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Abstract

This study introduces a novel stochastic model for assessing the reliability characteristics of a Ready-Mix Cement
(RMC) plant. The model employs both classical and Bayesian statistical frameworks. The RMC plant comprises five
key components: the rolling belt unit, cement & fly ash storage unit, mixing drum unit, controller unit, and all electric
component and motors units. Weibull distribution has been used to simulate failure and repair timeframes, and all
time-dependent random variables are treated as statistically independent which allows to assess mean time to system
failure, steady-state availability, and busy period. Different scale parameters for each component and a common shape
parameter have been used in the model. The investigation is facilitated by the semi-Markov approach and the
regeneration point technique, presuming a fully functional repair facility for routine maintenance and repairs.
Electronic components and motor have provisions for inspection, but the system is assumed to include provisions for
preventative maintenance. Expert repair services are presumed to be instantly available due to component wear and
tears and non-repairable electrical elements. To highlight the model's significance, a Monte Carlo simulation study is
conducted, offering a comparative analysis of mean time to system failure (MTSF), availability, and profit functions
across traditional, classical, and Bayesian approaches. The results emphasize the effectiveness of the proposed model
in optimizing reliability assessments for RMC plants.

Keywords: RMC plant, Semi-Markovian Approach, Classical Estimation, Bayesian Estimation, Regenerative Point Technique.

1. Introduction

In last few decades, the complexity of industrial and mechanical systems has increased
significantly due to rising demand and advancement in technology. These businesses produce goods
and services that are essential to our daily lives. The Ready-Mix Concrete (RMC) plants significantly
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contribute to the rapid construction of infrastructure across numerous nations. Recently system
designers have focused on the availability, mean time to failure, and overall performance of RMC
plants, which has led to a more thorough analysis of their efficacy. The performance of RMC plants
is significantly impacted by various subsystems. Among these, preventive maintenance of the whole
system as well as the rolling belt and electrical components play key roles in determining overall
efficiency. Therefore, assessing the reliability characteristics of these components is essential for
evaluating the performance of the entire plant.

Previous researchers have employed a range of approaches, such as Fault Tree Analysis,
Failure Mode and Effects Analysis, the Markov technique, and Reliability Block Diagrams, to
evaluate reliability under various failure distribution scenarios. The Weibull distribution, first
presented by Weibull in 1951, is one distribution that is frequently used to assess the reliability of
industrial systems. This distribution’s versatility makes it very useful for life testing. Furthermore,
adding spare parts is a tried-and-true method of raising the reliability of these kinds of systems. A
model for evaluating the availability function's confidence intervals for systems with Weibull-
distributed operation times was presented by Master’s et al. (1992). A stochastic model considering
arbitrary failure rates and common cause failures was introduced by Dhillon & Anuda (1993).
Component redundancy in non-repairable systems was optimized by Coit (2001). Yadavalli et al.
(2005) performed a Bayesian analysis on a two-unit system susceptible to common cause shock
failures. While Chien et al. (2006) demonstrated asymptotic confidence bounds for a repairable
system with defective service facilities. Hsu et al. (2009) investigated asymptotic and Bayesian
estimating techniques for repairable systems, especially regarding incomplete coverage and reboot
procedures.

Gupta et al. (2013) used the Weibull distribution to simulate failure and repair rates in a
thorough cost analysis of non-identical unit systems. Moreover, Singh et al. (2013) offered statistical
inferences for time-dependent dynamical systems and Chaturvedi et al. (2014) created a strong
Bayesian framework for Weibull distribution analysis. Furthermore, Kishan & Jain (2014) examined
reliability measures using parameter estimation in parallel unit systems under the assumption that all
time-dependent random variables have a shared Weibull distribution with a common shape
parameter.

A reliability analysis of non-identical unit systems in a fuzzy environment was carried out
by Liu et al. (2014). Furthermore, the consequence of cold and hot standby redundancy on thermal
power plant availability was examined by Kumar et al. (2014). Using the Weibull distribution,
Kumar & Saini (2016) created a stochastic model for single-unit systems to measure the benefits of
preventive maintenance. Phase time distribution was used by Dongliang et al. (2016) to estimate the
reliability of non-identical unit systems. Additionally, Kumar et al. (2016a, 2016b, 2018) investigated
the effects of various preventive maintenance techniques and priority strategies on systems with
Weibull-distributed random variables. Semaan (2016) used simulation and queuing theory as two
stochastic modelling techniques to examine a ready-mix plant's production processes. The simulation
model used Monte Carlo simulation techniques to assess performance measures, whereas the queuing
model used queuing techniques in conjunction with a Markovian chain framework.

In their study, Dey et al. (2017) expanded the generalized exponential distribution and
demonstrated how it may be used to analyse ozone data. A stochastic model with waiting time
considerations for parallel systems was presented by Chopra & Ram (2017). In the presence of
outliers, Gupta & Singh (2017) analysed the Weibull distribution using both conventional and
Bayesian methods. The value of Bayesian statistics was highlighted by Han et al. (2018) in several
different study areas. Pundir et al. (2018) created a stochastic framework that includes priority repair
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disciplines for parallel systems with non-identical components. Reliability models were put out by
Kumar & Kadyan (2018, 2019) to assess industrial system performance using extra variables.
Furthermore, under random censoring, Kumar & Kumar (2019) computed several statistical features
of the inverse Weibull distribution.

Using a statistical-fuzzy technique, Skrzypczak et al. (2020) proposed a process for
evaluating the quality of ready-mix concrete. Applying statistical and fuzzy theories to resolve
information and random uncertainties, their study focused on concrete quality control and
classification. To assess the effects of inspection and degradation, Saini and Kumar (2020) created a
stochastic model for single-unit systems operating under unusual environmental settings. Pundir et
al. (2020) examined the effects of prior knowledge on standby system reliability estimation.
Reliability, Availability, and Maintainability (RAM) analysis was carried out by Kumar et al. (2020)
in order to improve the soft water supply and treatment plant's operating performance. Within a
Bayesian framework, Patawa et al. (2021) made several deductions about reliability measures for
non-identical systems with waiting time and standby redundancy. Additionally, Rathi et al. (2022)
created a model that uses Markov processes and redundancies to increase reliability. Sengar & Ram
(2022) performed a performance and reliability analysis of a complicated production system with an
inspection facility using copula approach. Kalili et al. (2023) carried out the study to examine effects
of the planned preventive maintenance on batch processing industries.

Although significant research has been done on the reliability evaluation of industrial
systems, most of it has concentrated on modelling, steady-state availability, MTSF and performance
evaluation, frequently presuming constant component failure and repair rates. Still, not sufficient
research has been done on parameter estimate, especially when it comes to Ready-Mix Concrete
(RMC) facilities. A stochastic model for RMC factory with five components is presented in this study
using the Weibull distribution for failure and repair rates with different scale factors and a common
shape parameter. An analysis of the stochastic model through simulation is executed in order to
extract significant findings.

A semi-Markovian method and the regenerative point technique are applied to generate a
number of system reliability measures that are useful to plant designers and maintenance managers.
These measures include the mean sojourn time related with distinct regenerative states, the steady-
state transition probabilities associated with several states, and the real and estimated values of the
Mean Time to System Failure (MTSF) for the RMC plant. Furthermore, the model offers true and
estimated values for the RMC plant's steady-state availability and profit.

Both conventional and Bayesian frameworks are used to estimate the parameters of the
associated distributions, considering the random behavior of component lifetimes in the RMC plant.
Since posterior densities are difficult to replicate directly, random samples are created from these
posterior densities using the Metropolis-Hastings algorithm, which is a component of the Markov
Chain Monte Carlo (MCMC) process. Furthermore, the statistical values of reliability measures
under classical and Bayesian techniques are derived using the Monte Carlo simulation technique. The
Mean Square Error (MSE), availability, MTSF, profit and confidence interval length are all assessed
in the classical framework. The width of the highest posterior density and the posterior MSE are
calculated in the Bayesian framework. Numerical findings and figures are used to give a comparative
comparison, highlighting the importance of this work. Starting with this current introduction, the
manuscript is divided into five sections. The system description and notations are defined in Section
2. The resulting reliability measures are shown in Section 3, and the parameter estimation in the
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classical and Bayesian frameworks is covered in Section 4. Lastly, conclusions and future scope of
the work are provided in Section 5.

2. System Explanation and Notations
The system explanation of RMC plant and notation applied for model development are
given below.

2.1 Notations
Si: i"" state of the RMC plant

®i(i=1,23,4506,7,8): Scale parameter of failure time distribution for i unit

vi(i=1,2,3456,7): Scale parameter of repair time distribution for i unit

Do: Scale parameter of maximum operational time distribution

Wo: Scale parameter of preventive maintenance time distribution

n: Shape parameter of failure/repair time distribution of each unit

fi(®): Failure rate of i unit where ~ f;(t) = ®d;nt"~1e®it" ®; >0,t>0
g:(t): Repair rate of i unit where  g;(t) = Y;nt"~le¥it" Y; >0,t >0
fo(O): Maximum operational time

go(t): Preventive maintenance rate

q:;(t)/Q;;(t): Pdf and cdf of one step or direct transition time from S; € E to S; € E.

pij(t): Steady state transition probability from S; to S; such that, p;;(t) = P_)rg Q;;(1).
Z;(t): Probability that system sojourns in state S; up to time t.

Ui Mean sojourn time in state S; i.e., u; = fOOOP(Ti > t).

R;(t): Reliability of the system at time t when systems start from S; € E

A;(t): Probability that the system will be operative in state S; € E at epoch t

B;(t): Probability that the repairman will be busy in state S; € E at epoch t
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Chaudhary et al.

P;(t):

*k-

Uo:

Vo:

yi:

Yro:

Yrex:

Yrpl:

2.2

Profit incurred by the system during interval (0, t).
Symbol for Laplace Transform of a function i.e., Q7 (s) = f0°° qij(t)e tdt

Regenerative point

Rolling Belt unit (U) is operative

Cement & Fly ash storage unit (V) is operative

Mixing Drum unit (W) is operative

Controller unit (X) is operative

All Electric component and motors units (YY) is operative

Rolling Belt unit (U) is in non-operative mode and under repair
Cement & Fly ash storage unit (V) is in non-operative mode and under repair
Mixing Drum unit (W) is in non-operative mode and under repair
Controller unit (X) is in non-operative mode and under repair

All Electric component and motors units (YY) are under inspection mode

All Electric component and motors units (Y) are in non-operative mode and under

repair

All Electric component and motors units (Y) are in non-operative mode and under

repair by expert

All Electric component and motors units (Y) are in non-operative mode and not

repairable so replaced by a new one

System Explanation

The rolling belt unit, cement & fly ash storage unit, mixing drum unit, controller unit, and
all electric components and motors units are the five main parts of the RMC plant. Preventive
maintenance is scheduled for the entire system, and routine inspection are carried out on the electric
component and motor units. Due to the complexity of these electrical components, two types of
repair services are available: standard repair and professional repair. Furthermore, it is presumed that
a component will be replaced with a new one if it is determined to be irreparable. It is assumed that
every repair is flawless and that there hasn't been any component degradation. It is believed that the
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rates of failure and repair are statistically independent, and that no two failures can happen at the
same time. No component has redundancy, but it is expected that a failing unit will be repaired. The
Semi-Markovian approach and the regenerating point technique are used to evaluate the RMC plant's
reliability features. A stochastic model is proposed, and expressions for several reliability measures
are obtained. In addition, both classical and Bayesian inferential frameworks are used for parameter
estimation. Figure 1 displays the suggested stochastic model's state transition diagram.

fo ()
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Figure 1. State Transition Flow Chart of RMC Plant.

3. Reliability Measures of Ready-Mix Concrete (RMC) Plant
3.1 Transition Probabilities

The state space of the RMC Plant is discrete, consisting of states {So, S1, S2, S3, S4, Ss, S,
S7, Sg, So}. The transition from state ‘i’ to ‘j” is represented by pi;. By simple probabilistic factors,
value of pjj is found by following statements for the non-zero elements of RMC:

py(0) = lim Q(D) = [ q;;()dt (1)

In the present system, the associated matric of transition probability is defined as:
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X =

Poo - Pos]
Poo *** Pog

So, equation (1) provides the values of all the statements of RMC (X) as:

M OENNAGTACIAGIAGCIAGIAGLE

Taking Laplace transform from both side

[0e]

Q3§(5)=f DNt Lo~ (PotPi+Pr+Ps+Putds+)LN gy
0

@,
= lim
520 (P + Dy + D, + Dy + By + Dg + 5)

Dy _ Dy
(@Po+ D1+ P+ D3+ Dy +Ds) boz = (@o+ @1+ P+ D3+ D, +Ds)’

= Po1 = Ll_r)% Qo1(s) =

_ qu — CD3
Po3 = ) Pos = ,
(Dp+D1+D,+D3+D,+D5) (Pp+P1+ P +P3+Dy+P5)
_ D, _ D5
Pos = ) Poe = '
(Pp+ D1+ P+ D3+ D+ D5) (Po+ D1+ P+ D3+Dy+D5)

P10 = lim Q15(s) = 1, P20 = lim Q35(s) = 1,
s—0 s—0

P30 = lim Q35(s) = 1, Pao =1lim Q45(s) =1, Pso = lim Q55(s) = 1,
s—0 s—0 s—0

_ CDG _ CI>7 — cI>8
Pe7 = (P+D7+Pg)’ Pes = (P+D7+Pg)’ Peo = (Pst+P7+Dg)

P70 =lim Q75(s) = 1, Pgo = lim Qg (s) = 1, Poo = lim Q5p(s) = 1,
s—0 s—0 s-0

It is clearly confirmed that the sum of all statements of each row is unity.

3.2 Mean Sojourn Time

Mean sojourn time is the average time consumed by a system in a particular state. If T;
represent the average sojourn/survival time of RMC at a specific state S;, then the mean sojourn time
in the state Sjis assessed with following expressions:

Ui = fooopr(Ti >t) = X;my 2

d *ok
Where ml'j = - E [QU (S)]S=0

Using equation (2), mean sojourn time p, at state So is calculated as follows:
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o = J, Fo@OF (OFOFOF,O)Fs(Ddt (3)

Taking Laplace transform on equation (3) both sides,

u(’;*(s) — f°°e—CDot“e—CDlt“e—®2t“e—d>3t“e—d>4t“e—¢5t“e—stdt
0

After solving it,

N 1 r(i+1/n) _ r(i+1/m)
Ho' (s) = ?_IB (Po+ D1+ Do+ D3+ Dyt Ps+s)L/M =Ho = (@o+ @1+ Do+ D3+ Dyt Ps)L/M
Similarly,
_ r(1+1/m) _ r(1+1/m) _ r(1+1/m)
LT ot/ 27 ! DR
_ r(i+1/m) _ r(1+1/m) _ r(1+1/mn)
4T i/ Hs = Ty Ho = (@or@,+ag)/m
_ r(+1i/m) _ r(+1/n) _ r(+1/m)
7T W He = ygim Ho = "y yim

3.3 Mean Time to System Failure (MTSF)

To assess reliability Ri(t) of RMC Plant at time “t” initiating from regenerative state S; to a
failed state Sj, it characterizes the cumulative density function of first passage time. The failed state

is assumed as absorbing state, the following recursive relation for Ri(t) are obtained applying
probabilistic arguments:

Ro(t) = Zy(t) (4)
where,
Zo(t) = Qo1(t) * Qo2(t) * Qo3(t) * Qoalt) * Qos(t) (%)

By using Laplace transform of equation (4)

Ry (s) = Z5*(s) (6)
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where,
*k _ I"(1+1/n)
Zy'(s) = (Dot D1+ Dyt D3+ Dyt Dg)L/M (7)
—1; *k _ _ ra+1/m)
MTSF = ?—I»lg Ry"(s) = o = (Do + D1 +Py+ D3+ Dyt B5)L/M 8

3.4  Availability Analysis
The probability Ai(t) of RMC plant, which refers that it is in up-state at time ‘t’ provided
that the system entered regenerative state S; at t = 0. The recursive relations are as follows:

Ap(t) = Zo(t) + Qo1 (OH®A(1) + Qo2()®AL(E) + Qo3 (E)B®A3(t) + Qoa(E)B®AL(E) +

Qos (D ®A5(t) + Qos () ®Ag(L) 9)
A;1(t) = Qio(H®Ay(t) (10)
Az(t) = Q20 (D)®A (1) (11)
A3(t) = Q30(6)®A (1) (12)
As(t) = Qao()®A (1) (13)
As(t) = Qso(t)®A, (1) (14)
As(t) = Qs7(H)®A; (1) + Qe (H)®Ag(L) + Qo () ®A, (1) (15)
A7(8) = Q70()®A, (1) (16)
Ag(t) = Qgo(t)®A, (1) (17)
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Ag(t) = Qoo (t)®Ay (L) (18)

Using Laplace transformation on equation (9-18),

Ay (s) = o (19)

Uo+ Po1i1+ Poztz+ Postiz+ Poslia+ Posiis+Pog[ e+ Pe7lh7+ Peglig+ Peollo]

3.5 Busy Period of Server

The probability Bi(t) that repairman is engaged in restoring the failed unit at epoch “t”
provided that the RMC Plant entered in state S; at t = 0. The recursive relations are given as:

Bo(t) = Qo1(®)®B;(t) + Qo2(6)®B,(t) + Qoz3(1)®B3(t) + Qoa()®B,(2) +

Qos (D)®Bs(t) + Qos()®Bg(t) (20)
B1(t) = Z1(t) + Q10(O)®B,(¢) (21)
B,(t) = Z5(t) + Q20(£)®B,(t) (22)
B3(t) = Z3(t) + Q30(t)®B,(t) (23)
By(t) = Z4(t) + Qa0 (1)®B, (1) (24)
Bs(t) = Z5(t) + Qs0(£)®B,(t) (25)
Be(t) = Zs(t) + Q67(6)®B;(t) + Qog(t)®Bg(t) + Qso()®By(t) (26)
B7(t) = Z;(t) + Q70(t)®B,(t) (27)
Bg(t) = Zg(t) + Qgo(t)®B,(t) (28)
By(t) = Zy(t) + Qoo()®B,(¢) (29)
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Using Laplace transformation on equations (20-29),

ok N3 (s)
By (s) = _Di(s)

where,

Nz(s) = Qo1(s)Z17(s) + Qoa(s)Z3"(s) + Qo3(5)Z37(s) + Qoa(5)Z4"(s) + Qos(s)Z5"(s) +
Qo6 (5)[Z6"(s) + Q67(s)Z7"(s) + Qea(s)Z5"(s) + Qg5(s)Z5"(s) ]

. . . Np+s N,
Busy period of server = lim Bj*(s) = lim—2——2=
s -0 s—»0 Dg
— Po1y+ Pozlia+ Pozpia+ Poslla+ Posiis+Pos[ie+ Pe7li7+ Pegiig+ Poollo | (30)

Uo+Po1t1+ Poolia+ Poztz+ Poslat Postis+Poslthet Pe7li7+ Peglag+ Peoldo |

3.6 Profit Function

The expected profit P earned by the system in extended life is
P =Ko Ao—KiBo (31)
where Ko: income per unit time; Kz1: cost per unit time

4. Reliability characteristics estimation under Classical and Bayesian

framework

4.1 Estimation under Classical framework

Weibull distribution is assumed for the failure (fi (.); i= 0,1, 2, 3, 4, 5, 6, 7, 8) and repair (gi
();i1=0, 1, 2, 3, 4,5, 6, 7) rate of various components of RMC plant with different scale and
common shape parameters.

fi®) = ont""%i=0,1,2,3,4,56,7,8
gi(®) = ynt""%i=0,1,2,3,4,5,6,7

In this context, the common scale parameter is denoted as n while ®; & {yr; represent scale
parameters. All these random variables are assumed to be statistically independent. The primary
objective of the current study is to estimate these parameters and assess the reliability measures of
the RMC plant using both classical and Bayesian inferential methods. For the classical approach, the
maximum likelihood (ML) estimation method is utilized due to its effectiveness in parameter
estimation. The maximum likelihood estimators (MLES) are derived for all the parameters associated
with the random variables.

Seventeen independent random samples of size ni (i = 1, 2, 3,......, 17) are taken from Weibull
distribution with failure rates (fi (.); 1=0, 1, 2, 3,4, 5,6, 7,8 ) and repair (gi(.);i=0, 1, 2, 3,4, 5, 6,
7) respectively.

Braz. J. Biom., v.43, e-43790, 2025. 11
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Yi =10 Y12 o e 3’1n1) Yo = V21, Y220 o oo 3’2n2)
?3 = (}’31»3’32» ------ 3’3n3) Y:l = (J’41’J’42’ ------ J’4n4)
175 = (¥51) Y525 e o 3’5n5) 176 = (Y61, Y621 ++v - y6n6)
17\7 = (Y71, Y72 ooe o Y7n,) ?;3 = (Vg1, Vg2) e o y8n3)
179 = (}’91»3’92; ------ Y9n9) 71\0 = (}’10,1:3’10,2, ------ J’1o,n10)
71\1 = (V11,1 V11,20 - == }’11n11) 71\2 = (V12,10 V12,20 +or = J’12,n12)
171\3 = (V13,1 V13,20 -+ - 3’13n13) 171\4 = (V14,1 V14,20 -+ - }’14,1114)
71\5 = (V15,1 V15,20 -+ - )’15n15) Y,1\6 = (V16,1 V16,29 -+ - y16,n16)

171\7 = (V17,00 V17,20 +or = )’17n17)
The likelihood function L is given by

L=L(Y,1,Y, ... Vi Vg | o, @1, @y ooen, P, Wo, Uy, Wy e, )
L = (Donl(blnz IRl (Dgng l.IJOnlol.Ijlnll T l.IJ7n17 nn1+n2+.“+n16+n17. Sl. SZ Tl 516. 517.
e_(q)OTl+¢1T2+"""+¢8T9+¢0T10+¢1T11+""+“|J7T17) (32)
Where
n; n;
S; = Hyg}‘l and T, = Zy;}, i=1,2 .., 17
Jj=1 j=1

using log on both sides of the equation (32),

logl = nylog®, + -+ nyylogd, + Yn;logn+ Ylogs; — (PTy + P T, + -+ P, T;7) (33)
The ML estimates (Say EISO 'a\)l ,EISZ '(’153 'a\)él-laSS 'a\)6 '(’157 'EISS 'lTJO 'l’l}l 'lTJZ 'lTJS rl]}ll- rlTJS ,lTJG,lTJ7 )
of the shape and scale parameters @, @, @, ...., Pg, Uy, U1, Uy, cor oo, Py

=~ _ nq - np =~ _ ns . =R _ Ny -~ _ Nsg LR _ Ng .
cI)O - Z CD an qDZ - Zn3 n» CD3 - an} n» (1)4 - ZnS n» (DS - ZnG n»
j= 13’11 j= 13’11 j=17Yij j=1Yij j=17ij j=17ij
= nz = ng - _MNio _ M1 Nniz
CD6 - 2 (I) Zns n» CDS - an n ) L|*'0 - an o lljl 27111 o lIJZ - Zn12 n»
j= lyL] j=1yi' j= 1y j=1 l] j=1 1} j= lyl]
T Mz _ Mg Nis _Me niz
L|J3 - Zn13 n ) L|J4 - Zn14 o) L|"5 - ans o ¢6 - 27116 o lIJ7 - Zn17 no
j=17Yij j=17ij j=17Yij j=17Yij j=17ij
(34)

By employing the invariance property of MLE, the MLEs for functions of parameters can be
easily obtained. This directly derives the expressions for MLEs of MTSF, availability and profit
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function. Here MTSF, AV and P represented the MLE of MTSF, availability and profit function
respectively. The asymptotic distribution is

((’ISO - q)o, a\)l - chr a\)z - q)z, T ....11}7 - 1.|J7) ~ N17(0,1_1)

Here, I~1 represented the Fisher information matrix having diagonal elements,

ng

nq na n3 My ny
L= =, L= =, ==, I1,= =, lcc = = Iee = =, I = =, Igg = —, Igg =
11 CD(Z,' 22 q)%' 33 fb%' 44 ¢§P 55 ‘bi' 66 ¢§' 77 dDE' 88 d>§' 99
N9
@2’
I N0 I ni1 I N2 I ni13 I _ Nig
10,10 — 11,11 12,12 13,13 14,14 —
ws’ L — w3’ w3’ i
I Nis I _ N6 I _ Nyy
15,15 W2’ 16,16 — W2’ 17,17 — 2"
5 7

And the values of the remaining elements are zero.

The asymptotic distribution of MTSF, availability and profit are given by:

( MTSF — MTSF)'~ Ny,(0,A'I"*A); (AV — AV)'~ N;,(0,B'I"*B); (P — P)'~ Ny,(0,C'I"1C)

where
OMTSF OMTSF OMTSF OMTSF OMTSF OMTSF OMTSF OMTSF OMTSF \ '
b, ' 9, ' b, ' Ad; ' b, ' b5 ' adbg ' oAb, ' odbg
OMTSF OMTSF OMTSF OMTSF OMTSF OMTSF OMTSF OMTSF
0Po oYy " Yy T Az T oy, T ays T 9y ' 0y

DAV QAV AV AV 0AV AV AV 0AV dAV \ '

B = 0Py’ 0D’ 3D, 0d3 0D, 0P’ by’ 0P, ddg’
- 0AV AV AV 0AV 0AV 0AV DAV 0AV

0Dy’ 0D, dD, dd; dd, 0D’ 0Dy’ 0D, ddg’
oPp 0P 0P 9P 0P 0P oP P

C'=

4.2 Estimation under Bayesian framework

In Bayesian estimation of the parameters and reliability measures of the RMC plant, it is
assumed that all parameters associated with failure and repair rates follow specific probability
distributions. In this study, all the random variables are modeled using a two-parameter Weibull
distribution with a  known shape parameter 1. The  scale parameters
(D, D1, Dy, D3, Dy, D, Dy, D, Pg, Py, Uy, Wy, Y3, Uy, Us, U, U,) associated with these random
variables are assumed to follow a Gamma distribution characterized by hyperparameters (ai, Bi; 1 = 1,
2, 17 ) as described below:

Py~ GAMMA (a4, B1) Oy~ GAMMA (a3, B7) ®,~ GAMMA (a3, B3)
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~ GAMMA (ay, Bs) &,~ GAMMA (as, f5) O~ GAMMA (ag, fs)
~ GAMMA (a5, 37) ®,~ GAMMA (ag, ) dg~ GAMMA (ay, By)
Yo~ GAMMA (a1, B10) Y1~ GAMMA (@11, B11) Yo~ GAMMA (@12, B12)
Y3~ GAMMA (ai3, B13) Yy~ GAMMA (14, P14) Ys~ GAMMA (ass, Bis)
Yo~ GAMMA (as6, P16) Y7~ GAMMA (a7, B17)
By likelihood function (32), the posterior distributions are derived and the prior distributions
of (@g, Py, Py, P3, Py, Ps, P, P7, Pg, Yo, W1, Y2, Y3, Yy, Us, Y6, Y7 ) are as follows:

oYy ~ GAMMA(ny + ay, ;1 + 2] 13’1]) (35)
D,|Y; ~ GAMMA(n, + a3, B, + Z] 13’1]) (36)
D@,|Y; ~ GAMMA(n; + asz, B3 + Z, 1)’1]) (37)
‘b3|é ~ GAMMA(n, + a4, By + Z] 1)’1]) (38)
P, |Ys ~ GAMMA(ns + as, fs + X2, ;) (39)
O5|Ys ~ GAMMA(ng + a6, Bs + Z, 13’1]) (40)
q’6|ﬁ ~ GAMMA(n; + az,B; + Z] 13’1]) (41)
D, |Yg ~ GAMMA(ng + ag, Bg + Z, 13711) (42)
Pg|Yy ~ GAMMA(ng + ag, Bo + Z] 13711) (43)
YolY1o ~ GAMMA(nyo + a0, P10 + 27101 yl]) (44)

14 Braz. J. Biom., v.43, e-43790, 2025.



Chaudhary et al.

YY1y ~ GAMMA(ny1 + @14, P11 + 27%3’@ (45)
Y2|Yi, ~ GAMMA(ny; + a3, P12 + 27121 J’U) (46)
Y3|Yi3 ~ GAMMA(ny3 + a3, B13 + 27131 yl]) (47)
YalYiy ~ GAMMA(Ny4 + 14, P1a + 271‘; J’U) (48)
Ys|Yis ~ GAMMA(ns + ays, frs + 2?1“;3’1]) (49)
YslYig ~ GAMMA(N16 + 16, f16 + 2?13 )’U) (50)
lIJ7|& ~ GAMMA(ny; + aq7,B17 + Zn171 yl]) (51)

The scale parameters ®,, ®;, ®,, O, O,, 5, Py, D, Dg, Yy, Wy, Yy, Y3, Yy, Ps,
P, Y, and the Bayesian estimator of these parameter, equations (35)-(51) provide the means of the
posterior distribution within squared error loss function which are as follows:

~ 131+2 1yl ~ ﬁ2+2 1y ~ ﬁ3+2 1y ~ ﬁ4—+2 1y
D, = j= J D, = j=17ij D, = j=17ij _ Jj=17ij
0o — F 1 — F 2 y CI)3 —_ ;
ny+ ay n, + a, ns + as Ng+ a4
&, — ﬁs+21 13711 &. = :86+Z] 13’1] & = ﬁ7+21 13/” & = Bs+2, 13’11
4 — e+ 5 — 6 — ) 7 —
5t Asg Tl6+ Qg ny+ ay Tl8+ ag
n n n
&, = .39+Z] 13’1] KTJ Blo+211‘1’yf} ITJ Bn+21111y2} ITJ ﬁ12+21133’2}
8 Ng+ a9 o~ Niot Q10 T N1+ 11 2 Nzt A2
n n
3, = Pia+ Ty B = Buat X2ty B = Bis+ X 25y T = Bis+ X250y
3 nizt+ a3 4 Nist Qg4 57 Nnis+ a5 6~ Niet A16
ITJ _ 317'*'2]1;)’3
, = —""_="4

Ni7+ ay7

5. Simulation Study
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In this section, the MLE and Bayesian estimates for parameters of Weibull distribution
related to the failure and repair rates of RMC plant are presented. Specifically, the MLE and Bayes
estimates of scale parameters ®,, @, ®,, &5, ®,, D5, Oy, D;, Pg, Yo, W1, YUy, U3, Wy, Us, s,
Y, are derived. It is assumed that the scale parameter is known, the estimates for availability, MTSF
and profit function are calculated by the invariance property. A simulation study is carried out to
validate the theoretical results. The mean square error of estimates and the width of confidence
intervals are compared. The investigation is also carried out for various values of the shape
parameters since the Weibull distribution’s hazard rate is rising, falling and constant, depending on
the shape parameter. The Weibull distribution is applied to generate a random sample of size 50. The
samples are generated through simulation for the set of values given below:

For=0.50, 1, 2 and n=50

. @,=0007, &,=0.005 &,=0.0045 &,=0.0062, &,=0.0039, ®s=0.0033,
®=0003, @,=0.004, Dg=0.006, Y,=002,  Y;=04,  Y,=0.56,
$;=0432,  ,=039, =072, =059,  ,=0.387

- @,=0008, &,=0.005 &,=0.0045 &,=0.0062, &,=0.0039, ®.=0.0033,
®,=0.003, @,=0.004, ®z=0.006, =002,  Y,=04, = 0.56,
U,=0432,  ¢,=0.39, Ys=072, ys=059,  y,=0.387

- ©,=0.009, ®&,=0.005 &,=0.0045 &,=0.0062, ®,=0.0039, d.=0.0033,
®,=0.003, @, =0.004, ®&;=0.006, Yp=0.02, =04, ,= 0.56,
U,=0432, ¢,=039, ys=072, =059, y,=0.387

- ©,=0010, &,=0.005 &,=0.0045 &,=0.0062, &,=0.0039, ®s=0.0033,
®,=0.003, ®,=0.004, @z=0.006, Y,=0.02, y,=0.4, = 0.56,
W =0432, ¢,=039, ys=072, =059,  y,=0.387

- @,=0011, &,=0.005 &,=0.0045 &,=0.0062, &,=0.0039, & =0.0033,
®,=0.003, @,=0.004, ®;z=0.006, Yp=0.02,  y,=0.4, = 0.56,
W, =0432, ¢,=039, Ys=072, =059,  y,=0.387

- ©,=0012, ®&,=0.005 &,=00045 &,=0.0062, ®,=0.0039, o =0.0033,
®,=0.003, @,=0.004, ®;z=0.006, Yp=0.02,  y,=0.4, = 0.56,
W =0432, ¢,=039, ys=072, Yg=059,  y,=0.387

- ©,=0013, &,=0.005 &,=0.0045 &,=0.0062, &,=0.0039, & =0.0033,
®,=0.003, ®,=0004, @z=0.006, =002,  y;=0.4, y,= 0.56,
U,=0432,  ¢,=039, ys=072,  Yg=059,  y,=0.387

- ©,=0.014, ®&,=0.005 &,=00045 &,=0.0062, ®,=0.0039, o =0.0033,
®,=0.003, @,=0.004, @;z=0.006, =002,  y,=0.4, ¥, = 0.56,
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as

U= 0.432,

®,= 0.015,
®, = 0.003,

U= 0.432,
®,=0.016,

@, = 0.003,

U= 0.432,

®,y=0.017,
®, = 0.003,

U= 0.432,
d,=0.018,

@, = 0.003,

U3= 0.432,
®,=0.019,

®, = 0.003,

U= 0.432,

®,y= 0.020,
®, = 0.003,

Y= 0.432,
dy=0.021,

@, = 0.003,

W,= 0.432,
dy=0.022,

@, = 0.003,

Y= 0.432,

®,=0.023,
®, = 0.003,

U= 0.432,

¥, = 0.39,
@, = 0.005,

®, = 0.004,

= 0.39,
®,= 0.005,

@, = 0.004,

¥, = 0.39,
@, = 0.005,

®, = 0.004,

= 0.39,
@, = 0.005,
@, = 0.004,
¥, = 0.39,
@, = 0.005,

®, = 0.004,

U, = 0.39,
@, = 0.005,

®, = 0.004,

= 0.39,
®,= 0.005,

@, = 0.004,

¥, = 0.39,
®,= 0.005,

@, = 0.004,

= 0.39,
®,= 0.005,

@, = 0.004,

U, = 0.39,

P =0.72,

®,=0.0045,

®g =0.006,
Ws = 0.72,

®,= 0.0045,

@4 =0.006,
¥s =0.72,

®,=0.0045,

@5 =0.006,
Ws = 0.72,

®,= 0.0045,

@, =0.006,
W5 =0.72,

®,= 0.0045,

®5= 0.006,
W= 0.72,

®,=0.0045,

®g =0.006,
Ws = 0.72,

®,= 0.0045,

®g =0.006,
W5 =0.72,

®,= 0.0045,

®g =0.006,
W5 =0.72,

®,= 0.0045,

®, =0.006,
Us =0.72,

g = 0.59,

®,= 0.0062,

W= 0.02,
We = 0.59,

®,=0.0062,

W= 0.02,
¥g = 0.59,

®,= 0.0062,

U= 0.02,
g = 0.59,

®,=0.0062,

Wo= 0.02,
We = 0.59,

®,=0.0062,

U= 0.02,
W= 0.59,

®,=0.0062,

Wo=0.02,
Yre= 0.59,

®,=0.0062,

o= 0.02,
W= 0.59,

®,=0.0062,

o= 0.02,
Ye= 0.59,

®,= 0.0062,

Wo= 0.02,
We= 0.59,

¥, = 0.387

@,= 0.0039,

P,= 0.4,
,= 0.387
®,= 0.0039,
=04,
,= 0.387

@,= 0.0039,

U,= 0.4,
,= 0.387
®,= 0.0039,
=04,
y,= 0.387
®,= 0.0039,
U,= 0.4,
,= 0.387

®,= 0.0039,

U,= 0.4,
y,= 0.387
®,= 0.0039,
Y= 0.4,
.= 0.387
®,= 0.0039,
Y= 0.4,
,= 0.387

®,=0.0039,

U, = 0.4,
¥,= 0.387

@, = 0.0033,

¥, = 0.56,

@, =0.0033,

= 0.56,

@, = 0.0033,

¥,= 0.56,

@, =0.0033,

= 0.56,

d.=0.0033,
,= 0.56,

@, =0.0033,

,= 0.56,

@, =0.0033,

= 0.56,

@, =0.0033,

r,= 0.56,

@, =0.0033,

= 0.56,

Using the parameter values mentioned above, thirty random samples are generated, and MLE

well as Bayesian estimation for non-informative prior are performed for the parameters,
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availability, MTSF and profit function. For the Bayesian analysis, 10,000 realizations are generated
by non-informative prior and posterior densities. The set of values for Gamma hyper parameters are

obtained by establlshlng - = b' All estimates along with true values, mean square errors, and length
of intervals/ HPD, are summarlzed in table 1-9. The profit function is evaluated using ki and k> as

10000 and 1200, respectively. All numerical computations are performed using programs developed
in R-environment.

18 Braz. J. Biom., v.43, e-43790, 2025.
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Table 1. Value of MTSF for fixed eta =0.5 and varying ¢0

Estimates mtsf.mse. mtsf.AE. mtsf.AE. mtsf.mse. mtsf.length. mtsf.length.

$0 ] mle mle bayesf bayesf mle bayes
0.007 2237.111 70899.924 2168.653 2003.374 109705.836 1040.479 1043.255
0.008 2094.658 70714.440 2036.183 1885.156 99832.651 986.375 992.734
0.009 1965.390 56663.044 1916.738 1779.285 79862.512 940.158 948.886
0.010 1847.729 53392.575 1784.423 1661.635 75763.142 890.028 900.759
0.011 1740.326 48800.129 1699.062 1586.163 62890.204 859.474 872.391
0.012 1642.023 43581.333 1595.180 1493.804 56369.995 820.939 835.341
0.013 1551.819 44501.873 1502.381 1411.541 54734.012 787.784 803.391
0.014 1468.849 39958.687 1435.962 1352.704 45754.809 763.362 780.988
0.015 1392.360 39708.648 1347.211 1273.918 45233.837 731.102 751.133
0.016 1321.694 33649.652 1288.588 1221.973 36905.619 709.881 730.548
0.017 1256.274 31645.277 1232.188 1172.426 32787.450 690.888 713.192
0.018 1195.593 27309.932 1169.353 1116.168 28464.585 665.218 688.280
0.019 1139.205 27155.997 1108.648 1062.271 27738.542 641.430 666.340
0.020 1086.714 26719.720 1059.209 1018.719 26193.024 623.317 648.966
0.021 1037.770 22268.552 1018.998 982.800 21206.759 607.060 634.189
0.022 992.059 23033.010 963.689 932.868 21962.687 582.166 609.649
0.023 949.303 21230.151 925.898 899.427 19723.047 567.419 597.107

Table 2. Values of Availability fo r fixed eta =0.5 and varying 0

Estimates 0  Av Av.mse. mle Av.AE. mle Q(:\/)./':\SE. Av.mse. bayes Av.length. mle ﬁ;/)./l:sngth.
0.007 0.6279 0.0029 0.6270 0.6221 0.0027 0.2189 0.2294
0.008 0.6199 0.0030 0.6180 0.6132 0.0028 0.2206 0.2313
0.009 0.6120 0.0031 0.6115 0.6067 0.0029 0.2217 0.2319
0.010 0.6044 0.0034 0.6026 0.5977 0.0032 0.2229 0.2331
0.011 0.5969 0.0031 0.5975 0.5928 0.0029 0.2239 0.2339
0.012 0.5896 0.0033 0.5923 0.5875 0.0030 0.2245 0.2346
0.013 0.5824 0.0033 0.5822 0.5776 0.0031 0.2262 0.2360
0.014 0.5754 0.0032 0.5716 0.5673 0.0030 0.2278 0.2373
0.015 0.5686 0.0033 0.5675 0.5631 0.0030 0.2281 0.2373
0.016 0.5619 0.0031 0.5617 0.5574 0.0028 0.2289 0.2382
0.017 0.5553 0.0033 0.5558 0.5517 0.0030 0.2294 0.2385
0.018 0.5489 0.0033 0.5471 0.5433 0.0030 0.2303 0.2395
0.019 0.5426 0.0035 0.5426 0.5388 0.0031 0.2304 0.2392
0.020 0.5364 0.0033 0.5357 0.5321 0.0030 0.2312 0.2398
0.021 0.5304 0.0034 0.5325 0.5290 0.0031 0.2312 0.2399
0.022 0.5244 0.0033 0.5238 0.5205 0.0029 0.2318 0.2405
0.023 0.5186 0.0034 0.5206 0.5174 0.0030 0.2320 0.2404
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Table 3. Values of Profit for fixed eta =0.5 and varying ¢0

Pr.length. Pr.length.
Estimates ¢0  Pr Pr.mse. mle Pr.AE. mle Pr.AE. bayes Pr.mse. bayes mle bayes
0.007 5777.572 359824.043 5768.229 5713.514 337470.080 2448.681 2566.083
0.008 5689.158 374111.110 5669.035 5614.519 351581.218 2467.599 2585.849
0.009 5602.745 388454.231 5597.428 5543.041 361806.758 2478.999 2592.889
0.010 5518.269 423159.514 5498.699 5444.307 394152.594 2492.078 2605.261
0.011 5435.666 387730.683 5442.743 5389.266 358327.156 2502.754 2613.440
0.012 5354.876 414918.505 5385.889 5331.714 379699.409 2508.649 2621.588
0.013 5275.839 417905.577 5274.219 5222.618 384334.582 2527.065 2636.030
0.014 5198.502 402826.163 5156.152 5107.817 372691.467 2544.284 2649.591
0.015 5122.809 411850.883 5110.932 5061.383 378170.270 2547.619 2649.817
0.016 5048.711 385194.274 5047.055 4999.216 351294.099 2556.565 2659.611
0.017 4976.157 408107.903 4981.701 4935.401 369988.304 2560.893 2661.787
0.018 4905.102 407621.316 4885.374 4841.907 369745.228 2571.190 2672.710
0.019 4835.499 431841.948 4836.469 4793.294 390456.791 2571.635 2668.981
0.020 4767.305 416397.041 4759.531 4719.344 376640.622 2580.264 2675.866
0.021 4700.479 427143.240 4724.938 4684.785 381162.860 2580.536 2676.538
0.022 4634.981 407643.394 4627.535 4590.371 366437.225 2586.327 2682.169
0.023 4570.771 417464.212 4593.359 4556.097 371119.230 2588.232 2681.452
Table 4. Values of MTSF for fixed eta =1.0 and varying ¢0
mtsf.AE. mtsf.mse. mtsf.length. mtsf.length.
Estimates ¢0  mtsf mtsf.mse. mle mtsf.AE. mle  bayes bayes mle bayes
0.007 33.445 4.191 32.936 31.600 6.940 7.898 8.235
0.008 32.363 4.520 31.808 30.556 7.045 7.709 8.058
0.009 31.348 4.006 30.816 29.643 6.238 7.572 7.925
0.010 30.395 3.668 29.963 28.857 5.478 7.466 7.820
0.011 29.499 3.621 29.013 27.982 5.310 7.344 7.711
0.012 28.653 3.443 28.243 27.275 4.801 7.267 7.634
0.013 27.855 3.852 27.418 26.526 4.988 7.197 7.577
0.014 27.100 3.443 26.753 25.914 4.322 7.124 7.506
0.015 26.385 3.250 25.993 25.218 4.074 7.041 7.425
0.016 25.707 3.218 25.251 24.544 3.980 6.981 7.373
0.017 25.063 3.308 24.770 24.106 3.718 6.940 7.338
0.018 24.450 3.053 24.165 23.554 3.394 6.877 7.278
0.019 23.866 3.039 23.509 22.958 3.349 6.808 7.218
0.020 23.310 2.967 22.983 22.479 3.155 6.749 7.164
0.021 22.779 2.995 22.468 22.017 3.067 6.713 7.136
0.022 22.272 2.837 21.958 21.547 2.865 6.634 7.062
0.023 21.787 2.802 21.555 21.182 2.710 6.591 7.020

Table 5. Values of Availability for fixed eta =1.0 and varying ¢0
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AvV.AE. Av.mse. Av.length.
Estimates 0  Av Av.mse. mle Av.AE. mle bayes bayes Av.length. mle  bayes
0.007 0.7460 0.0006 0.7461 0.7135 0.0016 0.0967 0.0995
0.008 0.7432 0.0006 0.7430 0.7096 0.0016 0.0965 0.0995
0.009 0.7405 0.0005 0.7390 0.7051 0.0017 0.0966 0.0999
0.010 0.7378 0.0006 0.7371 0.7025 0.0017 0.0962 0.0996
0.011 0.7351 0.0006 0.7333 0.6980 0.0019 0.0963 0.1000
0.012 0.7324 0.0006 0.7309 0.6950 0.0019 0.0962 0.1000
0.013 0.7297 0.0006 0.7276 0.6912 0.0020 0.0962 0.1003
0.014 0.7270 0.0005 0.7260 0.6890 0.0019 0.0959 0.1003
0.015 0.7244 0.0006 0.7232 0.6856 0.0020 0.0959 0.1006
0.016 0.7218 0.0006 0.7197 0.6816 0.0021 0.0961 0.1012
0.017 0.7192 0.0006 0.7192 0.6805 0.0020 0.0956 0.1011
0.018 0.7166 0.0006 0.7161 0.6770 0.0021 0.0958 0.1015
0.019 0.7141 0.0006 0.7129 0.6733 0.0022 0.0960 0.1021
0.020 0.7115 0.0006 0.7101 0.6702 0.0022 0.0964 0.1028
0.021 0.7090 0.0006 0.7058 0.6656 0.0024 0.0970 0.1037
0.022 0.7065 0.0006 0.7045 0.6638 0.0023 0.0969 0.1039
0.023 0.7040 0.0006 0.7030 0.6618 0.0023 0.0969 0.1043
Table 6. Values of Profit for fixed eta =1.0 and varying ¢0
Pr.length.
Estimates 0  Pr Pr.mse. mle Pr.AE. mle Pr.AE. bayes Pr.mse. bayes Pr.length. mle bayes

0.007 7133.169 74964.439 7133.766 6767.225 198110.751 1084.148 1114.206
0.008 7102.673 73450.315 7099.578 6724.033 206065.830 1081.565 1114.297
0.009 7072.375 68762.376 7055.788 6673.958 217258.826 1083.232 1118.223

0.01 7042.275 69590.086 7034.565 6645.207 217136.140 1078.406 1114.876
0.011 7012.375 74476.186 6992.246 6595.820 236323.857 1079.624 1118.978
0.012 6982.672 72385.362 6965.900 6562.882 237678.129 1077.864 1118.844
0.013 6953.168 73715.027 6930.261 6520.730 249872.568 1077.994 1122.645
0.014 6923.860 67752.105 6912.658 6496.469 240496.048 1074.219 1122.499
0.015 6894.750 72480.081 6881.561 6458.436 251960.362 1073.832 1125.472
0.016 6865.834 77607.554 6842.022 6413.404 270034.701 1075.760 1131.738
0.017 6837.113 71175.105 6837.180 6402.051 250371.191 1070.723 1130.495
0.018 6808.585 72784.242 6802.398 6362.735 260621.582 1073.167 1135.394
0.019 6780.250 73537.581 6767.087 6321.877 272411.012 1075.259 1142.105

0.02 6752.105 73183.820 6736.703 6287.134 277869.020 1079.057 1149.554
0.021 6724.150 70791.265 6688.133 6236.934 296931.279 1085.532 1159.053
0.022 6696.383 74227.357 6674.194 6215.950 292681.428 1085.146 1161.964
0.023 6668.803 76882.131 6657.081 6194.675 289695.268 1084.707 1166.084

Table 7. Values of MTSF for fixed eta =2.0 and varying ¢0
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Estimates p0  mtsf mtsf.mse. mle mtsf.AE. mle E:;{;?E. ?;;Z‘:qse' mlt(sef.length. [)n;)slz.slength.
0.007 5.125 0.025 5.082 4.975 0.044 0.609 0.648
0.008 5.042 0.026 5.009 4.908 0.041 0.607 0.647
0.009 4.962 0.024 4.919 4.822 0.041 0.604 0.644

0.01 4.886 0.027 4.843 4.751 0.041 0.604 0.645
0.011 4.813 0.025 4771 4.684 0.038 0.604 0.645
0.012 4,744 0.026 4.697 4.615 0.038 0.606 0.648
0.013 4.677 0.026 4.638 4.560 0.036 0.609 0.651
0.014 4,614 0.025 4575 4501 0.034 0.610 0.653
0.015 4.552 0.029 4.508 4.438 0.037 0.611 0.655
0.016 4.493 0.027 4.453 4.388 0.034 0.616 0.660
0.017 4.437 0.028 4.393 4.331 0.034 0.617 0.660
0.018 4.382 0.030 4.343 4.286 0.034 0.621 0.665
0.019 4.330 0.029 4.293 4.240 0.032 0.622 0.667

0.02 4.279 0.029 4.249 4.200 0.031 0.625 0.670
0.021 4.230 0.027 4.199 4.154 0.028 0.626 0.672
0.022 4.182 0.026 4.155 4.114 0.027 0.629 0.675
0.023 4.137 0.028 4.102 4.064 0.028 0.630 0.677

Table 8. Values of Availability for fixed eta=2.0 varying ¢0

Estimates 0  Av Av.mse. mle Av.AE. mle Q(:\/)./':\SE. ?)\é;zze Av.length. mle Q;/)./I:Sngth.
0.007 0.6868 0.0002 0.6861 0.6451 0.0019 0.0513 0.0530
0.008 0.6843 0.0002 0.6837 0.6427 0.0019 0.0509 0.0528
0.009 0.6819 0.0002 0.6814 0.6403 0.0019 0.0505 0.0525
0.010 0.6795 0.0002 0.6787 0.6376 0.0019 0.0504 0.0526
0.011 0.6771 0.0002 0.6757 0.6347 0.0019 0.0504 0.0528
0.012 0.6748 0.0002 0.6734 0.6324 0.0019 0.0503 0.0528
0.013 0.6725 0.0002 0.6713 0.6304 0.0019 0.0502 0.0530
0.014 0.6702 0.0002 0.6691 0.6281 0.0019 0.0503 0.0533
0.015 0.6680 0.0002 0.6668 0.6258 0.0019 0.0504 0.0534
0.016 0.6658 0.0002 0.6648 0.6239 0.0019 0.0505 0.0538
0.017 0.6637 0.0002 0.6626 0.6217 0.0019 0.0506 0.0540
0.018 0.6616 0.0002 0.6607 0.6199 0.0019 0.0509 0.0544
0.019 0.6595 0.0002 0.6579 0.6173 0.0019 0.0512 0.0549
0.020 0.6574 0.0002 0.6565 0.6159 0.0018 0.0514 0.0553
0.021 0.6554 0.0002 0.6549 0.6143 0.0018 0.0516 0.0556
0.022 0.6534 0.0002 0.6518 0.6115 0.0019 0.0522 0.0563
0.023 0.6514 0.0002 0.6505 0.6101 0.0018 0.0524 0.0566
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Table 9. Values of Profit for fixed eta=2.0 and varying ¢0

Estimates 0 Pr Pr.mse. mle Pr.AE. mle Es;fef Pr.mse. bayes  Pr.length. mle E;.;gggth.
0.007 6479.541 19790.365 6471.648 6011.526 234690.330 573.798 592.378
0.008 6452.085 19707.931 6445.053 5985.621 233343.839 569.389 589.452
0.009 6425.067 20795.494 6419.606 5958.289 234201.300 564.865 586.993
0.010 6398.477 21440.410 6390.041 5928.723 237484.833 563.827 588.107
0.011 6372.306 19417.868 6357.036 5896.779 241244.049 563.432 589.551
0.012 6346.543 20488.814 6331.406 5870.901 241956.465 561.993 590.064
0.013 6321.178 19521.635 6308.135 5848.839 237977.836 561.280 591.935
0.014 6296.202 18975.664 6283.258 5823.667 237970.115 562.389 594.959
0.015 6271.606 20938.909 6257.737 5798.034 240550.215 563.057 596.901
0.016 6247.378 20520.801 6236.037 5777.237 236807.794 564.442 600.864
0.017 6223.510 20652.543 6210.813 5752.696 237630.854 565.176 603.115
0.018 6199.993 20052.188 6190.183 5732.294 234257.067 568.745 608.038
0.019 6176.818 20764.168 6159.471 5703.459 239870.678 572.640 613.620
0.020 6153.977 20383.615 6143.996 5688.192 232393.148 575.057 618.058
0.021 6131.459 21557.820 6126.287 5670.334 228848.834 576.863 621.055
0.022 6109.258 21219.134 6091.615 5639.353 236413.408 583.471 628.577
0.023 6087.366 22110.020 6077.267 5623.427 231773.992 585.630 632.434

6. Conclusion

The current study employes both classical and Bayesian estimation strategies to assess the
reliability characteristics of the RMC plant. The profit function, steady-state availability, and true
MTSF are evaluated for a given set of parameter values. The findings, which are summed up in
Tables 1-9, demonstrate that when the scale parameter of the maximum operation time &, rises,
MTSF, availability, and profit all are decline. From the simulation results, it is observed that for the
shape parameter, the true values of MTSF, availability, and profit, along with the MLE and Bayesian
estimates of MTSF, availability, and profit, all decrease as the failure rate @, of the rolling belt unit
increases. In comparison to the Bayesian MSE and HPD intervals for n=0.50, 1, and 2, the maximum
likelihood estimators' mean square error (MSE) and the breadth of their confidence intervals for
MTSF, availability, and profit are less. As a result, for the reliability characteristics of the RMC
plant, Maximum Likelihood estimate (MLE) is advised above Bayesian estimate.
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