also, the decrease in 

𝑣and increase in 𝑡1 is observed.  

 Table 7 shows that unit deterioration cost is directly proportional to “𝑣”. When the unit deterioration 

cost “𝑣” decreases, “𝑑” falls and 𝑇. 𝐴. 𝐶. and “𝑡1” increases significantly.  

 Table 8 shows the proportionality between unit shortage cost and 𝑇. 𝐴. 𝐶. When the unit shortage 

cost “𝑠” decreases, 𝑇. 𝐴. 𝐶. also decreases and if the unit shortage cost “𝑠” increases,  𝑇. 𝐴. 𝐶. also 

increases  and this does not affect the values of      “𝑣” and “𝑡1”  . 

 It is evident that if we increase the unit production cost, then 𝑇. 𝐴. 𝐶. should increase; conversely, if 

we decrease the unit production cost, then 𝑇. 𝐴. 𝐶. should decrease. This is shown in the sensitivity 

analysis table 9; when we change unit production cost “𝑝”  it is proportionately impacted 𝑇. 𝐴. 𝐶. and 

does not affect the values of “𝑣”. 

 Table 10 shows that unit lost sale cost “𝑙” is directly proportional to “𝑣”, “𝑡1” and 𝑇. 𝐴. 𝐶..  

 Table 11 shows that change in the variation coefficient “𝛼” directly impacted   “𝑣”, and 𝑇. 𝐴. 𝐶. i.e., 

when “𝛼” increases, 𝑇. 𝐴. 𝐶. also rises whereas “𝑣” decreases. 

 From the sensitivity analysis table 12, we see that the inflation rate “𝑟” is directly proportional to 

𝑇. 𝐴. 𝐶.  and this does not affect the values of “𝑣” and “𝑡1”. 

 

11. Conclusions 
This study obtains a realistic scenario in which a retailer must have sufficient inventory to 

meet customer demand in order to prevent inventory exhaustion and depletion as prices rise, 

because the retailer's reputation in the market depends on the stock of goods.  

In this developed model, a two-parametric Weibull-type decay rate is taken. The demand rate 
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was taken as exponential. We observed the role of inflation and considered the production rate a 

function of the demand rate. In this study, we determine an optimal policy that can deal with this 

situation. To illustrate this theory, we provide a mathematical framework of the model. 

Numerical examples are also given, and the convexity of the total average cost function is 

shown. The sensitivity analysis was used to validate the obtained model. 

 The limitations of this article may allow other researchers to continue our work by 

considering all upfront expenses and accounting for the business crisis, including the impact of 

inflation, by starting the review process before work begins. Furthermore, this study examines 

the proposed model in terms of price-based demand, inventory-based demand, etc. Models can 

also be developed for various delayed payment scenarios. 
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Appendix 

 

The holding cost (H.C.) involved in this model is given as: 

 

(a)   𝐻. 𝐶.= ℎ {∫ 𝑒−𝑟𝑡 . 𝐼1(𝑡)𝑑𝑡 + ∫ 𝐼2(𝑡)𝑒
−𝑟𝑡𝑑𝑡

𝑣

𝑡1

𝑡1
0

}                   

 

Putting the value of I1(t) and I2(t) in above equation, value of holding cost is given as                                                          

𝐻. 𝐶.= ℎ

{
 
 

 
 

𝑎(𝛼 − 1)

[
 
 
 
 (
1

2
𝑡1
2 +

𝑏

6
𝑡1
3 +

𝛽

(𝛾 + 1)(𝛾 + 2)
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𝛾+2

) − 𝑟 (
1

3
𝑡1
3 +

𝑏

8
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4 +

𝛽

(𝛾 + 1)(𝛾 + 3)
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𝛾+3

)

−𝛽 (
1

(𝛾 + 2)
𝑡1
𝛾+2

+
𝑏

2(𝛾 + 3)
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+
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(𝛾 + 1)(2𝛾 + 2)
𝑡1
2𝛾+2

)
]
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𝑟
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)) + 

https://doi.org/10.1051/e3sconf/202126103056
https://doi.org/10.1504/ijpm.2018.094351
https://doi.org/10.1080/23311916.2023.2176968
https://www.inderscience.com/filter.php?aid=130358
https://www.inderscience.com/filter.php?aid=130358
https://dx.doi.org/10.1504/IJIR.2023.130358
http://dx.doi.org/10.52589/AJMSS-8IYDEQEU
https://doi.org/10.1016/j.orp.2023.100289


410 Brazilian Journal of Biometrics  

𝑎
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         . 

 

 

 

(b) When𝟎 ≤ 𝑴 ≤ 𝒕𝟏: 

In this case, interest payable = 𝑰𝑷𝟏 = 𝒑𝒊𝒑 [∫ 𝑰𝟏(𝒕)𝒆
−𝒓𝒕𝒅𝒕

𝒕𝟏

𝑴
+ ∫ 𝑰𝟐(𝒕)𝒆

−𝒓𝒕𝒅𝒕
𝒗

𝒕𝟏
]   

Putting the value of I1(t) and I2(t) in above equation, interest payable is given as                                                          

 

= 𝑝𝑖𝑝

{
  
 

  
 

𝑎(𝛼 − 1)

[
 
 
 
 
 
 (𝑡1 −𝑀) +

1

3
(
𝑏

2
− 𝑟) (𝑡1

3 −𝑀3) −
𝑟𝑏

8
(𝑡1
4 −𝑀4) −

𝛽𝛾

(𝛾 + 1)(𝛾 + 2)
(𝑡1
𝛾+2

−𝑀𝛾+2)

+
2𝑟𝛾𝛽 − 𝛽𝑏(𝛾 + 1)

2(𝛾 + 1)(𝛾 + 3)
(𝑡1
𝛾+3

−𝑀𝛾+3) −
𝛽2

(𝛾 + 1)(2𝛾 + 2)
(𝑡1
2𝛾+2

−𝑀2𝛾+2)

+
𝑟𝛽𝑏

2(𝛾 + 4)
(𝑡1
𝛾+4

−𝑀𝛾+4) +
𝑟𝛽2

(𝛾 + 1)(2𝛾 + 3)
(𝑡1
2𝛾+3

−𝑀2𝛾+3)
]
 
 
 
 
 
 

 

+𝑆 [(𝑣 − 𝑡1) −
𝑟

2
(𝑣2 − 𝑡1

2) −
𝛽

(𝛾 + 1)
(𝑣𝛾+1 − 𝑡1

𝛾+1
) + 𝛽𝑡1

𝛾(𝑣 − 𝑡1) −
𝛽𝑟𝑡1

𝛾

2
(𝑣2 − 𝑡1

2) +
𝛽𝑟

𝛾 + 2
(𝑣𝛾+2 − 𝑡1

𝛾+2
)] 

+𝑎

[
 
 
 𝑡1(𝑣 − 𝑡1) −

1

2
(𝑣2 − 𝑡1

2) − 𝑟𝑡1(𝑣 − 𝑡1) +
𝑟

3
(𝑣3 − 𝑡1

3) −
𝛽𝑡1

(𝛾 + 1)
(𝑣𝛾+1 − 𝑡1

𝛾+1
) +

𝛽

(𝛾 + 2)
(𝑣𝛾+2 − 𝑡1

𝛾+2
) +

𝛽𝑟𝑡1
(𝛾 + 2)

(𝑣𝛾+2 − 𝑡1
𝛾+2

) −
𝛽𝑟

(𝛾 + 3)
(𝑣𝛾+3 − 𝑡1

𝛾+3
)

]
 
 
 

 

+
𝑏

2

[
 
 
 
 𝑡1
2(𝑣 − 𝑡1) −

1

3
(𝑣3 − 𝑡1

3) −
𝑟𝑡1
2

2
(𝑣2 − 𝑡1

2) +
𝑟

4
(𝑣3 − 𝑡1

3) −
𝛽𝑡1

2

(𝛾 + 1)
(𝑣𝛾+1 − 𝑡1

𝛾+1
) +

𝛽

(𝛾 + 3)
(𝑣𝛾+3 − 𝑡1

𝛾+3
) +

𝛽𝑟𝑡1
2

(𝛾 + 2)
(𝑣𝛾+2 − 𝑡1

𝛾+2
) −

𝛽𝑟

(𝛾 + 4)
(𝑣𝛾+4 − 𝑡1

𝛾+4
)

]
 
 
 
 

 

+
𝛽

(𝛾+1)
[
𝑡1
𝛾+1(𝑣 − 𝑡1) −

1

(𝛾+2)
(𝑣𝛾+2 − 𝑡1

𝛾+2
) −

𝑟𝑡1
𝛾+1

2
(𝑣2 − 𝑡1

2) +
𝑟

(𝛾+3)
(𝑣𝛾+3 − 𝑡1

𝛾+3
) −

𝛽𝑡1
𝛾+1

(𝛾+1)
(𝑣𝛾+1 − 𝑡1

𝛾+1
)

+
𝛽

(2𝛾+2)
(𝑣2𝛾+2 − 𝑡1

2𝛾+2
) +

𝛽𝑟𝑡1
𝛾+1

(𝛾+2)
(𝑣𝛾+2 − 𝑡1

𝛾+2
) −

𝛽𝑟

(2𝛾+3)
(𝑣2𝛾+3 − 𝑡1

2𝛾+3
)

]}

. 

 

 

 

 

(c)  When𝒕𝟏 ≤ 𝑴 ≤ 𝒗: 

 In this case, interest payable = 𝐼𝑃2 = 𝑝𝑖𝑝[∫ 𝐼2(𝑡)𝑒
−𝑟𝑡𝑑𝑡

𝑣

𝑀
] 

Putting value of I2(t) in the above equation 

 𝑝𝑖𝑝 {𝑆 [(𝑣 − 𝑀) −
𝑟

2
(𝑣2 −𝑀2) −

𝛽

(𝛾+1)
(𝑣𝛾+1 −𝑀𝛾+1) + 𝛽𝑡1

𝛾(𝑣 − 𝑀) −
𝛽𝑟𝑡1

𝛾

2
(𝑣2 −𝑀2) +

𝛽𝑟

𝛾+2
(𝑣𝛾+2 −

𝑀𝛾+2)] + 

𝑎

[
 
 
 𝑡1(𝑣 − 𝑀) −

1

2
(𝑣2 −𝑀2) − 𝑟𝑡1(𝑣 −𝑀) +

𝑟

3
(𝑣3 −𝑀3) −

𝛽𝑡1
(𝛾 + 1)

(𝑣𝛾+1 −𝑀𝛾+1) +
𝛽

(𝛾 + 2)
(𝑣𝛾+2 −𝑀𝛾+2) +

𝛽𝑟𝑡1
(𝛾 + 2)

(𝑣𝛾+2 −𝑀𝛾+2) −
𝛽𝑟

(𝛾 + 3)
(𝑣𝛾+3 −𝑀𝛾+3)

]
 
 
 

+ 
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𝑏

2

[
 
 
 
 𝑡1
2(𝑣 − 𝑀) −

1

3
(𝑣3 −𝑀3) −

𝑟𝑡1
2

2
(𝑣2 −𝑀2) +

𝑟

4
(𝑣3 −𝑀3) −

𝛽𝑡1
2

(𝛾 + 1)
(𝑣𝛾+1 −𝑀𝛾+1) +

𝛽

(𝛾 + 3)
(𝑣𝛾+3 −𝑀𝛾+3) +

𝛽𝑟𝑡1
2

(𝛾 + 2)
(𝑣𝛾+2 −𝑀𝛾+2) −

𝛽𝑟

(𝛾 + 4)
(𝑣𝛾+4 −𝑀𝛾+4)

]
 
 
 
 

+ 

𝛽

(𝛾+1)
[
𝑡1
𝛾+1(𝑣 − 𝑀) −

1

(𝛾+2)
(𝑣𝛾+2 −𝑀𝛾+2) −

𝑟𝑡1
𝛾+1

2
(𝑣2 −𝑀2) +

𝑟

(𝛾+3)
(𝑣𝛾+3 −𝑀𝛾+3) −

𝛽𝑡1
𝛾+1

(𝛾+1)
(𝑣𝛾+1 −𝑀𝛾+1)

+
𝛽

(2𝛾+2)
(𝑣2𝛾+2 −𝑀2𝛾+2) +

𝛽𝑟𝑡1
𝛾+1

(𝛾+2)
(𝑣𝛾+2 −𝑀𝛾+2) −

𝛽𝑟

(2𝛾+3)
(𝑣2𝛾+3 −𝑀2𝛾+3)

]}. 

 

 


