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Abstract 

In the present paper a ratio cum product type exponential class of estimators has been proposed to estimate the finite 

population mean of rare type or hard to reach type population. The mean square error and bias expressions of the 

proposed generalized class have been derived and presented up to the first order of approximation. New estimators have 

been developed from the proposed class using robust measures. Using simulation study and a real data application, the 

efficiency of the newly developed estimators from the class that is proposed have been shown. The results show that the 

new developed estimators are more efficient than the competing estimators presented in this paper. 
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1. Introduction 
There are various sampling designs to be used depending on the population that is being 

studied namely SRSWOR (Simple random sampling without replacement), StRS (Stratified 

random sampling), Cluster sampling, Systematic sampling among others. In some situations, a 

combination of these designs is also used which are termed as complex sampling designs to 

acquire a sample that is representative of the population. However, when the study population is 

rare or hidden clustered, obtaining a representative sample becomes a problem and in such a 

case, the Adaptive Cluster Sampling Design abbreviated as ACS design is used. The ACS design 

was proposed by Thompson (1990) which allows the researchers to obtain a representative 

sample by using a pre-defined condition to select the rare event's observations. 

Since the methodology of the ACS (Thompson, 1990) design was complex, not much work 

in developing efficient estimators was done prior to 2007 compared to the classical sampling 

designs like Simple random sampling without replacement design (SRSWOR), Stratified 
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random sampling among others. Motivated from the work of Cochran (1940), many researchers 

started developing estimators using auxiliary information which resulted in the development of 

fundamental estimators namely ratio (Cochran, 1940), product (Murthy, 1964) and regression 

(Hansen et al., 1953) type estimators. Apart from these fundamental estimators, we point out 

here some notable research works which introduced new ideas in developing more efficient 

estimators (Bahl & Tuteja, 1991; Khoshnevisan et al., 2007; Grover & Kaur, 2011; Singh et al., 

2016; Ahmad et al., 2021; Ahmad et al., 2022; Ahmad et al., 2023). As pointed above, due to 

the complexity of the ACS design not much work was done in developing efficient estimators 

but the proposal of transformed population approach by Dryver & Chao (2007) brought ACS 

back to the Simple random sampling without replacement and since then research for developing 

efficient estimators started to pick up the pace. The transformed population approach proposed 

by Dryver & Chao (2007) allows the use of network means of networks observed as per 

SRSWOR for estimation and thus using the transformed population, we can use the standard 

results of SRSWOR design for ACS. 

We recommend the readers (Dryver & Chao, 2007) for a detailed discussion on the 

transformed population approach. After the research of Dryver & Chao (2007), many ratio type 

estimators have been proposed in the ACS design. Dryver & Chao (2007) proposed the classical 

ratio estimator utilizing one auxiliary variable. Chutiman (2013) developed some transformed 

ratio type estimators using one auxiliary variable and some of its parameters considered known. 

Yadav et al. (2016) developed several new improved estimators for estimating population mean 

using one auxiliary variable and some of its parameters considered as known namely the 

coefficients of skewness, the coefficients of kurtosis and the coefficient of correlation among the 

auxiliary and survey variable. Singh et al. (2024) proposed multiple log type estimators utilizing 

one auxiliary variable and different known values of parameters of that auxiliary variable. 

Raghav et al. (2024) developed several efficient classes for mean and variance estimation and 

studied their properties. Mishra et al. (2024) developed a class by combining ratio and product 

forms. Qureshi et al. (2018) developed a ratio type class of estimator utilizing one auxiliary 

variable along with several of its known values of parameters and robust measures. Singh & 

Mishra (2023) developed some novel estimators using two auxiliary variables in ACS. Singh & 

Mishra (2022) proposed some improved exponential type estimator in ACS and analyzed its 

performance. In a recent development, Raghav et al. (2023) study the two-phase ACS design 

under the transformed population approach and developed some new estimators.  

In survey sampling, the choice of estimators is based on the relationship between the survey 

and auxiliary variable. But, Singh & Espejo (2003) proposed an estimator by using the ratio and 

the product form together which allows use of the estimator proposed by Singh & Espejo (2003) 

for both the cases when the correlation between auxiliary and survey variable is strong and 

positive as well as when the correlation between auxiliary and survey variable is strong and 

negative. Coping with the idea, Singh et al. (2016) created a RCP (ratio cum product) type class 

of estimators in SRSWOR design using the exponential method. Dansawad (2023) developed a 

chain type exponential estimator coping with the idea of Singh et al. (2016). Such type of 

estimators has been comparatively unexplored in the ACS design and therefore in this paper, 

motivated from the RCP type estimators of Singh & Espejo (2003), Singh et al. (2016) and the 

work of Dansawad (2023) we have developed a novel RCP type exponential class of estimators 

incorporating a exponential function in the traditional RCP structure in ACS design and studied 

its properties. 

The rest of the paper is presented as: The Section 2 comprises of the proposed RCP (ratio 
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cum product) type exponential class estimators together with the derivation of its mean squared 

error and bias up to first order approximations. In this same section, the new ratio-cum-product 

type exponential estimators which have been developed from the proposed novel RCP type 

exponential class of estimators have been provided. In Section 3, a study on mathematical 

comparison of MSEs of the existing estimators and the proposed class of estimators has been 

provided. In Section 4, in order to study and compare the efficiency of our newly created 

estimators against related competing existing estimators which are provided in Table 2, a 

simulation study is conducted and the results of the simulation study show that the new 

developed estimators perform better. In section 5, the novelty of the new developed estimators is 

shown using a real-life example where the new developed estimators are used to estimate the 

average number of thorny plants of the plateaus belonging to the Western Ghats of Sahyadri 

from Goa to Varandha Ghat (Bhor, Maharashtra, India) (see Latpate & Kshirsagar, 2020) using 

percentage of aluminum as auxiliary variable. In Section 6 results and discussion on this paper 

are provided.    

 

 

2. Proposed Novel Ratio-cum-Product Exponential Class 
Following the work of Singh & Espejo (2003), Singh et al. (2016) and Dansawad (2023) we 

now propose the class as follows: 

 

                                 𝑡𝐺 = �̅�𝑦 (
𝑎𝜇𝑥+𝑏

𝑎�̅�𝑥+𝑏
)

(2𝑔−1)

𝑒𝑥𝑝 (
𝑎(𝜇𝑥−�̅�𝑥)

𝑎(𝜇𝑥+�̅�𝑥)+2𝑏
),                                             (1) 

 

In this context, a and b are constants chosen with precision to ensure that a range of both new 

and existing related estimators can be incorporated into the proposed class. The selection of 

these constants is critical for including various estimators that might otherwise fall outside the 

class. Additionally, g is optimized to achieve the lowest possible mean square error (MSE) for 

the proposed class 𝑡𝐺 . This optimization process aims to ensure that the estimators in this class 

perform as accurately as possible. 

It is also essential to understand that a and b are assigned specific values based on known 

parameters of the auxiliary variable. These parameters can include values such as the coefficient 

of skewness, kurtosis, and other relevant statistics. By adjusting a and b according to these 

known parameters, we can tailor the estimators within the proposed class to effectively utilize 

the information provided by the auxiliary variable, thereby enhancing their overall performance 

and accuracy. 

 

Using the error terms we re-write equation (1) as: 

 

                     𝑡𝐺 = 𝜇𝑦(𝑒𝑤𝑦
+ 1)(1 + 𝜏𝑒𝑤𝑥

)(1−2𝑔)𝑒𝑥𝑝 (
𝜏

2
𝑒𝑤𝑥

(1 +
1

2
𝜏𝑒𝑤𝑥

)),                              (2) 

 

where 𝜏 =
𝑎𝜇𝑥

𝑎𝜇𝑥+𝑏
. 

 

On simplifying, we get: 
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             𝑡𝐺 − 𝜇𝑦 = 𝜇𝑦   (
𝑒𝑤𝑦

+ (
1

2
− 2𝑔) 𝜏𝑒𝑤𝑥

+ (−
1

8
+ 2𝑔2) 𝜏2𝑒𝑤𝑥

2

+ (
1

2
− 2𝑔) 𝜏𝑒𝑤𝑦

𝑒𝑤𝑥

)                                   (3) 

 

Upon using the expectation function on both sides, we get:  

 

                               𝐵𝑖𝑎𝑠(𝑡𝐺) = 𝜇𝑦 ((−
1

8
+ 2𝑔2) 𝜏2𝑓𝐶𝑤𝑥

2 + (
1

2
− 2𝑔) 𝜏𝑓𝜌𝑤𝑦𝑤𝑥

𝐶𝑤𝑦
𝐶𝑤𝑥

).                   (4) 

 

 Upon raising to the power of two and using the expectation function in (3), we get:  

 

                    𝑀𝑆𝐸(𝑡𝐺) = 𝜇𝑦
2 (

𝑓𝐶𝑤𝑦
2 + (

1

4
+ 4𝑔2 − 2𝑔) 𝜏2𝑓𝐶𝑤𝑥

2

+2 (
1

2
− 2𝑔) 𝜏𝑓𝜌𝑤𝑦𝑤𝑥

𝐶𝑤𝑦
𝐶𝑤𝑥

)                                              (5) 

 

  We partially differentiating (5) and equate the resultant to zero and we get:  

 

                                         𝑔𝑜𝑝𝑡 =
1

4
[

2

𝜏
𝜌𝑤𝑦𝑤𝑥

𝐶𝑤𝑦

𝐶𝑤𝑥

+ 1].                                                      (6) 

 

  Using (6) in (5) we get:  

 

 𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
) = 𝑓𝑆𝑤𝑦

2 (1 − 𝜌𝑤𝑦𝑤𝑥
2 ).                                                      (7) 

 

 It is noteworthy that the minimum mean square error (MSE) of our proposed class of the 

novel RCP type exponential estimator, denoted as 𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
), is identical to the regression type 

estimator’s minimum MSE developed by Chutiman (2013). This indicates that the estimators we 

have proposed can be used as an alternative to Chutiman's regression estimator when evaluating 

performance based on the MSE criterion. This equivalence suggests that our estimators are 

competitive with, and potentially as effective as, Chutiman's regression estimator in terms of 

minimizing MSE. 

According to equation (6), achieving the minimum MSE requires knowledge of the 

parameters 𝐶𝑤𝑦
, 𝐶𝑤𝑥

 and 𝜌𝑤𝑦𝑤𝑥
. These parameters can either be determined through additional 

costs or obtained from prior surveys if they are not readily available. The necessity to accurately 

know these parameters emphasizes the importance of their estimation in practical applications. 

The primary objective of this paper was to explore, develop and study novel RCP type 

exponential estimators in the context of ACS (Adaptive Cluster Sampling) design. To fulfill this 

objective, we have constructed a variety of RCP type exponential estimators from the proposed 

class, incorporating robust measures such as the mid-range and Hodges-Lehmann estimator. 

Additionally, we utilized different known parameters of the auxiliary variable, including the 

coefficient of skewness and the coefficient of kurtosis. 

The resulting new estimators, derived from these methodologies, are detailed in the table 

below. These estimators have been developed to offer alternative approaches for estimation 

within the ACS design framework and to provide options that can potentially enhance estimation 

accuracy and reliability. 
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Table 1. New developed estimators from class 𝑡𝐺 

 

𝑡∗ 𝑎 𝑏 𝜏 

 𝑡𝐺1
= �̅�𝑦 (

𝑀𝑅𝜇𝑥+𝛽1(𝑤𝑥)

𝑀𝑅�̅�𝑥+𝛽1(𝑤𝑥)
)

(2𝑔1−1)
𝑒𝑥𝑝 (

𝑀𝑅(𝜇𝑥−�̅�𝑥)

𝑀𝑅(𝜇𝑥+�̅�𝑥)+2𝛽1(𝑤𝑥)
)  

 𝑀𝑅   𝛽1(𝑤𝑥)  𝑀𝑅𝜇𝑥

𝑀𝑅𝜇𝑥 + 𝛽1(𝑤𝑥)
 

𝑡𝐺2
= �̅�𝑦 (

𝐻𝐿𝜇𝑥+𝛽1(𝑤𝑥)

𝐻𝐿�̅�𝑥+𝛽1(𝑤𝑥)
)

(2𝑔2−1)
𝑒𝑥𝑝 (

𝐻𝐿(𝜇𝑥−�̅�𝑥)

𝐻𝐿(𝜇𝑥+�̅�𝑥)+2𝛽1(𝑤𝑥)
)  

 𝐻𝐿   𝛽1(𝑤𝑥)  𝐻𝐿𝜇𝑥

𝐻𝐿𝜇𝑥 + 𝛽1(𝑤𝑥)
 

𝑡𝐺3
= �̅�𝑦 (

𝐻𝐿𝜇𝑥+𝛽2(𝑤𝑥)

𝐻𝐿�̅�𝑥+𝛽2(𝑤𝑥)
)

(2𝑔3−1)
𝑒𝑥𝑝 (

𝐻𝐿(𝜇𝑥−�̅�𝑥)

𝐻𝐿(𝜇𝑥+�̅�𝑥)+2𝛽2(𝑤𝑥)
)  

 𝐻𝐿   𝛽2(𝑤𝑥)  𝐻𝐿𝜇𝑥

𝐻𝐿𝜇𝑥 + 𝛽2(𝑤𝑥)
 

𝑡𝐺4
= �̅�𝑦 (

𝑀𝑅𝜇𝑥+𝛽2(𝑤𝑥)

𝐻𝐿�̅�𝑥+𝛽2(𝑤𝑥)
)

(2𝑔4−1)
𝑒𝑥𝑝 (

𝑀𝑅(𝜇𝑥−�̅�𝑥)

𝑀𝑅(𝜇𝑥+�̅�𝑥)+2𝛽2(𝑤𝑥)
)  

 𝑀𝑅   𝛽2(𝑤𝑥)  𝑀𝑅𝜇𝑥

𝑀𝑅𝜇𝑥 + 𝛽2(𝑤𝑥)
 

 

 

 

 

 

 

Table 2. Competing estimators and their Mean squared errors 
 

Existing estimators MSE 

𝑡𝑇ℎ = �̅�𝑦(Thompson, 1990) 𝑓𝑆𝑤𝑦

2  

𝑡𝐷𝐶 =
�̅�𝑦

�̅�𝑥
𝜇𝑥 (Dryver and Chao, 2007) 𝑓𝜇𝑌

2(𝐶𝑤𝑦

2 + 𝐶𝑤𝑥

2 − 2𝜌𝑤𝑥𝑤𝑦
𝐶𝑤𝑦

𝐶𝑤𝑥
) 

𝑡𝐶𝐻1
= �̅�𝑦 (

𝜇𝑥+𝐶𝑤𝑥

�̅�𝑥+𝐶𝑤𝑥

) (Chutiman, 2013) 
𝑓𝜇𝑌

2(𝐶𝑤𝑦

2 + (
𝜇𝑥

𝜇𝑥 + 𝐶𝑤𝑥

)

2

𝐶𝑤𝑥

2 − 2 (
𝜇𝑥

𝜇𝑥 + 𝐶𝑤𝑥

) 𝜌𝑤𝑥𝑤𝑦
𝐶𝑤𝑦

𝐶𝑤𝑥
) 

𝑡𝐶𝐻2
= �̅�𝑦 (

𝛽2(𝑤𝑥)𝜇𝑥+𝐶𝑤𝑥

𝛽2(𝑤𝑥)�̅�𝑥+𝐶𝑤𝑥

) (Chutiman, 2013) 
𝑓𝜇𝑌

2(𝐶𝑤𝑦

2 + (
𝜇𝑥𝛽2(𝑤𝑥)

𝜇𝑥𝛽2(𝑤𝑥) + 𝐶𝑤𝑥

)

2

𝐶𝑤𝑥

2 − 2 (
𝜇𝑥𝛽2(𝑤𝑥)

𝜇𝑥𝛽2(𝑤𝑥) + 𝐶𝑤𝑥

) 𝜌𝑤𝑥𝑤𝑦
𝐶𝑤𝑦

𝐶𝑤𝑥
) 

𝑡𝐶𝐻3
= �̅�𝑦 (

𝜇𝑥+𝛽2(𝑤𝑥)

�̅�𝑥+𝛽2(𝑤𝑥)
) (Chutiman, 2013) 

𝑓𝜇𝑌
2(𝐶𝑤𝑦

2 + (
𝜇𝑥

𝜇𝑥 + 𝛽2(𝑤𝑥)
)

2

𝐶𝑤𝑥

2 − 2 (
𝜇𝑥

𝜇𝑥 + 𝛽2(𝑤𝑥)
) 𝜌𝑤𝑥𝑤𝑦

𝐶𝑤𝑦
𝐶𝑤𝑥

) 

𝑡𝑌𝑆1
= �̅�𝑦 (

𝛽2(𝑤𝑥)𝜇𝑥+𝛽1(𝑤𝑥)

𝛽2(𝑤𝑥)�̅�𝑥+𝛽1(𝑤𝑥)
) (Yadav et al., 2016) 

𝑓𝜇𝑌
2(𝐶𝑤𝑦

2 + (
𝛽2(𝑤𝑥)𝜇𝑥

𝛽2(𝑤𝑥)𝜇𝑥 + 𝛽1(𝑤𝑥)
)

2

𝐶𝑤𝑥

2 − 2 (
𝛽2(𝑤𝑥)𝜇𝑥

𝛽2(𝑤𝑥)𝜇𝑥 + 𝛽1(𝑤𝑥)
) 𝜌𝑤𝑥𝑤𝑦

𝐶𝑤𝑦
𝐶𝑤𝑥

) 

𝑡𝑌𝑆2
= �̅�𝑦 (

𝛽1(𝑤𝑥)𝜇𝑥+𝛽2(𝑤𝑥)

𝛽1(𝑤𝑥)�̅�𝑥+𝛽2(𝑤𝑥)
) (Yadav et al., 2016) 

𝑓𝜇𝑌
2(𝐶𝑤𝑦

2 + (
𝛽1(𝑤𝑥)𝜇𝑥

𝛽1(𝑤𝑥)𝜇𝑥 + 𝛽2(𝑤𝑥)
)

2

𝐶𝑤𝑥

2 − 2 (
𝛽1(𝑤𝑥)𝜇𝑥

𝛽1(𝑤𝑥)𝜇𝑥 + 𝛽2(𝑤𝑥)
) 𝜌𝑤𝑥𝑤𝑦

𝐶𝑤𝑦
𝐶𝑤𝑥

) 

𝑡𝑄𝐾1
= �̅�𝑦 (

𝑀𝑅𝜇𝑥+𝛽1(𝑤𝑥)

𝑀𝑅�̅�𝑥+𝛽1(𝑤𝑥)
) (Qureshi et al., 2018) 

𝑓𝜇𝑌
2(𝐶𝑤𝑦

2 + (
𝑀𝑅𝜇𝑥

𝑀𝑅𝜇𝑥 + 𝛽1(𝑤𝑥)
)

2

𝐶𝑤𝑥

2 − 2 (
𝑀𝑅𝜇𝑥

𝑀𝑅𝜇𝑥 + 𝛽1(𝑤𝑥)
) 𝜌𝑤𝑥𝑤𝑦

𝐶𝑤𝑦
𝐶𝑤𝑥

) 

𝑡𝑄𝐾2
= �̅�𝑦 (

𝑀𝑅𝜇𝑥+𝑇𝑀

𝑀𝑅�̅�𝑥+𝑇𝑀
) (Qureshi et al., 2018) 

𝑓𝜇𝑌
2(𝐶𝑤𝑦

2 + (
𝑀𝑅𝜇𝑥

𝑀𝑅𝜇𝑥 + 𝑇𝑀
)

2

𝐶𝑤𝑥

2 − 2 (
𝑀𝑅𝜇𝑥

𝑀𝑅𝜇𝑥 + 𝑇𝑀
) 𝜌𝑤𝑥𝑤𝑦

𝐶𝑤𝑦
𝐶𝑤𝑥

) 

𝑡𝑄𝐾3
= �̅�𝑦 (

𝐻𝐿𝜇𝑥+𝛽1(𝑤𝑥)

𝐻𝐿�̅�𝑥+𝛽1(𝑤𝑥)
) (Qureshi et al., 2018) 

𝑓𝜇𝑌
2(𝐶𝑤𝑦

2 + (
𝐻𝐿𝜇𝑥

𝐻𝐿𝜇𝑥 + 𝛽1(𝑤𝑥)
)

2

𝐶𝑤𝑥

2 − 2 (
𝐻𝐿𝜇𝑥

𝐻𝐿𝜇𝑥 + 𝛽1(𝑤𝑥)
) 𝜌𝑤𝑥𝑤𝑦

𝐶𝑤𝑦
𝐶𝑤𝑥

) 

𝑡𝑄𝐾4
= �̅�𝑦 (

𝐻𝐿𝜇𝑥+𝑇𝑀

𝐻𝐿�̅�𝑥+𝑇𝑀
) (Qureshi et al., 2018) 

𝑓𝜇𝑌
2(𝐶𝑤𝑦

2 + (
𝐻𝐿𝜇𝑥

𝐻𝐿𝜇𝑥 + 𝑇𝑀
)

2

𝐶𝑤𝑥

2 − 2 (
𝐻𝐿𝜇𝑥

𝐻𝐿𝜇𝑥 + 𝑇𝑀
) 𝜌𝑤𝑥𝑤𝑦

𝐶𝑤𝑦
𝐶𝑤𝑥

) 

 
 

3. Mathematical Mean Square Error Comparison 
 

In this Section, mathematical comparison of MSEs of the existing estimators presented in Table-2 

and the proposed class of estimators has been provided. 

 

3.1 Comparison of 𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
) and 𝑀𝑆𝐸(𝑡𝐷𝐶): 

 

𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
) < 𝑀𝑆𝐸(𝑡𝐷𝐶) 

𝑓𝑆𝑤𝑦
2 (1 − 𝜌𝑤𝑦𝑤𝑥

2 ) < 𝑓𝜇𝑌
2(𝐶𝑤𝑦

2 + 𝐶𝑤𝑥
2 − 2𝜌𝑤𝑥𝑤𝑦

𝐶𝑤𝑦
𝐶𝑤𝑥

) 
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𝑓𝜇𝑌
2𝐶𝑤𝑦

2 (1 − 𝜌𝑤𝑦𝑤𝑥
2 ) < 𝑓𝜇𝑌

2(𝐶𝑤𝑦
2 + 𝐶𝑤𝑥

2 − 2𝜌𝑤𝑥𝑤𝑦
𝐶𝑤𝑦

𝐶𝑤𝑥
) 

𝐶𝑤𝑦
2 𝜌𝑤𝑦𝑤𝑥

2 +𝐶𝑤𝑥
2 − 2𝜌𝑤𝑥𝑤𝑦

𝐶𝑤𝑦
𝐶𝑤𝑥

> 0 

 

3.2 Comparison of 𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
) and 𝑀𝑆𝐸(𝑡𝐶𝐻1

): 

𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
) < 𝑀𝑆𝐸(𝑡𝐶𝐻1

) 

𝐶𝑤𝑦
2 𝜌𝑤𝑦𝑤𝑥

2 +𝛳𝐶𝐻1

2 𝐶𝑤𝑥
2 − 2𝛳𝐶𝐻1

𝜌𝑤𝑥𝑤𝑦
𝐶𝑤𝑦

𝐶𝑤𝑥
> 0 

where 𝛳𝐶𝐻1
=

𝜇
𝑥

𝜇
𝑥

+𝐶𝑤𝑥

. 

 

3.3 Comparison of 𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
) and 𝑀𝑆𝐸(𝑡𝐶𝐻2

): 

𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
) < 𝑀𝑆𝐸(𝑡𝐶𝐻2

) 

𝐶𝑤𝑦
2 𝜌𝑤𝑦𝑤𝑥

2 +𝛳𝐶𝐻2

2 𝐶𝑤𝑥
2 − 2𝛳𝐶𝐻2

𝜌𝑤𝑥𝑤𝑦
𝐶𝑤𝑦

𝐶𝑤𝑥
> 0 

where 𝛳𝐶𝐻2
=

𝜇
𝑥

𝛽
2

(𝑤𝑥)

𝜇
𝑥

𝛽
2

(𝑤𝑥)+𝐶𝑤𝑥

. 

 

3.4 Comparison of 𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
) and 𝑀𝑆𝐸(𝑡𝐶𝐻3

): 

𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
) < 𝑀𝑆𝐸(𝑡𝐶𝐻3

) 

𝐶𝑤𝑦
2 𝜌𝑤𝑦𝑤𝑥

2 +𝛳𝐶𝐻3

2 𝐶𝑤𝑥
2 − 2𝛳𝐶𝐻3

𝜌𝑤𝑥𝑤𝑦
𝐶𝑤𝑦

𝐶𝑤𝑥
> 0 

where 𝛳𝐶𝐻3
=

𝜇
𝑥

𝜇
𝑥

+𝛽
2

(𝑤𝑥)
. 

 

3.5 Comparison of 𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
) and 𝑀𝑆𝐸(𝑡𝑌𝑆1

): 

𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
) < 𝑀𝑆𝐸(𝑡𝑌𝑆1

) 

𝐶𝑤𝑦
2 𝜌𝑤𝑦𝑤𝑥

2 +𝛳𝑌𝑆1

2 𝐶𝑤𝑥
2 − 2𝛳𝑌𝑆1

𝜌𝑤𝑥𝑤𝑦
𝐶𝑤𝑦

𝐶𝑤𝑥
> 0 

where 𝛳𝑌𝑆1
=

𝛽
2

(𝑤𝑥)𝜇
𝑥

𝛽
2

(𝑤𝑥)𝜇
𝑥

+𝛽
1

(𝑤𝑥)
. 

 

3.6 Comparison of 𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
) and 𝑀𝑆𝐸(𝑡𝑌𝑆2

): 

𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
) < 𝑀𝑆𝐸(𝑡𝑌𝑆2

) 

𝐶𝑤𝑦
2 𝜌𝑤𝑦𝑤𝑥

2 +𝛳𝑌𝑆2

2 𝐶𝑤𝑥
2 − 2𝛳𝑌𝑆2

𝜌𝑤𝑥𝑤𝑦
𝐶𝑤𝑦

𝐶𝑤𝑥
> 0 

where 𝛳𝑌𝑆2
=

𝛽
1

(𝑤𝑥)𝜇
𝑥

𝛽
1

(𝑤𝑥)𝜇
𝑥

+𝛽
2

(𝑤𝑥)
. 

 

3.7 Comparison of 𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
) and 𝑀𝑆𝐸(𝑡𝑄𝐾1

): 

𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
) < 𝑀𝑆𝐸(𝑡𝑄𝐾1

) 

𝐶𝑤𝑦
2 𝜌𝑤𝑦𝑤𝑥

2 +𝛳𝑄𝐾1

2 𝐶𝑤𝑥
2 − 2𝛳𝑄𝐾1

𝜌𝑤𝑥𝑤𝑦
𝐶𝑤𝑦

𝐶𝑤𝑥
> 0 

where 𝛳𝑄𝐾1
=

𝑀𝑅𝜇
𝑥

𝑀𝑅𝜇
𝑥

+𝛽
1

(𝑤𝑥)
. 

 

3.8 Comparison of 𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
) and 𝑀𝑆𝐸(𝑡𝑄𝐾2

): 

𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
) < 𝑀𝑆𝐸(𝑡𝑄𝐾2

) 

𝐶𝑤𝑦
2 𝜌𝑤𝑦𝑤𝑥

2 +𝛳𝑄𝐾2

2 𝐶𝑤𝑥
2 − 2𝛳𝑄𝐾2

𝜌𝑤𝑥𝑤𝑦
𝐶𝑤𝑦

𝐶𝑤𝑥
> 0 

where 𝛳𝑄𝐾2
=

𝑀𝑅𝜇
𝑥

𝑀𝑅𝜇
𝑥

+𝑇𝑀
. 

 

3.9 Comparison of 𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
) and 𝑀𝑆𝐸(𝑡𝑄𝐾3

): 

𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
) < 𝑀𝑆𝐸(𝑡𝑄𝐾3

) 

𝐶𝑤𝑦
2 𝜌𝑤𝑦𝑤𝑥

2 +𝛳𝑄𝐾3

2 𝐶𝑤𝑥
2 − 2𝛳𝑄𝐾3

𝜌𝑤𝑥𝑤𝑦
𝐶𝑤𝑦

𝐶𝑤𝑥
> 0 
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where 𝛳𝑄𝐾3
=

𝐻𝐿𝜇
𝑥

𝐻𝐿𝜇
𝑥

+𝛽
1

(𝑤𝑥)
. 

 

3.10 Comparison of 𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
) and 𝑀𝑆𝐸(𝑡𝑄𝐾4

): 

𝑀𝑆𝐸(𝑡𝐺𝑚𝑖𝑛
) < 𝑀𝑆𝐸(𝑡𝑄𝐾4

) 

𝐶𝑤𝑦
2 𝜌𝑤𝑦𝑤𝑥

2 +𝛳𝑄𝐾4

2 𝐶𝑤𝑥
2 − 2𝛳𝑄𝐾4

𝜌𝑤𝑥𝑤𝑦
𝐶𝑤𝑦

𝐶𝑤𝑥
> 0 

where 𝛳𝑄𝐾4
=

𝐻𝐿𝜇
𝑥

𝐻𝐿𝜇
𝑥

+𝑇𝑀
. 

 

 

4. Simulation Study 
To study the efficiency of the developed ratio cum product type exponential estimators 𝑡𝐺1

− 𝑡𝐺4
 with 

respect to the related existing estimators discussed in this paper (see Table-2), we have conducted a 

simulation study. To compare the performance of the estimators, percentage relative efficiency (PRE) 

is used. The study is conducted in R software using the following algorithm: 

1. Using the model 𝑦𝑖 =
𝑥𝑖

4
+ 𝑒𝑖 where 𝑒𝑖~N(0, 𝑥𝑖) the study population is generated. Observations for 

X which is the auxiliary variable are from (Thompson, 2012). 

2. Samples of sizes n =130, 135, 140, 144 are obtained using the ACS procedure and several values of 

estimators are obtained. 

3. Various MSE values are obtained for each sample size n using the formula  

MSE(𝑡∗)=
1

20000
∑ (𝑡∗ − 𝜇𝑦

2)
220000

𝑖=1  where 𝑡∗ is the appropriate estimator. 

4. Using the MSE values obtained, the PRE is calculated and the results are presented in Table-3. 

 

Table 3. Percentage Relative Efficiencies obtained of the estimators 
 

Estimators n=130 n=135 n=140 n=144 

 𝑡𝑇𝐻   100.00   100.00   100.00   100.00  

𝑡𝐷𝐶   214.01   215.34   219.16   220.48  

𝑡𝐶𝐻1
   123.73   123.70   123.46   124.48  

𝑡𝐶𝐻2
   186.78   185.82   186.65   188.43  

𝑡𝐶𝐻3
   110.84   111.07   110.80   111.69  

𝑡𝑌𝑆1
   188.90   187.94   188.85   190.65  

𝑡𝑌𝑆2
   129.69   129.54   129.33   130.43  

𝑡𝑄𝐾1
   180.04   179.11   179.71   181.45  

𝑡𝑄𝐾2
   214.01   215.34   219.16   220.48  

𝑡𝑄𝐾3
   192.61   191.67   192.74   194.55  

𝑡𝑄𝐾4
   214.01   215.34   219.16   220.48  

𝑡𝐺1
   216.79   217.53   221.70   222.84  

𝑡𝐺2
   215.95   216.96   221.31   222.34  

𝑡𝐺3
   217.44   217.92   221.88   223.17  

𝑡𝐺4
   217.66   217.99   221.79   223.21  
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Figure 1. PRE values for sample size 130 of the                             Figure 2. PRE values for sample size 135 of the  

simulation study.                                                                               simulation study. 

 

 

Figure 3. PRE values for sample size 140 of the                             Figure 4. PRE values for sample size 144 of the  

simulation study.                                                                               simulation study. 

 

 

5. Real Data Application  
In this section, we apply the Adaptive Cluster Sampling (ACS) design utilizing the 

transformed population approach developed by Dryver and Chao (2007). This approach is used 

to evaluate the performance of various estimators, including both the newly developed 

estimators and the existing competing ones outlined in Table 2, in estimating the average 

number of thorny plants using the dataset from Latpate & Kshirsagar (2020). Latpate & 

Kshirsagar (2020) identified a negative correlation between the presence of aluminum in the soil 

and the occurrence of thorny plants. According to their findings, higher aluminum content in the 

soil is associated with fewer thorny plants. Based on this observation, we use the percentage of 

aluminum as the auxiliary variable to estimate the average number of thorny plants in the study 

area. 

In the context of the ACS design under investigation, we define the sample criteria C= 

{𝑦𝑖>0}, where 𝑦𝑖 represents the number of thorny plants in the 𝑖𝑡ℎ randomly selected quadrat (as 

described by Turk & Borkowski, 2005). This condition stipulates that only quadrats with a 

positive count of thorny plants are considered. If this condition is met, the surrounding areas, 

based on the first-order neighborhood concept (Qureshi et al., 2018), will be examined for 

further analysis. From a total population size of N=400, we draw a sample of n=140 quadrats. 

We then apply all the estimators, both newly developed and those from previous studies (see 

Table-2), to estimate the average number of thorny plants. The performance of these estimators, 

as well as a detailed description of the dataset, are presented and summarized in the table below. 

This comprehensive evaluation helps to assess how effectively each estimator performs in 
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estimating the average number of thorny plants under the ACS design. 
 

Table 4. MSE and PRE of all the estimators in estimating average number of thorny plants 
 

Description of 
population 

Estimators MSEs PREs 

𝐶𝑤𝑦

2 =6.36 𝑡𝑇𝐻 5.5968 100.00 

𝐶𝑤𝑥

2 =0.16 𝑡𝐷𝐶 6.9780 80.21 

β1(𝑤𝑥)= −0.3153 𝑡𝐶𝐻1
 6.9613 80.40 

β2(𝑤𝑥)= −0.9276 𝑡𝐶𝐻2
 6.9964 80.00 

𝑆𝑤𝑦

2 =1205.48 𝑡𝐶𝐻3
 7.0181 79.75 

𝑆𝑤𝑥

2 =210.16 𝑡𝑌𝑆1
 6.9638 80.37 

𝜌𝑤𝑦𝑤𝑥
=−0.6974 𝑡𝑌𝑆2

 6.8643 81.53 

𝑁=400           𝑡𝑄𝐾1
 6.9784 80.20 

𝑛=140        𝑡𝑄𝐾2
 6.9300 80.76 

MR=34.02        𝑡𝑄𝐾3
 6.9783 80.20 

HL=36.64  𝑡𝑄𝐾4
 6.9400 80.65 

TM=37.6 𝑡𝐺 2.8746 194.70 

    

 

 

6. Results and Discussion 
The objective of this paper is to investigate estimators that can be applied regardless of the 

correlation between the auxiliary variable and the survey variable. These estimators, known as ratio-

cum-product type estimators, have not been extensively studied in the context of ACS (Adaptive 

Cluster Sampling) design. To address this gap in knowledge, this study proposes a new novel type 

class of RCP (ratio cum product) type exponential estimators utilizing one auxiliary variable. This 

involves integrating the ratio-cum-product type structure with an exponential function, drawing 

inspiration from previous works by Singh & Espejo (2003), Singh et al. (2016), and Dansawad 

(2023). We then developed several novel estimators from this proposed class using various known 

parameters of the auxiliary variable, including the coefficient of skewness, kurtosis, mid-range, and 

Hodges-Lehmann estimator. 

To evaluate the performance of these new estimators, we derived expressions of their mean 

square error (MSE) and bias up to the first order of approximation. We found that the minimum 

MSE for the proposed class was equivalent to that of the minimum MSE achieved by the regression 

estimator discussed by Chutiman (2013). We compared the efficiency of the newly developed ratio-

cum-product type exponential estimators against existing related estimators, as outlined in Table 2, 

through a theoretical MSE comparison presented in Section 3. To support this theoretical analysis, 

we conducted a simulation study. The results of this simulation study, detailed in Table 3, 

demonstrated that all the new estimators—𝑡𝐺1
, 𝑡𝐺2

, 𝑡𝐺3
 and 𝑡𝐺4

, —provided higher percentage relative 

efficiency (PRE) compared to the competing estimators discussed in the paper. Additionally, we 

applied all these estimators to estimate the average number of thorny plants using data from Latpate 

& Kshirsagar (2020). The results from this real data application, presented in Table 4, showed that 

the proposed class of ratio-cum-product type exponential estimators yielded higher PREs compared 

to the existing competing estimators. 

Based on this thorough analysis, we conclude that the newly developed ratio-cum-product type 

estimators are particularly effective for populations that are rare or hard to access, which is the 

specific scenario for which the ACS design was created by Thompson (1990). Future research 

should focus on applying ACS design to datasets related to disease that resemble ACS-type 

populations and further evaluating the performance of all existing estimators in such contexts. 
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