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= ABSTRACT: Speededness refers to the situation where the time limit on a standardized
test does not allow substantial number of examinees to fully consider all items in a
test, thus estimation using a common three parameter logistic item response model
(3PL) can lead to contaminated estimates of the parameters in the model. This work
proposes a simple Bayesian model to estimate both, personal and item parameters,
from a test data with evidence of Speededness. The model is strongly related with a
model proposed by Goegebeur, de Boeck, Wollack and Cohen (2008), but contrary to
this a dependence structure in the personal parameters is not initially assumed. We
conduct a case study to analyze a data set of Nonsense Word Fluency in Peruvian
students, which presents high evidence of Speededness. Comparing the results on this
data set of the 3PL and the proposed model we found, as expected, that some difficulty
and discrimination parameters are overestimated under the 3PL. Similar measures
on the examinees abilities are discovered and new personal parameters: tolerance and
propensity toward speededness are obtained considering the proposed model. Finally,
future studies are suggested.
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1 Introduction

Bayesian methods have become popular in social sciences, health sciences,
education and psychology due to its flexibility in accommodating numerous models
for different situations in data analysis. “Bayesian methods have become a viable
alternative to traditional maximum likelihood-based estimation techniques and may
be the only solution for more complex psychometric data structures” (RUPP et al.,
2004). One field in which Bayesian methods are naturally applied is Item Response
Theory (IRT).

A unidimensional IRT model is a probabilistic model used to explain the
response of n examinees to a set of k items by considering a unidimensional latent
variable 0, associated with individual abilities, and a set of item parameters.

Consider a sequence of binary random variables {Y;; : 1 <i<n;1<j <k}
associated with item responses and assume they are conditionally independent given
0;, the latent variable related to the examinee’s i ability. Here Y;; = 1 if examinee
i correctly answers item j and Y;; = 0 otherwise.

A three parameter item response model assumes that the probability of a
correct response is given by

pij = P[Yij =110;, a;, bj, ¢;] =c;+ (1 —c;)F(myy). (1)

where c; is a guessing parameter for item j, F' is a cumulative distribution function
(cdf) and m;; = a;(0; — b;) is a latent linear predictor involving the discrimination
item parameter a;, the difficulty item parameter b; and the latent variable 6;
associated with the examinee’s i ability.

Two popular examples for F' are the standard normal and the standard logistic
distribution functions. For instance, the logistic three parameter item response
model, referred here as 3PL, is given by

exp(a;(0; — bj))

pij = P[Yij =110, a5, b;, ¢l =c¢; + (1 _Cj)l—‘re:tjp(aj(@i =50

(2)

For fixed values of the item parameters a;,b; and c¢;, we can draw the
probability in (2) as a function of the ability 6;. This is called the item characteristic
curve (ICC). Figure 1 shows the ICC for the 8PL with a; = 1.6,b; = 0 and ¢; = 0.2.

Note that the item difficulty parameter b; is the inflection point of the ICC
curve on the horizontal axis; it shifts the curve from left to right as the item becomes
more and more difficult. Also b; is in the same scale of 6;, with —oo < b; < oo.
When 6; = b; we have that p;; = (1 + ¢;)/2 and this is the point where the slope
is maximum. Higher values of b; indicate that greater skill is required to correctly
answer the item.

The item discrimination parameter a; is assumed to be positive, since in our
context the ICC curve should be increasing. This parameter is associated with
the slope of the curve. Higher values of a; indicate a more marked change in the
probability of success for a fixed variation on the ability.
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Figure 1 - Characteristic Curve for the 3PL with a = 1.6,b =1 and ¢ = 0.1.

The lower asymptote is given by the guessing parameter c;. It is the probability
of a correct response for an examinee with infinitely low skill. Theoretically it could
range from 0 to 1, but more realistically it is not more than 0.3.

Note that the number of parameters involved in the model is 3k + n, which
makes it difficult to obtain the maximum likelihood estimates. Classical solutions
for this problem consider a probability distribution for the latent variables 6;
and use a two step procedure (BAKER and KIM, 2004). In the first step, the
likelihood function is integrated over the latent variable and this marginal likelihood
is maximized to obtain estimates for the items parameters. These parameters are
then fixed to maximize the original likelihood and obtain the 6; estimates. Bock
and Aitikin (1981) propose a pseudo-EM algorithm to implement the first step.
Limitations of this methodology are discussed in Patz and Junker (1999) and Sahu
(2002).

In this paper we will focus on IRT speededness models. These are IRT models
in which examinees have a time limit. Popular unidimensional IRT models assume
that the probability that an examinee gives a correct response to an item depends
only on the examinee s proficiency and the characteristic of the item. In addition,
there is an assumption that the examinee has sufficient time to answer all items
in the test. However, “A test is speeded when some portion of the test taking
population does not have sufficient time to attempt every item in the test within the
allocated time” (BEJAR, 1985). So, when speededness exists in a test not designed
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to take it into account and the speed is not modeled as examinee’s proficiency,
the IRT assumptions are violated as examinees may fail to give correct responses
not because of limited proficiency, but because of limited time. In such a case new
models considering other personal variables together with the examinee’s proficiency
and the characteristics of the items need to be addressed. We will focus in this paper
on a model when speededness is observed, under the Bayesian framework.

In the next section, we discuss the fully Bayesian approach for IRT using
MCMC. In section 3, the concept of speededness is presented and some approaches
to model this latent characteristic are discussed. A simple Bayesian model to
estimate both, personal and item parameters, from a data with evidence of
speededness is presented in section 4. This model is strongly related with the
speeded item response model with gradual process change proposed by Wollack
and Cohen (2005) and Goegebeur, de Boeck, Wollack and Cohen (2008) but differs
from this in the sense that no dependence structure is initially assumed in the
formulation of the model. Because of this, we will name our model an alternative
3PL speeded model. In section 5, we conduct a comparative study to analyze the
3PL and the alternative 3PL speeded model with a data set of Nonsense Word
Fluency, which presents high evidence of Speededness. The data was obtained
from the Early Grade Reading Assessment (EGRA) instrument (RTI-FDA, 2008)
designed to measure pre-reading skills in peruvian students. Finally, conclusions
and future works are presented in section 6.

2 Bayesian approach in IRT

As pointed out by Rupp et al. (2004), a fully Bayesian analysis is taken when
prior distributions are specified for all unknown quantities. In the classical IRT
literature empirical Bayes estimators are, as explained before, used to estimate
the latent parameters after obtaining the maximum likelihood item parameter
estimators. This approach is taken in traditional commercial programs like BILOG
or MULTILOG. In this chapter we will restrict our analysis to a fully Bayesian
approach using Markov Chain Montecarlo (MCMC) methods where, instead of
using plug-in estimators and a two step procedure, all parameter will be estimated
together using the complete posterior distribution. Maximum Likelihood estimation
to some common IRT models proposed in the literature are available for free as a
package in R program (http://cran.r-project.org). See for example the ltm package
of Rizopoulos (2006), the eRm package (MAIR and HATZINGER, 2007) and the
lmed package (DE BOECK et al., 2011). On the other hand, only the MCMC
package (GELMAN and HILL, 2007) and the pscl package (JACKMAN, 2008)
allow to implement some common IRT models under the bayesian approach.

A seminal paper to this respect is Albert (1992) where a data augmentation
procedure was suggested for the two parameters probit model [i.e, with ¢; = 0 and
a normal cdf in (1)]. Béguin and Glas (2001) generalized this approach for the
three parameter probit and a multidimensional model, while Fox and Glas (2001)
extended this approach for multilevel IRT models. Further details are given in Fox
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(2010). In addition, alternative models with asymmetric links have been proposed
by Bazan, Branco and Bolfarine (2006) and Bolfarine and Bazén (2010). While the
first authors introduced a skew-probit IRT model using the cdf of a skew-normal
distribution (AZZALINI, 1985), the last considered a skew version of the logistic
model. In both cases a new set of item parameters to control the skewness of the
distribution is introduced. The Bayesian inference for these models were performed
using a data augmentation approach similar to Albert (1992).

In general, by considering the likelihood function and the correspondent prior
specification, a joint posterior distribution for these IRT models can be easily fitted
using MCMC, for instance throughout WiNBUGS/ OpenBUGS (CURTIS, 2010)
or SAS (STONE and ZHU, 2015). MCMC algorithms can be quite sophisticated,
their proper use require careful attention to several aspects of the implementation
and demand a heavy computational knowledge (KIM and BOLT, 2007). This may
hinder the large-scale use of this methodology by more applied researchers. The
use of the BUGS software (www.mrc-bsu.cam.ac.uk/bugs) offers many advantages,
including its relative ease of implementation, velocity and availability as a free
software. Moreover, the use of BUGS software to estimate IRT models allows to
change existing code in order to fit new variations of the current models, which
cannot be fitted in the main classical software packages (IRT PRO, CAI et al.,
2011). For more details see Curtis (2010) and Bazdn (2012).

3 Speededness in IRT

In the usual context of a unidimensional IRT the probability that an examinee
gives a correct response to an item depends only on the examinee’s proficiency
and the characteristic of the item. As a consequence the theory assumes that the
examinee has sufficient time to answer all items in the test, ignoring speededness
effects. According to Lu and Sireci (2007) speededness refers to the situation where
the time limit does not allow substantial number of examinees to fully consider all
items on a standardized test.

When speededness exists in a test not designed to take it into account and
the speed is not modeled as examinee’s proficiency, the IRT assumptions are
violated and the examinees may fail to give correct responses not because of limited
proficiency, but because of limited time. Hence, undetected speeded responses allow
a time factor to contaminate the ability estimates. Furthermore, since examinees
who are running out of time will often either hurry through the latter stages of a
test or omit or randomly complete items towards the end of the test, these items
tend to appear harder than they do when they are administered under nonspeeded
conditions (OSHIMA, 1994).

As indicated by Yamamoto and Everson (1997), traditional methods of
assessing test speededness are limited to the analysis of missing response
distributions, especially at the end of a test. However, analysis of missing responses
is inadequate in evaluating the speededness of multiple choice tests when the test
score or raw score is a function of the total number of correct responses. A revision
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of these methods can be found in Lu and Sireci (2007).

In the past few years, several models that account speededness effects have
been developed. Yamamoto and Everson (1997) have proposed a hybrid model
which assumes that a two parameter logistic IRT model is appropriate throughout
most of the test up to a point at which examinees switch to response randomly. Bolt,
Cohen and Wollack (2002) have proposed a two class mixture Rasch model with
ordinal constraints. These constraints are designed to distinguish a class with no
speededness effects from a class whose responses are affected by speededness. More
precisely, for items early in the test, the item difficulty parameters are constrained
to be equal in both classes; however, the item difficulty parameters of end-of- test
items in the speeded class are constrained to be larger than the respective item
difficulty parameters in the nonspeeded class. Using a more general IRT model,
Goegebeur et al. (2008) have proposed a speeded item response model with gradual
process change. This model was first formulated by Wollack and Cohen (2005) as
a model to simulate speededness data and can be regarded as a multidimensional
IRT model that extends the three parameter logistic model by considering three
personal latent variables to explain the behavior of the examinees in the test under
a speeded situation. We refer to this model as a 3PL speeded model.

An alternative approach to modeling speededness has been considered by Van
der Linden (2007) and Klein Entink, Fox and Van der Linden (2009). They assume
a separate model for response time in order to measure speed of working besides
an IRT model for measuring accuracy. At a higher level their models postulate a
correlation between working speed and accuracy.

4 Two 3PL speeded IRT model

4.1 The 3PL speeded IRT model

The 3PL speeded IRT model with gradual process change (GOEGEBEUR et
al., 2008) extends the 3PL IRT model by taking into account speededness effects.
The model is formulated as:

Yii|B,© ~ Bernoulli(p;;), i=1,...,n, j=1,... k. (3)

where B is a k x 3 matrix containing the vector item parameters: a =
[al,ag,...,ak]l, b = [bl,bg,...,bk]/ and ¢ = [01702,...,016]/, ®isanx3
matrix containing the vector personal latent variables or personal parameters
0 = [91,92,...,(9”]/,77 = [771,772,...,77”]/ and A = [)\1,)\27...,)%], and y = [yi]
is the data matrix containing the observed dichotomous responses from (3) of
the n examinees to the k items. Specifically, Y;; is the dichotomous response
corresponding to the i-th individual to the j-th item, the jth row of g3,
B = (aj,b;,¢;), is the vector of item parameter that includes, respectively, the
discrimination, difficulty and guessing parameters of item j and the jth row of ©,
©; = (6;, ni, i), is the vector of personal parameter that includes, respectively, the
ability, tolerance towards speededness and propensity to guessing under speededness

Rev. Bras. Biom., Lavras, v.35, n.4, p.810-833, 2017 815



of examinee ¢ in answering the test with the k items. In addition, it is assumed
that p;j, the probability of a correct answer for examinee ¢ € {1,2,...,n} to item
Jj€{1,2,...,k}, is given by

pij = P[Yi; = 1[0;, i, \i, aj, by, c;] =c; + (1 —¢;)G(myj), (4)
where
G(mij) = F(mij) Pi(ns, Mi),
Pj(ni, \i) = min{lvrj(niv)\i)}a (5)
and

TN
i (N, \i) = [1 - (E - 771)} ,
being m;; = a;(6; — b;) a linear function of 6;.

Note that in comparison with the 3PL IRT model, two additional personal
parameters associated with speededness effects, n; and A;, are introduced in the
model. We have called them, respectively, the tolerance towards speededness and
the propensity to guessing under speededness. Observe that 7); € [0, 1] identifies the
point j/k, expressed as a fraction of the number of items, where examinee i first
experiences an effect due to speededness, while A\; > 0 controls the rate of decrease
towards a guessing situation.

The rationality behind model (3) is as follows. When examinee ¢ encounters
item 7, the examinee answers according to a 3PL IRT model or a random guessing
process, with probabilities Pj(n;, A;) and 1 — P;(n;, A;) respectively. Under the
problem solving process the examinee knows the answer with probability F(m;;);
if ignorant, the examinee guesses at random.

Note that P;(n;,A;) in (5) can be regarded as a penalizing factor due to
speededness. When speededness is not present in item j, i.e., if examinee 4 has
a relatively high tolerance n; > % towards speededness, then r;(n;, A;) > 1 and
Pj(ni, i) = 1. Consequently F(m;;) is not decreasing. On the other hand,
if examinee ¢ has a relatively low tolerance 7; < 7 towards speededness, then
ri(mi, Ai) < 1 and consequently Pj(n;, ;) < 1 decreases the probability F(m;;).
Moreover this factor can be magnified by having a high propensity A; to guessing
under speededness.

The parameter 7; can be considered for the personal latent variable associated
with the tolerance to speededness in contrast with the relative position j/k of the
item in the test. This relation is similar to the one between ability and difficulty.
Both n; and j/k should be on the same scale (between 0 and 1), despite the fact
that n; is a random variable and j/k is fixed.

High values of \; are associated with the increase of the penalization factor
P;(n;, ;) and therefore the decrease of the probability of correct response. However,
note that the 7; parameter seems to be more relevant than the \; parameter because
it can be interpreted in any scenario, while the second only under a speededness
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situation. Thus the \; parameter express a propensity to guessing which does not
necessarily affect the probability of a correct response.

To complete the formulation Goegebeur et al (2008) considered a personal
vector parameter ®; with a joint distribution function:

G(0,n,7) = C(G1(0), G2(n), G3(A)).- (6)

where C' is a Gaussian copula and G1(.), Ga(.) and G3(.) are respectively the
marginal cumulative distribution functions of the personal parameters 6;,7n;, and
i

Thus, combinating (3-5) and (6) we have finally the 3PL speeded IRT model
proposed by Goegebeur et al (2008).

To estimate the parameters in this model and recalling that item responses
are conditionally independent given ©; and there is independence among examinees,
Goegebeur et al (2008) used the marginal maximum likelihood methodology. This
consists on first maximizing the marginal likelihood function

L:[:%fAWMQGWMQ@WWW» ™)

L(B,8ly) = HH#M—%lw (8)

i=1j=1

where

with respect to the item and copula parameters and the using these estimates for a
second stage to obtain an empirical Bayes estimation of the personal parameters.

The choice of a Gaussian copula was justified by the possibility to regard the
model as a linear mixed model and then use the NLMIXED SAS procedure in the
estimation process.

4.2 The alternative 3PL speeded IRT model

A disadvantage of the 3PL speeded IRT is that a consideration of a dependence
structure among the latent personal variables makes it difficult not only the
multidimensional evaluation of (7) but also involves an increase in the number
of parameters (the copula parameters). To overcome these issues we propose in
this paper an alternative model by starting with (3-5), but assuming that the
personal latent vector for any examinee i, ®; = (6;,7;, A;), has initially independent
components; that is we assume for 6; the joint distribution:

9(0:) = g(0i,mi, Ai) = g1(0) x g2(n) x g3(A) 9)

where g1(.), g2(.) and g3(.) are continuous probability distribution functions defined
in the correspondent parametric space of each personal latent variable. We will refer
to the model (3-5) and (9) as the alternative SPL speeded TRT model.
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Note that under this Bayesian formulation the natural correlations between the
personal latent parameters will depend on the data and will appear in the posterior
distribution. This argument is similar to the case of assuming prior independence
on the item parameter where empirical evidence (see Patz and Junker, 1999, among
others) suggests the presence of a posterior correlation between item parameters.

4.3 Bayesian estimation of the alternative 3PL speeded IRT model

The alternative 3PL speeded IRT model assumes, as usually considered in
the Bayesian literature, independent priors for all the parameters in the model.
The following item parameter prior distributions are commonly specified in IRT
modelling:

a; ~ LN (0,0.25) or TN(0,0.5)I(a > 0), b; ~ Normal (0,1) and ¢; ~ Beta (5, 17).

(10)
where LN and TN denote the log-normal and truncated normal distributions,
respectively. The LN(0,0.25) (Patz and Junker, 1999) and TN(0,0.5)I(a > 0)
(BAZAN et al., 2006) are non-negative distributions with mean-standard deviation
pair (1.13,0.60) and (1.11,0.61), respectively. On the other hand, the Beta(5,17)
distribution (FU et al., 2009) has a mean-standard deviation pair (0.23,0.09).
The distribution for b is justified using a similar argument given to choose the
normal for 6. See, for instance, Albert and Ghosh (2000) and Sinharay et al.,
(2006). Instead of using the usual parametrization we will opt in this work for
the parametrization m;; = a;0; — b7 where the item difficulty parameter is easily
recovery using b; = b; /a;. In this case a prior specification for b similar to b; is
adopted. This is a common practice in Bayesian Inference (see, for example, Sahu
(2002)).

To complete the specification of the personal parameters we will set the
following priors:

g1(.): 0; ~ N(0,1), g2(.): mi ~ Beta(a, ) and g3(.): A\j ~ LN (uy,03). (11)

As frequently considered in the literature (RUPP et al., 2004), we take g1(.) :
0; ~ N(0,1), i =1,...,n. This assumption establishes that it is believed that the
latent variables are well behaved and abilities conform a random sample from this
distribution. This additionally establishes a metric for the abilities estimates.

Specifications for hyperparameters of go(.) : Beta (o, 8) can be made by
considering information about the point where an examinee is more likely to
experience a speededness situation. This can be obtained from judges or experts by
asking them about the mean (y,) and standard deviation (o) of n;. For example, a
choice can be (p,, = 0.67,0, = 0.18) which correspond to a Beta(4,2) distribution,
which means a moderate tolerance towards speededness. Other possibilities could
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be a Beta(2,9) or a Beta(9,2) distribution with, respectively, (u, = 0.18, 0, = 0.01)
and (p, = 0.8,0, = 0.01). In the former case the tolerance towards speededness is
low while in the second case high. Situations where no information is given can be
modeled with a Beta(1,1) distribution, or equivalently, a uniform distribution on
the interval (0, 1).

For the A personal parameter of propensity, Goegebeur et al. (2008) considered
93(.) : LN(ux,ox) with uy = —3.604 and o) = 2.771. After simulating 1000
samples from this distribution we found a maximum value of 17140.48 and a
minimum of 2.497 x 10~%. This scale is too broad for any meaningful interpretation
of the distances between the values, so in order to shrink the scale, we set the
hyperparameters py = 0 and oy = 1, which yields a mean of 1.65 and standard
deviation of 2.16.

Since the posterior density in the likelihood function (8) and the priors in
(10) and (11) can not be fully obtained in closed form we will use a Markov chain
Monte Carlo (MCMC) approach to simulate parameter values and obtain parameter
estimates. Given the hierarchical structure of our model, it is not difficult to
implement such a process throughout several packages as OpenBugs, WinBugs,
JAGS, Rstan or SAS. In this paper the model was fit using WinBUGS and the
codes are available under requirement.

4.4 Simulation study

To assess the performance of our Bayesian approach we have sim-
ulated data set of the proposed model under four scenarios: (n,k) =
(500, 20), (1000, 20), (500, 40), (1000, 40). Values of a, b and ¢ were generated from a
LogNormal(0,0.25), Normal(0,1) and Beta(12.5,37.5) distributions, respectively,
and values of the personal latent variables 8, m and A from a Normal(0,1),
Beta(4,2) and LogNormal(0,0.82) distributions, respectively. A total of R = 10
replications, i.e., ten sets of answers for the individuals to the items, were simulated
from the proposed model under the four scenarios. All parameters were estimated
using the proposed MCMC algorithm using an effective sample size of 1000. More
precisely, 20000 iterations were taken, the first 10000 discarded, as a burn-in
period, and a lag of size 10 was considered to eliminate potential problems due to
autocorrelation. The convergence of the MCMC chains was monitored using trace
plots, auto-correlation (ACF) plots and the criteria proposed by Geweke (1993).
These provided to us in all cases with strong indication of chain convergence. The
following priors were considered: a; ~ N(1,0.5)I(0,), b; ~ Normal(0,1), ¢; ~
Beta(5,17), 0; ~ Normal(0,1), n; ~ Beta(1,1) and \; ~ LogNormal(0,0.8).

We report in Table 1 the mean and standard deviation (SD) of the fitted
and simulated values, together with the Bias and Mean Square Error (MSE) of

the parameters for each set of parameters. For example, in order to measure the

3 2
accuracy of the estimates the MSE is calculated as: MSE(k) = Ele w,
where K, is the estimated value of the parameter x, which can be a,b, ¢, 8,1 or A.
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By observing the results in Table 1, we obtain relatively small RMSE values
for the parameters, except for the A\ parameter. In performing the analysis of the
bias, this parameter shows some unwanted values (zero distant). In general, as the
sample size and the number of items increases, the performance of the estimation
method improves. Thus, the results show that our Bayesian approach performs well
in order to recover the true parameters, specially when higher values of sample size
and of the number of items are considered.

5 A case study with evidence of speededness: the NWF data
set

The Nonsense Word Fluency (NWF) data comes from a pilot study to
adapt the Snapshot of School Management Effectiveness (SSME) and Early Grade
Reading Assessment (EGRA) instruments to the Peruvian reality (RTI-FDA,
2008). The EGRA instrument includes a battery of test that are designed for the
initial years in primary school and provides a quick information regarding school
management and pre-reading skills. The NWF data was obtained after evaluating
512 eight years old students who were able to correctly read each of the 50 nonsense
words in the NWF test within a time limit of 60 seconds. Figure 2 shows a subset
of this test.

pul quibe  ino mise jud 5
udo zel bedi  cur miz 10
lline rite duso  jafi fica 15

quira  cuto dofu  afo duba 50

Figure 2 - Subset of the Nonsense Word Fluency data in the EGRA instrument.

Figure 3 presents the percentage of students who were able to correctly read
each of the 50 nonsense words. We see that this percentage decreases at the end of
the test giving the impression that the last words are the hardest and suggesting
the presence of speededness.

In figure 3 we considered non-reached words as incorrectly read. This certainly
could introduce a bias that is needed to be addressed. An alternative for a more
reliable speed measure than the percentage of success was proposed by Stafford
(1971) and discussed in Lu and Sirecci (2007). Under the assumption that examinees
keep no track of time during the test, which seems to be the case in our application,
Stafford suggests to use the Speededness Quotation (SQ) index

Z?:l Ui
Z?:l Wi + E?:l Ui 7

SQ =
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Figure 3 - Percentage of students who were able to correctly read each of the
Nonsense Words in the NWF data.

where n is the number of examinees, U; is the number of non-reached items by
examinee i and W; is the number of the incorrectly answered or omitted items by
examinee 7. Indices closer to 1 give evidence of speededness.

In the EGRA application we obtained a Speededness Quotation index of
0.9081, that is, data with evidence of speededness which supports the use an
alternative SPL speeded IRT model instead of the usual 3PL IRT model or the
classical raw score model to measure NWF.

To evaluate the SPL IRT model and the alternative 3PL speeded IRT
models with this data we will consider the following prior distributions: 6; ~
Normal(0,1), n; ~ Beta(1,1), \; ~ LN(0,1), a; ~ TN(1,0.5)I(0,), bs; ~
Normal(0,2) and ¢; ~ Beta(5,17), where b; = bs; /a; is the difficulty parameter and
bs; is an intercept parameter. For both models we will assume a logistic cumulative
distribution function in (4), which means that the $PL IRT model becomes the
3PL.

Starting with a burn-in of 5000 iterations and a thinning of 20, a sample of
size 2000 was obtained. Several criteria using the CODA package, were computed
for the convergence analysis.

Table 2 shows the fit comparison using the Dbar and DIC criteria
(SPIEGELHALTER et al., 2002). As seen, the alternative SPL speeded model
shows a better fit than the 3PL for the NWF data. This confirms the evidence
given by the SQ index.
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Table 3 summarizes the estimation results for the personal latent variables
under the 3PL and the alternative 3PL speeded IRT model. We have also considered
the raw scores to measure Nonsense Word Fluency. Correlations between personal
latent variables are also included. Figure 4 shows the scatter plot between classical
raw scores and ability estimations under the 3PL and the alternative 3PL speeded
IRT model. Variables were standardized to facilitate the comparison.

Observe from Table 3 and Figure 4 that the abilities under the $PL and the
classical raw scores are highly and positively correlated (r = 0.996), so they could
be interchangeable. On the other hand, abilities under $PL have a relatively lower
correlation (r = 0.725) with abilities under the alternative alternative 3PL speeded
model. This can be understood by observing that a group of examinees with low
abilities under the alternative 3PL speeded model obtained correspondent higher
measures of abilities under the 3PL model. We consider this group as a group with
overestimated abilities.
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Figure 4 - Scatter plot for abilities estimates under the 3PL, the alternative 3PL
speeded IRT model and raw scores for Peruvian students in NWF data.
Variables were standardized to facilitate the comparison.

As expected, Table 3 and Figure 5 show that considering the alternative 3PL
speeded model 0 and 7 are positively correlated (r = 0.446), which means that a
low tolerance towards speededness is mainly associated with a low ability or NWF
measure. On the other hand, the tolerance towards speededness and the propensity
to guessing under speededness are highly and negatively correlated (r = —0.712).
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Figure 5 - Scatter plot for the personal latent variables estimates under the
alternative 3PL speeded IRT model for Peruvian students in NWF data.

Moreover, a low negative correlation but significant, is observed between ability
and propensity (r = —0.136) indicating that for some examinees high propensity
to guess is associated with low ability or NWF measure. The importance of this
type of results is that examinees can be best characterized in relation to personal
latent variables which is important in the assessment of Nonsense Word Fluency,
an important predictor of Reading Proficiency (see Fien et al., 2008).

For a better understanding of the personal latent variables to the group
identified in Figure 4, we have further studied some characteristics of this group

with overestimated abilities under the $PL model. The results are shown in Table
4.
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Table 1 - Perfomance of the Bayesian approach for the alternative 3PL speeded
model in the simulation study

n =500, k=20 n = 1000, k = 20
Fit  Sim  Bias RMSE Fit  Sim  Bias RMSE
a Mean 1.121 1.193 -0.072 0.189 1.125 1.243 -0.119 0.069
SD 0477 0.781 0.384  0.336 0.463 1.142 0.877  0.053
b Mean 0.000 0.000 0.000 0.138 0.000 0.000 0.000 0.154
SD 0.827 0.841 0302 0.138 0.008 0.963 0.341  0.257
¢ Mean 0267 0.262 0.006 0.005 0.272  0.234 0.038  0.008
SD 0.060 0.060 0.063 0.008 0.070 0.070 0.077  0.009
® Mean 0.009 0.018 -0.009 0.388 0.000 -0.033 0.033  0.406
SD 0593 0.995 0462 0.431 0.588 0.999 0.468  0.352
n Mean 0506 0.669 -0.163 0.061 0.505 0.678 -0.173  0.064
SD 0.085 0.175 0.163  0.056 0.084 0.175 0.16  0.063
A Mean 1.469 1.411 0.059  2.027 1.472  1.397  0.076  1.606
SD 0.246 1.451 1.391 8.715 0.241 1258 1.226  5.205

n =500, k=40 n = 1000, k = 40
Fit  Sim  Bias RMSE Fit  Sim  Bias RMSE
a Mean 1.064 1.140 -0.085 0.123 1.055 1.149 -0.094 0.095
SD 0392 0.737 0477  0.197 0.414 0.737 0421  0.137
b Mean 0.000 0.000 0.000 0.112 0.000 0.000 0.000  0.499
SD 1.019 1.069 0.238 0.104 2.003 1.069 1.473  0.891
¢ Mean 0279 0.267 0012  0.006 0.297 0.267 0.030  0.008
SD 0.070 0.059 0.069  0.006 0.081 0.059 0.077  0.007
 Mean 0.009 -0.016 0.025 0.337 0.003 -0.015 0.019  0.329
SD 0.657 0.990 0.402  0.353 0.676 1.001 0.401  0.365
n Mean 0521 0.667 -0.146 0.057 0.516 0.668 -0.152  0.056
SD 0.122 0.181 0.153  0.062 0.122 0.174 0.148  0.055
A Mean 1.408 1316 0.092 1.338 1435 1.356 0.078  1.328
SD 0.357 1.161 1.094 5.997 0.376 1.180 1.090  3.229

Table 2 - Model comparison for the NWF data by considering a 3PL and a
alternative 3PL speeded IRT model

824

Model Number of Dbar DIC
parameters

SPL 662 9083 9459

alternative SPL speeded 1686 8314 8886

Rev. Bras. Biom., Lavras, v.35, n.4, p.810-833, 2017



Table 3 - Descriptive statistics and correlations between personal latent variables
under the $PL, the alternative 3PL speeded IRT model and raw scores for
512 Peruvian students in the NWF test

Models Personal Descriptive statistics correlations
variables Mean Min. Max. S.D. [ 0" n A raw scores
3PL 0 -0.047  -3.745 2.405 1.473 1.000
alternative 0* -0.016 -2.506 2.293 1.239 0.725 1.000
3PL speeded n 0.568 0.007 0.862 0.243 0.874 0.446 1.000
IRT A 3.328 0.229 27.550 5.116 -0.727  -0.136  -0.712 1.000
Classical raw score  30.701 0.000 50.000 12.976 0.996 0.733 0.879 -0.707 1.000

6 : ability under the 8PL, 6*: ability under speededness, n: tolerance toward speededness, \: propensity

to guessing under speededness and raw scores: number of words correctly read.

Table 4 - Personal latent variables for some low raw scoring Peruvian students in
the NWF test under the alternative 3PL speeded model

case o* n A raw pattern of response
scores

234 -0.201 0.187  7.630 16 11111111110111111000000000000000000000000000000000
185  -0.214 0.027  12.360 4 10110100000000000000000000000000000000000000000000
276  -0.196 0.010 20.130 1 01000000000000000000000000000000000000000000000000
195 -0.208 0.008  20.790 1 00010000000000000000000000000000000000000000000000
257  -0.192 0.008  20.930 1 00010000000000000000000000000000000000000000000000
172 -0.198 0.007  26.890 0 00000000000000000000000000000000000000000000000000
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The group, in general, has a low tolerance towards speededness and, as
expected, a high propensity to guessing. Although many of the raw scores and
measures of abilities under the $PL were different, we find similar measures under
the alternative 3PL speeded model. Note that, this is only true for low scores.
Consequently the alternative 3PL speeded model assigns similar NWF measures to
low scoring examinees and is able to differentiate among examinees in terms of their
tolerance and propensity due to a speededness situation.

Finally, in Figure 6 we show the discrimination, difficulty and guessing
estimates under the 3PL and the alternative 3PL speeded IRT models. In general
these estimates look very similar, but there are remarkable differences in some
items due to the speededness phenomenon. For instance, the estimates of the
difficulty parameters under the 3PL are larger than under the alternative 3PL
speeded model. This confirms the statement of Oshima (1994) presented in
the introduction of section 3 that under speed conditions last items tend to
appear harder than they are when administered under non speededness conditions.
Moreover, we found that several items, especially the first, present high values
for the discrimination parameter under a 3PL. Therefore, speededness seems to
overestimate the discrimination power of these items.

under alternative 3PL speed

(a) discrimination parameter

50

45 -

4.0 -

35

30

25

20

15

under alternative 3PL speed

10

05

0.0 -

736

2
w5,

L

21

2 315130
54 i 10

00 05 10 15 20 25 30 35

under 3PL

(©) guessing parameter

40 45 50

under alternative 3PL speed

022 -

020 -

018 -

016 -

014 -

012 -

010

008

006

004

002

000

T
0.00

S e L
0.04 0.08 0.12 0.16

under 3PL

T
020

~05 4

“15 4

254

35 4

554

(b) difficulty parameter

45 -

35

25 -

15

05

-55

-35

-15 05 15 25 35 45 55

under 3PL

Figure 6 - Item parameter estimates under the 3PL and the alternative 3PL speeded
IRT model.
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6 Conclusions

The speeded item response model with gradual process change of Goegebeur
et al. (2008) is an interesting model to analyze data with evidence of speededness
offering a new set of personal latent variables to better understanding the
performance of the examinees in a test. Inspired in the classical approach of this
model, we propose an alternative SPL speeded IRT model which initially consider
an independent structure for the personal parameters under Bayesian approach.
Independent priors are assumed not only for the personal parameters, but also for
the item parameters as is usually considered in the Bayesian framework. Following
this specification, dependence between the parameters in the model can be obtained
in the posterior distribution.

In Bayesian IRT models the priors have an additional role to identify the model
and not only to give an idea about the uncertainty of the parameters in the model.
For example, when we consider b and € to be normally distributed with mean 0 and
variance 1, we are also giving a simple scale to these parameters which is easy to
interpret. By considering the results of our simulation study, we suggest to perform
a further prior sensitivity analysis for the propensity to guessing A parameter.

The model can be easily implemented using a hierarchical formulation in
several packages as WinBUGS, OpenBugs, SAS, Rstan or JAGS. Although there
is a large number of parameters in the model, our estimators using WinBUGS
performed reasonably good and they were obtained in a straightforward way.

We only observe some bias in the estimation of the A parameter and
consequently a further research is needed to study the sensibility of this parameter
to alternative prior specifications. More comprehensive studies are needed to obtain
conclusive results. Additionally, we note that the term P;(n;, A;) in the probability
of a correct response in (4) is a penalizing factor under speededness and consequently
alternative models can be formulated considering other penalizing factors with
different rationality.

As a future work, we suggest to explore others models for the EGRA data,
such as, the one given by Jansen (1997) or the one proposed by van der Linden
(2006) for speeded tests with response times. To go in the last direction we would
additionally requiere the subject response times for the items. In addition a further
sensitivity study for the priors and other Item Characteristic Curves, such as the
skew ICC given by Bazan et al., (2006), can be explored.
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m RESUMO: Aceleragdo refere-se a situagdo em que o limite de tempo num teste
padronizado nao permite a um numero substancial de examinandos poder fazer todos
os itens do teste, assim, estimativas usando modelos de resposta ao item logisticos de
tres parametros (3PL) conduz a estimativas contaminadas dos parametros do modelo.
Este trabalho propoe um modelo bayesiano simples para estimar ambos os tipos de
parametros: parametros pessoais e parametros de item para dados de um teste com
evidéncia de aceleracao. O modelo esta fortemente relacionado com um modelo proposto
por Goegebeur, De Boeck, Wollack e Cohen (2008) mas diferente deste, a estrutura de
dependéncia nos parametros pessoais nao é assumida inicialmente. N6s conduzimos
um estudo de caso para analisar dados de fluéncia em palavras sem sentido em
estudandes peruanos, o qual presenta evidencia de aceleracao. Comparando os resultados
destes dados com o 3PL e o modelo proposto, nds encontramos como esperado,
que dificuldade e discriminagdo sao superestimados sob 3PL. Medidas semelhantes
das habilidades dos examinandos em ambos modelos sao obtidas e novos parametros
pessoais: tolerancia e propenséo frente a aceleragao sao obtidos considerando-se o modelo
proposto. Finalmente, futuros estudos sdo sugeridos.

» PALAVRAS-CHAVE: Modelos de resposta ao item; estimagdo bayesiana; aceleracao;
modelo logistico; varidveis latentes pessoais, fluéncia en palavras sem sentido.
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Appendix

#Alternative 3PL speed model by considering
#bayesian parameterization in WinBUGS

model {
for (jin 1 : k) {
for (i in 1 : n) {
# latent structure
m[i,jl<- aljl*thetalil -b[j]

# ideal probability without speed and guessing
p2l[i, jl<-exp(mli, j1)/(l+exp(ml[i, j1))
# decay
dli,jl<- (j/k)-etalil
decali,jl<- pow(1-d[i,j],lambdalil)
# speed probability (penalization)
pspeed[i,jl<- min(1,decali,j])
# ideal probability with penalized factor
pli, jl<-c[jl+(1-c[j1)*p21[i, jl*pspeedli, j]
yli, j1 = dbern(pli, jl1)
X
X
#independent priors for persons parameter
for (i in 1:n) {

thetal[i] ~ dnorm(0,1)
# etal[i]”~ dbeta(2,2)
etal[i]”~ dbeta(l,1)#Uniforme
lambda[i]~ dlnorm(0,1)
}
#priors for items parameter
for (j in 1:k) {

#Bazan et al (2006)
aljl ~ dnorm(1,2)I(0,)
b[j] ~ dnorm(0,0.5)
#Fu, Tao and Shi (2009)
c[j1 ~ dbeta(5,17)

bv[§1<- bl[j1/alj]

bc[j1<- bv[j] - mean(bv[])
}
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data
list(n=512, k=50)
#load your data in other file

Inits
list(a=c(1,..,1),
b=c(0,...,0),
c=c(0.2,...,0.2),
theta=c(
0.5,...,0.5),
eta=c(0.5,...,0.5),
lambda=c (
0.5,...,0.5,))
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