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Abstract 

Gait recognition is a developing biometric technique capable of identifying individuals from a distance, with wide-

ranging applications such as video surveillance. A primary challenge is the extraction of discriminative gait features 

from silhouettes that are robust to variations in apparel, carried objects, and camera viewpoints. To address these 

limitations, this study introduces GaitSTR — a novel framework that harnesses pyramid mapping for enhanced 

temporal and spatial feature extraction, integrated with a deep neural network comprising dense layers. Pyramid 

mapping decomposes gait sequences into multi-scale spatial features, enabling GaitSTR to capture fine-to-coarse 

motion patterns and improve recognition under varying conditions. The method focuses on extracting distinctive 

feature representations at different frame levels, effectively utilizing spatial and temporal variations within video 

sequences. The proposed model utilizes a memory-augmented recurrent neural network (RNN) enriched with 

temporal attention to capture sequential motion cues, while spatial features are extracted through a densely connected 

attention-guided network By employing the pyramid-based hierarchical feature extraction, along with attention 

mechanisms in both spatial and temporal component, the network can prioritize the most significant video segments, 

improving its efficiency and learning capacity for processing intricate gait data. The results are evaluated on four 

widely used benchmark datasets: GREW, OU-ISIR, OU-MVLP, and CASIA-B—achieving 92.4% on GREW, 95.2% 

on OU-ISIR, and 0.96 mean accuracy on OU-MVLP, and 98.4% (normal) on CASIA-B, surpassing state-of-the-art 

methods. These results underscore the robustness of our approach under diverse conditions, establishing a new 

benchmark for performance in gait recognition. 
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1. Introduction 
Gait recognition has emerged as a prominent biometric technique for identifying individuals 

based on their unique walking patterns. Gait offers the distinct advantage of enabling 

identification from a distance without requiring active cooperation from the subject (Song et al., 

2024) (Sethi, Prakash and Bharti, 2022). This contrasts with traditional anatomical biometrics 

such as fingerprints, facial features, DNA, or iris patterns (Gadaleta and Rossi, 2018) (Choi et 
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al., 2019) (Ma, Wu and Wang, 2017) . These features have made gait recognition a prominent 

area of research for surveillance-related applications, such as, biometric criminal investigation, 

law enforcement civil security, and smart transportation systems (Balazia and Sojka, 2018) 

(Bastos and Tavares, 2025) (Yao et al., 2022) . As a result, significant research attention has 

been devoted to gait recognition in recent years (Sepas-Moghaddam and Etemad, 2023). Recent 

advancements in technology have established gait analysis (Prajapati, Kaur and Sethi, 2021) 

(Cai et al., 2023) as a reliable and non-invasive method for clinical evaluation, particularly in the 

diagnosis of health conditions, identification of individuals, and assessment of locomotor 

patterns (Panahi and Ghods, 2018) (Erdaş, Sümer and Kibaroğlu, 2021). However, the accuracy 

of gait recognition is often challenged by external variations such as changes in attire, carried 

objects, and camera perspectives (Hou et al., 2023) (S. Mandlik et al., 2025) (Huo et al., 2026). 

This underscores the necessity of improving model robustness under diverse and unconstrained 

conditions (Wei et al., 2024). Earlier studies have introduced multiple strategies to mitigate the 

challenges posed by changes in viewpoint, clothing, and carried objects (Mitra and Acharya, 

2007) (Xu et al., 2021) (Gao et al., 2022). These traditional approaches are typically categorized 

into two groups: those utilizing the Gait Energy Image (GEI) (Mogan, Lee and Lim, 2024) 

(Chen et al., 2018) (Ben et al., 2020) (Xiaxi Huang and Boulgouris, 2012) (Gupta and 

Chattopadhyay, 2021)  and those that interpret gait as sequence-independent sets (Lin, Zhang 

and Yu, 2021) (Chao et al., 2022). While GEI-based techniques have been widely used, they 

often fail to capture detailed spatiotemporal cues, which can adversely affect recognition 

accuracy. In contrast, methods that represent gait as sequence-independent sets—though they 

have yielded promising results in previous studies—have primarily demonstrated effectiveness 

within controlled laboratory environments.  

To mitigate the aforementioned challenges —such as variations in clothing, carried items, 

and camera viewpoints—this study introduces GaitSTR for robust gait recognition. The 

approach combines pyramid mapping with a densely layered deep neural architecture to improve 

the capture of motion patterns across both spatial scales and time. By breaking down gait 

sequences into multiple resolution levels, pyramid mapping facilitates the extraction of motion 

cues ranging from detailed to broader movements, thereby increasing resilience to visual 

inconsistencies. To model time-based dynamics effectively, the framework incorporates a 

memory-augmented RNN with a time-based attention mechanism, enabling it to concentrate on 

crucial frame-level information. Simultaneously, a densely connected convolutional network 

embedded with channel and spatial attention modules enhances spatial feature discrimination by 

adapting to variations across different channels and regions. This integrated strategy—

leveraging hierarchical decomposition and attention-based refinement—allows GaitSTR to 

emphasize the most informative portions of a video sequence, leading to more accurate and 

robust gait feature learning. 

 

2. Literature Survey 
Over the past three decades, research in Gait Recognition field has evolved from early 

model-based approaches to sophisticated deep learning techniques, significantly improving 

recognition accuracy and robustness. This literature review provides a comprehensive 

examination of gait recognition methodologies. 

 

2.1 Traditional Gait Recognition Approaches 
The conceptual foundation of gait recognition can be traced back to psychological studies on 

human motion perception. The seminal work (Johansson, 1973) demonstrated that individuals 

could recognize biological motion using only point-light displays, suggesting that gait contains 
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distinctive patterns that can be computationally modeled. This discovery inspired early research 

efforts in the 1990s to develop automated gait recognition systems. A model-based approach 

(Niyogi and Adelson, 1994) was among the first proposed, analyzing motion trajectories to 

extract gait characteristics. Their work established that kinematic features, such as stride length 

and joint angles, could be used for identification. Fourier analysis was applied to model leg 

movements, demonstrating that gait could be represented mathematically for recognition 

purposes (Cunado, Nixon and Carter, 2003). These pioneering studies confirmed the viability of 

gait as a biometric trait and set the stage for more structured research in the early 2000s. 

Early gait recognition systems primarily employed two methodological paradigms: model-

based and appearance-based techniques. Model-based approaches relied on constructing 

biomechanical representations of the human body to extract gait-related features. A stride-based 

model was developed to measure step length and walking speed, achieving reasonable accuracy 

in controlled environments (BenAbdelkader, Cutler and Davis, 2002) However, this approach 

was sensitive to variations in walking speed and camera angles. A kinematic model was later 

introduced to track hip and knee movements, improving robustness against minor viewpoint 

changes (Bouchrika and Nixon, no date). Despite their interpretability, model-based methods 

faced significant challenges due to their dependency on accurate pose estimation, which was 

difficult to achieve with low-resolution or occluded video footage.  

Appearance-based methods, in contrast, avoided explicit modeling by analyzing the silhouette of 

a walking person. These approaches gained popularity due to their computational efficiency and 

effectiveness in controlled settings. A significant contribution was the introduction of the Gait Energy 

Image (GEI), a compact representation that averaged silhouette sequences over a gait cycle (Han and 

Bhanu, 2006). The GEI became a benchmark for subsequent research due to its ability to capture 

temporal gait dynamics in a single image. Silhouette-based recognition was further enhanced by 

employing Dynamic Time Warping (DTW) to align gait sequences temporally, addressing variations 

in walking speed (Liu and Sarkar, 2006). Despite their advantages, appearance-based methods were 

sensitive to changes in clothing, carrying conditions (e.g., backpacks or bags), and camera 

viewpoints, limiting their real-world applicability (Liu et al., 2021) (Chao et al., 2022) (Zou et al., 

2025) (S. B. Mandlik et al., 2025). 

 

2.2 Deep Learning Revolution in Gait Recognition 
 The advent of deep learning in the 2010s brought transformative changes to gait 

recognition, enabling end-to-end learning of discriminative features from raw data. 

Convolutional Neural Networks (CNNs) emerged as the dominant architecture for gait analysis 

due to their ability to learn hierarchical spatial representations. CNNs were among the first 

applied to GEI, demonstrating superior performance compared to traditional methods (Suibing 

Tong, Yuzhuo Fu and Hefei Ling, 2017). A paradigm shift was later introduced with GaitSet, 

which treated gait as an unordered set of silhouettes rather than a fixed sequence. This approach 

significantly improved cross-view recognition by eliminating the need for strict temporal 

alignment (Chao et al., 2022). The success of GaitSet highlighted the potential of set-based 

representations in handling variable gait cycle lengths and occlusions. 

 Recognizing that gait is inherently a spatio-temporal process, researchers began 

incorporating recurrent architectures and 3D convolutional networks to better capture motion 

dynamics. One approach combined 3D CNNs with Long Short-Term Memory (LSTM) networks 

to model both spatial and temporal gait features, achieving robust performance across different 

walking speeds (Liu et al., 2019). Further advancement came with GaitPart, which focused on 

fine-grained part-level features to improve recognition under varying carrying conditions (Fan et 

al., 2020). GaitPart’s emphasis on local temporal dynamics demonstrated that part-based 
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approaches could enhance robustness against appearance variations. 

 Most recently, transformer-based architectures have been applied to gait recognition, 

leveraging self-attention mechanisms to capture long-range dependencies in gait sequences. 

GaitGL integrated global and local features using transformer modules, achieving state-of-the-art 

performance on benchmark datasets (Lin, Zhang and Yu, 2021). A pure transformer-based 

model, GaitFormer, was introduced and outperformed CNN-based methods in cross-view 

recognition tasks (J. Li et al., 2024). These advancements underscore the growing influence of 

transformer architectures in gait recognition, particularly in handling complex variations in 

viewpoint and appearance.  

 Despite significant progress, gait recognition systems still face several challenges that 

hinder their deployment in real-world scenarios. Viewpoint variation remains a critical issue, as 

most systems experience performance degradation when the camera angle changes. Recent work 

addressed this through adversarial learning, generating view-invariant gait representations(He et 

al., 2019). Clothing and carrying conditions continue to pose difficulties, as heavy coats or bags 

can alter gait appearance. A domain adaptation network called GaitDAN improved robustness 

against such variations by aligning feature distributions across different domains (Huang et al., 

2024). Occlusion and low-resolution data present additional challenges, particularly in 

surveillance applications where subjects may be partially obscured. One solution uses attention 

mechanisms to focus on visible body parts while reconstructing missing information (Hasan et 

al., 2024). Cross-domain generalization is another persistent issue, as models trained in 

laboratory settings often fail in real-world environments. Unsupervised and self-supervised 

learning approaches, aim to bridge this gap by reducing reliance on labeled data (Pinčić, Sušanj 

and Lenac, 2022) (Y. Wang et al., 2025). Recurrent Neural Networks (RNNs) (Xing, Li and 

Zhang, 2018) (Zhang et al., 2022) (Rashmi and Guddeti, 2022) capture temporal dependencies, 

while Deep Autoencoders (DAe) (Song et al., 2019) (Li et al., 2019) learn compact gait 

representations. Hybrid models combining CNNs, RNNs, and DAe further improve recognition 

accuracy by leveraging their complementary strengths (Zhang et al., 2020) (Zhang et al., 2022). 

While recent gait recognition methods have shown considerable promise, they often 

encounter difficulties in capturing distinctive motion features under real-world challenges such 

as changes in attire (Altab Hossain et al., 2010) (Castro et al., 2024) , carried objects (Mizuno et 

al., 2024) (Uddin et al., 2018), and varying camera viewpoints (Makihara et al., 2015) 

(Muramatsu et al., 2015) (Du and Zhao, 2024). Moreover, their non-end-to-end architectures—

typically involving separate stages for 3D reconstruction, feature extraction, and gait matching—

introduce significant limitations by increasing computational complexity and reducing overall 

efficiency for practical deployment (Mandlik et al., 2025; Hasan et al., 2024; Sepas-Moghaddam 

and Etemad, 2023; Sokolova and Konushin, 2019; Dos Santos et al., 2023; T. Li et al., 2024). 

To overcome these obstacles, this study introduces GaitSTR, a unique framework employing 

pyramid mapping to perform hierarchical spatial and temporal feature extraction. By 

decomposing gait sequences into multiple spatial scales, the method captures motion patterns 

ranging from fine to coarse granularity. The framework integrates a deep densely connected 

network to extract spatial features and a memory-augmented recurrent neural network with 

temporal attention to capture sequential dependencies in motion. This combined strategy allows 

the model to focus on the most informative segments of the gait cycle, reducing noise and 

improving recognition performance across varied conditions, thereby enhancing its suitability for 

real-world applications. 

 

3. Material and  Methods 
The block diagram of the proposed GaitSTR framework, illustrated in Figure 1, presents a 
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structured flow for processing gait sequences and extracting discriminative spatio-temporal 

features. The process begins with input silhouettes derived from a gait video sequence that 

captures the walking motion of an individual. These silhouettes are first processed by the 

Pyramid Mapping Module, which decomposes the input into fine-to-coarse spatial scales to 

enhance multi-level motion representation. The resulting features are then passed through two 

parallel processing streams: one stream is input to an Attention-Guided Network to extract 

salient spatial features using temporal attention, while the other stream is processed by a 

Memory-Augmented Recurrent Neural Network (RNN) to capture sequential motion cues across 

frames. The outputs of these spatial and temporal pathways are integrated in the final Gait 

Prediction block, which implicitly performs feature fusion by combining spatial attention and 

sequential dependencies, followed by classification to identify the subject based on the learned 

gait features. 

 

Figure 1. The GaitSTR framework. 
 

3.1 Frame-wise Detection and ROI extraction 

As illustrated in Figure 2, the system performs object detection on each input video frame, 

focusing on identifying and isolating human subjects. For each detected individual, bounding 

boxes are generated dynamically to localize the region of interest, ensuring that the gait-specific 

features are captured accurately and consistently across frames. This process significantly 

reduces background noise and irrelevant visual data, leading to more precise silhouette 

extraction and improved recognition performance. Following object detection and ROI 

extraction, the system proceeds with detailed preprocessing and enhancement of the extracted 

gait silhouettes. 
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Figure 2. Object detection is performed on each frame, and bounding boxes are generated around detected objects. 

 

3.2 Data Augmentation 

Data augmentation is a technique used to enhance the size and diversity of a dataset by 

introducing random transformations to the original data. For instance, images can be rotated, 

cropped, or flipped. This approach is commonly employed to reduce the risk of overfitting, ensuring 

the model's robustness and its ability to generalize effectively during the training process. The Table 

1 below outlines the parameters employed for data augmentation during the training process. Figure 4 

provides a subjective depiction of the results produced by data augmentation. 

 

Table 1. Augmentation Type and parameters 

Figure 4. Data augmentation on gait silhouettes. 

3.3 Pyramid Mapping Module 
The Pyramid Mapping Module is a core component of the proposed GaitSTR framework, 

designed to enhance the representation of spatial and temporal dynamics in gait sequences. This 

module decomposes the input silhouette sequence into a hierarchy of spatial scales, such as fine, 

medium, and coarse resolutions, enabling the model to capture motion information at multiple levels 

of abstraction. Given an input silhouette sequence 𝑆 = ⌊𝑠1, … 𝑠𝑡, … . 𝑠𝑇⌋, where T denotes the number of 

Serial Number Augmentation Type Parameter Details 

1 Rotation Random rotation within −10 to 10 degrees 

2 Reflection (X-axis) No specific variation applied 

3 X-axis Translation Random shift in the range of −5 to 5 pixels 

4 Y-axis Translation Random shift in the range of −5 to 5 pixels 
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frames, shallow spatial features Ft ∈ R H×W×C are extracted from each frame st using a base convolutional 

feature extractor: Ft = ϕ(st),   t=1,2,…,T where ϕ(⋅) denotes the initial feature extraction function . At 

finer scales, the module preserves subtle and localized motion cues such as limb movement and foot 

positioning, while coarser scales retain global structural patterns like posture and walking trajectory. 

Each feature map Ft is then decomposed into a set of multi-scale representations {Ft
(1), Ft(2),…,Ft

(L)}, 

corresponding to L spatial levels. For scale l, the feature map is down-sampled or partitioned into Rl 

spatial regions: Ft
(l) =PoolRl(Ft), l=1, 2…, L. This multi-resolution decomposition provides robustness 

against common variations in gait data, including changes in clothing, carried objects, and viewpoint 

shifts. Each spatial scale acts as a complementary representation, allowing the network to better 

capture the diversity of gait features across time. The extracted multi-scale feature maps are then 

forwarded to the subsequent processing streams for spatial attention modeling and temporal 

sequence learning. These multi-scale features are concatenated along the spatial axis to form the final 

pyramid-mapped representation: 

                𝑭̃𝒕 =  {𝑪𝒐𝒏𝒄𝒂𝒕} (𝑭𝒕
{(𝟏)}

, 𝑭𝒕
{(𝟐)}

, … , 𝑭𝒕
{(𝑳)}

)                                                                (1) 

 

This aggregated representation 𝐹̃𝑡 is forwarded to the spatial and temporal branches of the network,  

facilitating robust spatio-temporal learning. By encoding fine-to-coarse spatial information, the Pyramid 

Mapping Module acts as a powerful feature encoder, ensuring that both detailed and holistic motion 

patterns are available for downstream processing in the GaitSTR architecture. 

3.4 Attention-Guided Network (Spatial Stream) 

The Attention-Guided Network is responsible for learning spatially discriminative representations by 

dynamically identifying and emphasizing the most informative regions in each frame of the gait sequence. 

After multi-scale decomposition in the Pyramid Mapping Module, the resulting features                                       

𝐹̃𝑡∈ R H×W×C  retain both local and global motion patterns. However, not all regions within these feature 

maps contribute equally to identifying an individual’s gait. 

To address this, a spatial attention mechanism is introduced. A learnable attention map At ∈ [0,1]H×W 

is generated using a lightweight convolutional layer followed by a sigmoid activation: 

 

 At = σ { Conv (𝑭̃𝒕) At }         (2) 

  This attention map highlights spatial locations that are most relevant for recognition, such as legs, 

feet, or torso orientation. The final spatially refined feature map is obtained by applying element-wise 

multiplication: 

                                                                                                               𝑭𝒕
𝒔=𝑭 ̃𝒕 ⊙ At                                                                                  (3) 

 

Here, ⊙denotes the Hadamard (element-wise) product. These attended features 𝐹𝑡
𝑠 are then aggregated 

across time or directly passed to the fusion layer, preserving only the most discriminative spatial cues 

while suppressing irrelevant background information or occlusions. This improves robustness to noise 

and enhances the generalization capability of the network across varying conditions. 

3.5 Memory-Augmented Recurrent Neural Network (Temporal Stream): 
The Memory-Augmented RNN module models the temporal evolution of gait patterns by 

learning long-range dependencies between frames in a sequence. Human gait is inherently 

periodic, with subtle variations across time that carry unique identity cues. Capturing these 
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sequential dynamics is crucial for effective recognition. 

 

Given the sequence of multi-scale{𝑭̃𝟏, 𝑭̃𝟐, 𝑭̃𝟑,……..𝑭̃𝒕}, a recurrent unit processes each time step: 

                                            𝒉𝒕 =  {𝑹𝑵𝑵}(𝑭̃𝒕, 𝒉{𝒕−𝟏})                                                       (4) 

where ht represents the hidden state at time t, carrying accumulated temporal information up to 

that point. To further enhance this module, a temporal attention mechanism is applied. Not all 

frames are equally informative—some contain more distinctive phases of the gait cycle (e.g., leg 

crossing or foot contact). Attention weights 𝛼𝑡 are computed over the hidden states: 

                                                     𝜶𝒕 =
{𝒆𝒙𝒑(𝑾𝒂⋅𝒉𝒕)}

∑ 𝒆𝒙𝒑(𝑾𝒂⋅𝒉𝒌)
{𝑻}
{𝒌=𝟏}

                                                              (5) 

where 𝐖𝐚 ∈  ℝ{𝟏×𝐝} is a trainable weight vector, 𝐡𝐭 ∈  ℝ𝐝 is the RNN output at time t, and 𝐅𝐦 is the 

weighted feature capturing the entire motion sequence. These weights are used to compute a weighted 

sum of all hidden states, resulting in a temporally aggregated feature: 

                                           𝑭𝒎 =  ∑ 𝜶𝒕
𝑻
𝒕=𝟏 ⋅ 𝒉𝒕                                                                      (6) 

     The memory-augmented mechanism enhances the RNN’s ability to preserve long-term 

dependencies and focus on key temporal cues, making it particularly effective for modeling 

complex gait patterns, especially in unconstrained environments. 

 

3.6 Attention Unit 
 The Attention Unit serves as a crucial component in the GaitSTR framework, allowing the 

model to dynamically focus on the most salient spatial and temporal features within the gait 

sequence. This unit enhances interpretability and performance by allocating greater importance 

to discriminative regions and frames. 

 

Figure 5.  The Attention Unit. 
 
3.6.1 Spatial Attention Module 

  Each silhouette frame st is first processed to extract a spatial feature map 𝐅𝐭 ∈  ℝ{𝐇×𝐖×𝐂}. 

However, not all spatial regions within a frame are equally informative—some parts of the body (like 

leg movement) often carry more identity cues than others. To selectively emphasize these regions, a 
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spatial attention map 𝐀𝐭 ∈  [𝟎, 𝟏]{𝐇×𝐖} is learned. The spatial attention map is computed using a 

lightweight network—typically involving 1×1 convolutions and activation functions like softmax or 

sigmoid—to produce an attention mask that is broadcasted across all channels of the input feature 

map. 

                                                  𝑭̂𝒕 =  𝑨𝒕 ⊙  𝑭𝒕                                   (7) 

  where 𝐅̂𝐭 is the spatially attended feature, ⊙ denotes element-wise multiplication, 𝐀𝐭 emphasizes key 

regions such as limbs or torso depending on their motion saliency. 

 
3.6.2 Temporal Attention Module 

   Once the spatial features across time {F̂1, F̂2, … , F̂T} are encoded into temporal representations 

via an RNN, the model generates a sequence of hidden states {h1, h2, … , hT}. However, different 

frames in a gait sequence carry varying importance depending on walking phase, occlusion, or noise. 

To manage this, the temporal attention mechanism learns a weight αt ∈  [0,1] for each time step, 

capturing the relative contribution of each frame toward the final prediction. The equation for attention 

weight and final aggregated temporal feature is as given by equation (5) and (6) respectively. 

  This dual-attention mechanism enables GaitSTR to adaptively focus on the most relevant spatial and 

temporal elements, improving robustness against real-world variations like occlusion, clothing changes, and 

speed fluctuations. 

 

4.  Classification 
One of the key components in the training strategy is a hybrid loss function, which 

combines Triplet Loss (Wang et al., 2020) and ArcFace Loss (Deng et al., 2019). This dual-loss 

strategy optimizes the learning of feature embeddings in order to maximize discrimination, an 

essential requirement for real world performance since the differences within a class are often 

far smaller than the similarities between classes. 

The Triplet Loss proceeds as follows: triplets with an anchor sample, a positive sample 

(same identity), negative sample (different identity) The goal is that the distance between the 

anchor and positive is closer than that of anchor and negative by at least a margin. This loss 

function boosts the network to find a set of unit feature-level clusters for each identity which are 

tight through optimization and separated from other identities. This metric learning method 

directly affects the geometry of the embedding space. This variation of metric learning has the 

direct impact on the geometry of embedding space, making it more structured and 

discriminative. 

 

               𝑳ₜᵣᵢₚₗₑₜ =  ∑ⁿᵢ=𝟏[‖𝒇(𝒙ᵢᵃ) −  𝒇(𝒙ᵢᵖ)‖𝟐 −  ‖𝒇(𝒙ᵢᵃ) −  𝒇(𝒙ᵢⁿ)‖𝟐 +  𝜶]+                                         (8) 

 

where f(x) denotes the embedding of sample x, xᵢᵃ, xᵢᵖ, and xᵢⁿ represent the anchor, positive, and 

negative samples respectively, ‖·‖² is the squared Euclidean norm, α is a predefined margin, and 

[·]⁺ denotes the hinge function (i.e., max(0, ·)). 

This loss ensures intra-class compactness and inter-class separation by dynamically 

adjusting the feature space based on sample relationships. 

On the other hand, ArcFace Loss adds an angular margin into the softmax loss and turns 

regular learning from optimizing the distance in Euclidean space to optimize the angle based 

distance. This alteration is used to impose a stronger decision boundary by normalizing the 

features on a hypersphere and punishing the angular distance of learned features against class 

centers. Thus, the network would learn to produce embeddings that are not only separable but 
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also uniformly distributed across the angular sector plane. This kind of angular regularization is 

especially effective for identity-based tasks such as gait recognition, where subtle differences 

between subjects must be emphasized. 

                     𝑳𝒂𝒓𝒄 =  − (
𝟏

𝑵
) ∑ 𝒍𝒐𝒈

{𝑵}
{𝒊=𝟏} (

𝒆
{𝒔·𝒄𝒐𝒔(𝜽𝒚𝒊+ 𝒎)}

𝒆
{𝒔·𝒄𝒐𝒔(𝜽𝒚𝒊+ 𝒎)}

+ ∑ 𝒆
{𝒔·𝒄𝒐𝒔(𝜽𝒋)}{𝒔·𝒄𝒐𝒔(𝜽𝒋)}

{𝒋 ≠ 𝒚𝒊}𝒆

)                                                 (9) 

where, θᵧᵢ is the angle between the embedding vector of the iᵗʰ sample and its corresponding class 

center, m is the additive angular margin, s is the scaling factor applied to the feature vectors, j ≠ yᵢ 

refers to all classes other than the correct class, cos(θᵧᵢ + m) increases the angular distance between 

classes in the feature space. 

Combining these two loss functions—Triplet Loss, which promotes intra-class compactness and 

inter-class separation, and ArcFace Loss, which imposes angular margin constraints—results in a 

more structured and discriminative feature space. This integrated loss strategy enables the network to 

learn embeddings that are both tightly clustered within identities and well-separated across different 

classes. Consequently, the model exhibits enhanced generalization capability across a range of 

challenging conditions, including variations in walking speed, changes in viewpoint, clothing 

alterations, and partial occlusions. Such a robust learning mechanism significantly improves the 

reliability and accuracy of gait recognition systems in real-world deployment scenarios. 

                       𝑻𝒐𝒕𝒂𝒍 𝒍𝒐𝒔𝒔 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 = 𝑻𝒓𝒊𝒑𝒍𝒆𝒕 𝑳𝒐𝒔𝒔 + 𝑨𝒓𝒄𝑭𝒂𝒄𝒆 𝑳𝒐𝒔𝒔                                     (10) 

 

5. Experiments 
5.1 Datasets 

GREW (Guo et al., 2025) includes gait data from 27,345 subjects, split into 20,000 for 

training (102,887 sequences), 345 for validation (1,784 sequences), and 6,000 for testing (24,000 

sequences). Collected in unconstrained environments, it features uncontrolled camera setups, 

irregular walking paths, and variations in viewpoint, clothing, and occlusion. The number of 

sequences per subject is limited and random, introducing diverse covariate distributions and class 

imbalance, making it well-suited for evaluating model generalization in real-world conditions. 

OU-ISIR  (Iwama et al., 2012) consists of 4,007 subjects (2,135 males and 1,872 females) 

aged 1–94 years. Gait sequences are captured from four view angles (55°, 65°, 75°, and 85°) under 

a single walking condition. Each subject has one gallery and one probe sequence. 

OU-MVLP (Takemura et al., 2018)is among the largest publicly available gait datasets, 

containing 10,307 participants recorded from 14 view angles. Each subject has two sequences per 

view—‘Seq-01’ for the gallery and ‘Seq-00’ for probes—supporting large-scale cross-view gait 

recognition studies. 

CASIA-B (Yu, Tan and Tan, 2006) comprises 124 subjects recorded under three conditions: 

normal walking (NM), walking with a bag (BG), and walking with a coat (CL), across 11 views 

ranging from 0°–180°. For evaluation, the first 74 subjects form the training set and the remaining 

50 the testing set. NM-1 to NM-4 sequences are used as the gallery, while the remaining NM, BG, 

and CL sequences serve as probes. 

 

5.2 Implementation details 

To maintain computational efficiency, all input gait silhouettes are resized to 64 x 44. Model 

optimization is carried out using the Adamax optimizer due to its adaptability to complex gait 
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patterns. The mini-group size—representing the number of subjects and sequences per subject—is 

configured as (8,16) for the CASIA-B dataset, (32,16) for both the OU-MVLP and OU-ISIR 

datasets, and (32,8) for the GREW dataset. Training is performed with a constant learning rate of 

1×10−4, running for 300,000 iterations on CASIA-B, 350,000 iterations on OU-MVLP and OU-ISIR, 

and 400,000 iterations on GREW.  

The GaitSTR model contains 9.8M parameters, requires 2.3 GFLOPs per sequence, and achieves 

an average inference speed of 12.5 ms per sequence on an NVIDIA RTX 3060 GPU, enabling real-

time deployment. 

 

6.  Results and Comparative Analysis 
 The performance of GaitSTR is benchmarked against a diverse set of state-of-the-art gait 

recognition methods, including recent deep learning as well as classical and hybrid techniques. 

 

6.1 GaitSTR Performance evaluation against the GREW Dataset 

Table 2 presents a comparative analysis of state-of-the-art gait recognition methods on the 

GREW dataset using Rank-1, Rank-5, Rank-10, and Rank-20 accuracies. Earlier approaches such as 

GEINet and GaitPart achieve lower recognition rates, while more recent models including DyGait, 

GaitMoE, and GaitC3I show considerable improvement in performance. The proposed GaitSTR 

surpasses all existing methods, achieving the highest accuracies across all ranks—83.5% at Rank-1, 

91.7% at Rank-5, 86.3% at Rank-10, and 92.4% at Rank-20—setting a new benchmark on the GREW 

dataset. These results clearly demonstrate the robustness and effectiveness of the GaitSTR framework 

under diverse and challenging real-world conditions. 

The superior performance of GaitSTR can be attributed to its pyramid-based spatial-temporal 

feature decomposition and refined attention mechanisms. It consistently outperforms attention-guided 

and expert-mixture networks, validating its discriminative feature learning capabilities. The architecture 

exhibits strong generalization, maintaining high accuracy across a range of variations such as clothing, 

speed, and occlusion. Overall, GaitSTR proves to be a reliable and scalable solution for real-world gait 

recognition applications.  

 

Table 2. Rank-1, Rank-5, Rank-10, and Rank-20 Accuracy on the GREW Dataset 

Method Rank-1 Rank-5 Rank-10 Rank-20 

GaitMPA  (Huo et al., 2026) 70.9 83.4 87.5 90.0 

GaitGCI (Dou et al., 2023) 68.5 80.8 84.9 87.7 

GaitSet (Chao et al., 2022), 46.3 63.6 70.3 76.8 

DyGait (M. Wang et al., 2023) 71.4 83.2 86.8 89.5 

MTSGait (Zheng et al., 2022) 55.3 71.3 76.9 81.6 

GaitPart (Fan et al., 2020) 44.0 60.7 67.3 73.5 

CSTL (Huang et al., 2021) 50.6 65.9 71.9 76.9 

GEINet (Shiraga et al., 2016) 6.8 13.4 17.0 21.0 

GaitGL (Lin, Zhang and Yu, 2021) 47.3 63.6 69.3 74.2 

OpenGait (Fan et al., 2023) 60.1 75.8 – – 

GaitCSV (J. Wang et al., 2023) 64.9 78.7 – – 

HSTL (L. Wang et al., 2023) 62.7 76.6 – – 

CLASH (Dou et al., 2025) 67.0 78.9 – – 

CLTD (Xiong et al., 2025) 78.0 87.8 – – 

GaitMoE (Huang et al., 2025) 79.6 89.1 – – 
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Method Rank-1 Rank-5 Rank-10 Rank-20 

DeepGaitV2 (J. Wang et al., 2025) 79.4 88.9 – – 

DeepGaitV2-30(J. Wang et al., 2025) 79.5 – – – 

GaitC3I-GB (J. Wang et al., 2025) 68.9 80.4 – – 

GaitC3I (J. Wang et al., 2025) 82.0 90.8 – – 

QAGait (Wang et al., 2024), 59.1 74.0 – – 

VPNet (Ma et al., 2024) 80.0 89.4 – – 

GaitSTR  83.5 91.7 86.3 92.4 

 

 

6.2 GaitSTR Performance evaluation against the OU-ISIR Dataset 
 

A comparative evaluation of various state-of-the-art gait recognition methods under different 

cross-view settings on the OU-ISIR large population dataset is presented in Table 3. Recognition 

accuracy (%) is reported for multiple gallery–probe angle combinations (55°, 65°, 75°, and 85°). 

Traditional approaches such as GEI (Yu, Tan and Tan, 2006), SVD (Kusakunniran et al., 2009), SVR 

(Kusakunniran et al., 2010), and CMCC (Kusakunniran et al., 2010) show significant performance 

drops under large view variations, while more advanced methods, including GEINet (Shiraga et al., 

2016), DCNN  (Wu et al., 2017) and DLWD (Wu et al., 2018), achieve comparatively better results. 

Recent state-of-the-art techniques, such as TENFE (Singh and Goyal, 2020), GEI+MGANs (He et al., 

2019), and the proposed GaitSTR, maintain consistently high recognition rates across most angle pairs. 

Notably, GaitSTR attains the highest overall average accuracy of 95.2%, demonstrating superior 

robustness and adaptability to varying view angles compared to all other evaluated methods. The 

proposed method surpasses the second-best performer (TENFE, 93.9%) by a margin of 1.3%, 

establishing a new benchmark for cross-view gait recognition on this dataset. 

 
Table 3. Accuracy (Average Rank-I) Comparison on the OU-ISIR dataset 

Gallery angle (°) 55°    65°    75°    85°   

Probe angle (°) 65° 75° 85°  55° 75° 85°  55° 65° 85°  55° 65° 75° Average 

TENFE (Singh and Goyal, 
2020) 

98.7 97.1 81.4  97.1 96.9 84.1  96.8 97.5 92.3  91.1 96.2 97.8 93.9 

ffGEI (Wen and Wang, 
2021) 

59.3 57.8 63.1  60.2 64.8 66.3  61.5 65.7 68.3  62.9 63.7 67.4 63.3 

DLWD (Wu et al., 2018) 79.8 65.3 51.9  80.1 84.4 73.7  70.1 86.1 84.1  55.7 78.1 84.6 74.4 

DCNN (Wu et al., 2017) 98.3 96.0 80.5  96.3 97.3 83.3  94.2 97.8 92.4  90.0 96.0 98.4 93.3 

GEINet (Shiraga et al., 
2016) 

93.2 89.1 79.9  93.7 93.8 90.6  90.1 94.1 93.8  81.4 91.2 94.6 90.4 

GEI+MGANs (He et al., 
2019)   

99.0 96.1 77.9  97.7 98.5 84.4  94.8 98.9 86.4  86.9 97.4 99.5 93.1 

CMCC (Kusakunniran et 
al., 2014) 

96.8 78.5 64.6  97.4 96.3 82.6  80.0 97.5 96.9  74.9 78.5 96.5 86.7 

SVD (Kusakunniran et al., 
2009) 

93.2 70.4 52.3  92.3 93.6 77.1  77.4 94.0 94.7  52.3 76.3 92.5 80.5 

SVR (Kusakunniran et al., 
2010) 

93.6 71.0 53.1  94.0 94.3 72.0  75.3 94.3 94.1  51.1 71.1 93.8 79.8 

GEI  (Yu, Tan and Tan, 
2006)  

28.4 5.8 27.7  27.7 67.0 19.5  50.7 64.0 96.9  26.2 20.7 96.9 44.2 

GaitSTR 89.7 95.8 97.8  89.3 97.1 88.3  99.7 98.7 98.3  96.5 93.1 98.7 95.2 

 

 

6.3 GaitSTR Performance evaluation against the OU-MVLP Dataset 
 

Table 4 presents a comparative evaluation of multiple state-of-the-art gait recognition methods 

on the OU-MVLP dataset across various view angles ranging from 0° to 270°. The recognition 

accuracies of earlier methods, such as GPAN (Chen et al., 2022), GaitSet  (Chao et al., 2022), and 

MvGGAN  (Chen et al., 2021), demonstrate limited robustness under large view variations. More 
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advanced techniques, including GaitGMT (Chen et al., 2024), GaitAMR (Chen et al., 2023), and 

GaitMPL(G) (Dou et al., 2024), achieve notable performance improvements through enhanced 

feature representation and cross-view alignment. The highest overall performance is attained by the 

proposed GaitSTR, which achieves a mean accuracy of 96%, outperforming strong state-of-the-art 

baselines such as GEI-CNN  (Elharrouss et al., 2021) (95%) and Re-Id (Carley, Ristani and Tomasi, 

2019)  (92%). These results confirm GaitSTR’s ability to advance the state-of-the-art in large-scale, 

cross-view gait recognition. 

  
Table 4.  Rank-1 Accuracy on the OU-MVLP dataset 

Method 0° 15° 30° 45° 60° 75° 90° 180° 195° 210° 225° 240° 255° 270° Mean 

GTIEN(Chen and Li, 2024) 0.80 0.87 0.92 0.91 0.90 0.90 0.88 0.83 0.87 0.91 0.91 0.89 0.90 0.88 0.88 

RDBA-Net (Junaid et al, 

2025) 
0.83 0.89 0.90 0.91 0.89 0.90 0.89 0.85 0.88 0.90 0.90 0.89 0.88 0.88 0.89 

GaitGMT(Chen et al., 2024) 0.84 0.89 0.91 0.91 0.90 0.91 0.90 0.88 0.88 0.91 0.91 0.89 0.90 0.89 0.89 

GaitAMR (Chen et al., 

2023) 
0.84 0.89 0.89 0.90 0.88 0.89 0.88 0.86 0.88 0.88 0.88 0.87 0.89 0.87 0.88 

PGOFI (Xu, Li and Hou, 

2023) 
0.79 0.86 0.88 0.89 0.86 0.87 0.86 0.84 0.85 0.87 0.89 0.85 0.85 0.86 0.86 

GaitMPL(G) (Dou et al., 

2024) 
0.84 0.91 0.92 0.92 0.91 0.91 0.91 0.86 0.90 0.91 0.91 0.91 0.91 0.90 0.90 

DANet (Ma et al., 2023) 0.87 0.91 0.91 0.91 0.91 0.91 0.91 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.89 

GPAN (Chen et al., 2022) 0.69 0.81 0.87 0.87 0.81 0.85 0.82 0.73 0.79 0.85 0.85 0.80 0.83 0.80 0.81 

GaitSet (Chao et al., 2022)  0.79 0.87 0.89 0.90 0.88 0.88 0.87 0.81 0.86 0.89 0.89 0.872 0.87 0.86 0.87 

MvGGAN (Chen et al., 2021) 0.52 0.62 0.63 0.57 0.55 0.61 0.61 0.54 0.58 0.59 0.58 0.56 0.57 0.56 0.58 

Re-Id (Carley, Ristani and Tomasi, 

2019) 
0.9 0.89 0.93 0.95 0.95 0.95 0.95 0.86 0.90 0.95 0.95 0.93 0.94 0.94 0.92 

RPNet (Qin et al., 2022) 0.73 0.84 0.89 0.89 0.86 0.87 0.86 0.76 0.83 0.88 0.88 0.85 0.86 0.84 0.85 

GEI-CNN (Elharrouss et al., 2021) 0.93 0.95 0.95 0.97 0.98 0.97 0.98 0.92 0.94 0.95 0.95 0.97 0.97 0.98 0.95 

GaitSTR 0.98 0.98 0.96 0.95 0.89 0.98 0.96 0.93 0.96 0.98 0.92 0.93 0.98 0.97 0.96 

 
 

6.4 GaitSTR Performance evaluation against the CASIA B Dataset 
 

The comparison of state-of-the-art gait recognition methods on the CASIA-B dataset is 

presented in Table 5, across three modes—Normal Walking (NM), Walking with a Bag (BG), and 

Walking with a Coat (CL)—over eleven probe angles (0° to 180°).  

In the NM mode, GaitSTR achieves the highest overall performance with an average accuracy of 

98.1%, closely followed by STTN (Chen and Li, 2024)  at 97.9% and GaitPart (Fan et al., 2020) at 

96.2%. Traditional appearance-based models such as GEINet (Shiraga et al., 2016)exhibit significantly 

lower performance, with an average of 48.1%, indicating the superiority of modern deep spatio-temporal 

feature learning strategies. 

For the BG mode, GaitSTR again outperforms other methods, achieving 95.3% average 

accuracy, followed by STTN (94.3%) and GaitPart (91.6%). Although PGOFI (Xu, Li and Hou, 2023) 

maintains competitive results (90.9%), appearance-dependent methods like PoseGait (Liao et al., 2020) 

and GEINet record much lower averages (36.0% and 23.5%, respectively), highlighting their 

vulnerability to occlusions caused by carried objects. 

Under the challenging CL mode, where gait silhouettes are heavily occluded by clothing 

variations, GaitSTR maintains robust recognition with an average of 83.7%, outperforming all baselines. 

STTN records 79.0%, and PGOFI achieves 78.3%, while traditional CNN-based approaches such as 

CNN-LB  (Wu et al . ,  2017)  drop to 54.0% and GEINet remains below 25%, confirming the 

difficulty of handling large clothing variations. 
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Table 5. Rank-1 Accuracy on the CASIA-B dataset from different perspectives 

Mode Method Probe  (0°–180°) Average 

  0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180°  

NM 

DensePoseGait  (Liao et al., 

2025)  
65.7 79.7 82.8 84.4 79.4 77.9 80.1 83.4 83.7 74.3 61.5 77.5 

ML-TAG  (Saad Shakeel et 
al., 2025) 

 

96.4 97.8 98.9 97.8 97.4 97.0 97.7 99.0 98.8 99.1 95.3 97.0 

DDSTFDN  (Qiao et al., 

2025) 
94.2 98.1 98.4 98.0 96.9 96.3 99.5 99.3 98.7 99.1 94.2 97.2 

STTN (Chen and Li, 2024) 95.6 99.8 100.0 99.0 97.3 95.8 97.6 99.4 99.7 99.0 93.5 97.9 

LuGAN-HGC(Pan et al., 

2023) 
89.3 88.1 89.0 89.9 87.4 88.7 87.4 88.8 88.8 87.0 87.0 88.3 

PGOFI (Xu, Li and Hou, 
2023) 

91.2 95.8 96.6 96.1 96.0 94.8 94.9 95.7 94.6 94.2 92.8 94.8 

GaitBase (Fan et al., 2023) 94.8 99.7 99.8 99.0 96.8 95.3 97.3 99.2 99.6 99.2 94.8 97.8 

GaitSet (Chao et al., 
2022) 

93.4 98.1 98.5 97.8 92.6 90.9 94.2 97.3 98.4 97.0 89.1 95.2 
GaitGraph(Teepe et al., 
2021) 

85.3 88.5 91.0 92.5 87.2 86.5 88.4 89.2 87.9 85.9 81.9 87.7 

Siamese (Wang and Tang, 
2021) 

72.4 81.2 85.6 80.4 79.4 85.0 81.0 77.6 82.5 79.1 80.2 80.4 

GaitPart (Fan et al., 

2020) 
94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2 

PoseGait (Liao et al., 2020) 55.3 69.6 73.9 75.0 68.0 68.2 71.1 72.9 76.1 70.4 55.4 68.7 

GaitNet (Song et al., 

2019) 
93.1 92.6 90.8 92.4 87.6 95.1 94.2 95.8 92.6 90.4 90.2 92.3 

CNN-LB ( W u  e t  a l . ,  
2 0 1 7 )  

82.6 90.3 96.1 94.3 90.1 87.4 89.9 94.0 94.7 91.3 78.5 89.9 

GEINet (Shiraga et al., 

2016) 
40.2 38.9 42.9 45.6 51.2 42.0 53.5 57.6 57.8 51.8 47.7 48.1 

GaitSTR 96.7 98.6 97.9 99.3 98.7 97.7 97.8 99.7 98.8 98.7 98.9 98.4 

 DensePoseGait  (Liao et al., 

2025) 
55.4 70.4 76.6 73.3 65.6 65.3 68.1 71.0 69.8 57.3 44.8 65.2 

BG 

ML-TAG  (Saad Shakeel et 
al., 2025) 

 

94.2 96.7 97.6 96.2 96.0 92.7 95.2 97.4 98.2 98.1 92.6 95.8 

DDSTFDN  (Qiao et al., 

2025) 

91.6 

 

95.1 

 

96.9 

 

94.2 

 

92.0 

 

89.2 

 

91.5 

 

94.5 

 

97.3 

 

96.5 

 

88.8 

 
93.4 

STTN (Chen and Li, 
2024) 

92.4 95.7 97.0 96.0 92.5 89.6 91.7 96.7 98.8 98.0 88.5 94.3 

LuGAN-HGC(Pan et al., 

2023) 
79.4 79.5 81.6 82.4 78.1 76.2 78.7 82.0 81.6 83.0 73.6 79.7 

PGOFI (Xu, Li and Hou, 
2023) 

87.6 90.8 91.7 91.5 91.0 93.9 90.1 91.5 92.0 90.4 89.5 90.9 

GaitBase (Fan et al., 2023) 93.6 

 

96.4 

 

96.1 

 

95.6 

 

92.1 

 

88.7 

 

90.8 

 

95.3 

 

97.2 

 

96.0 

 

90.7 

 
93.9 

GaitSet (Chao et al., 
2022) 

85.9 92.1 93.9 90.4 86.4 78.7 85.0 91.6 93.1 91.0 80.7 88.1 
GaitGraph(Teepe et al., 
2021) 

75.8 76.7 75.9 76.1 71.4 73.9 78.0 74.7 75.4 75.4 69.2 74.8 

Siamese (Wang and Tang, 
2021) 

62.5 68.7 69.4 64.8 62.8 67.2 68.3 65.7 60.7 64.1 60.3 65.0 

GaitPart (Fan et al., 

2020) 
89.1 94.8 96.7 95.1 88.3 84.9 89.0 93.5 96.1 93.8 85.8 91.6 

PoseGait (Liao et al., 2020) 35.3 47.2 52.4 46.9 45.5 43.9 46.1 48.1 49.4 43.6 31.1 44.5 

GaitNet (Song et al.,  

2019) 
88.8 88.7 88.7 94.3 85.4 92.7 91.1 92.6 84.9 84.4 86.7 88.9 

CNN-LB ( W u  e t  a l . ,  

2 0 1 7 )  
64.2 80.6 82.7 76.9 64.8 63.1 68.0 76.9 82.2 75.4 61.3 72.4 

GEINet (Shiraga et al., 

2016) 
34.2 29.3 31.2 35.2 35.2 27.6 35.9 43.5 45.0 39.0 36.8 35.7 

GaitSTR 97.6 96.7 95.6 97.8 93.2 91.8 98.7 96.7 95.4 94.8 96.8 95.9 

 DensePoseGait  (Liao et al., 

2025) 
41.8 47.7 49.7 50.3 46.5 46.0 49.5 47.8 47.4 39.4 29.3 45.2 

CL 

ML-TAG  (Saad Shakeel et 
al., 2025) 

 

76.6 91.1 93.3 90.0 86.7 81.0 85.4 89.3 90.3 87.4 72.2 85.7 

DDSTFDN  (Qiao et al., 

2025) 

70.1 

 

83.4 

 

84.6 

 

81.2 

 

79.2 

 

74.2 

 

76.0 

 

81.0 

 

83.9 

 

80.6 

 

67.0 

 
78.3 

STTN (Chen and Li, 
2024) 

69.7 89.0 88.4 84.9 78.8 75.5 79.2 82.4 82.6 76.9 61.9 79.0 

LuGAN-HGC(Pan et al., 

2023) 
72.8 72.3 69.4 75.2 77.0 79.6 80.5 78.1 76.3 74.9 72.8 75.4 

PGOFI (Xu, Li and Hou, 
2023) 

73.0 74.5 79.1 79.8 81.5 82.5 81.1 79.4 77.8 76.6 75.7 78.3 

GaitBase (Fan et al., 2023) 68.8 

 

81.7 

 

84.8 

 

81.7 

 

79.0 

 

75.7 

 

78.0 

 

80.7 

 

82.2 

 

78.3 

 

66.8 

 
78.0 

GaitSet (Chao et al., 
2022) 

63.7 75.6 80.7 77.5 69.1 67.8 69.7 74.6 76.1 71.1 55.7 71.1 
GaitGraph(Teepe et al., 
2021) 

69.6 66.1 68.8 67.2 64.5 62.0 69.5 65.6 65.7 66.1 64.3 66.3 

Siamese (Wang and Tang, 
2021) 

57.8 63.2 68.3 64.1 66.0 64.8 67.7 60.2 66.0 68.3 60.3 64.2 

GaitPart (Fan et al., 

2020) 
70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7 

PoseGait (Liao et al., 2020) 24.3 29.7 41.3 38.8 38.2 38.5 41.6 44.9 42.2 33.4 22.5 36.0 

GaitNet (Song et al., 2019) 50.1 60.7 72.4 72.1 74.6 78.4 70.3 68.2 53.5 44.1 40.8 62.3 

CNN-LB (Wu et al., 2017) 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0 

GEINet (Shiraga et al., 2016) 19.9 20.3 22.5 23.5 26.7 21.3 27.4 28.2 24.2 22.5 21.6 23.5 

GaitSTR 87.1 89.8 92.5 93.3 86.2 77.3 77.9 85.3 93.9 81.3 69.7 84.9 

 

6.5  Ablation Study 

 In this subsection, we conduct ablation studies to evaluate the individual contributions of 

the channel-space attention module, temporal attention module, and the effect of data augmentation 

in our proposed framework. All ablation experiments are conducted on the CASIA-B dataset for the 

three different modes. 

Ablation study on different modules. To explore the contribution of each attention component, 

we start with a baseline network without any attention or augmentation, then gradually add channel-

space attention (CSA), temporal attention (TA), and data augmentation (DA). The ablation results 

are summarized in Table 6. (1) Effectiveness of Channel-Space Attention. As shown in Table 3, 

adding CSA to the baseline yields noticeable gains in Rank-1 accuracy across all conditions, 

improving the mean accuracy from 82.8% to 88.1%. This demonstrates that enhancing channel and 

spatial dependencies helps the network focus on discriminative gait regions. (2) Effectiveness of 
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Temporal Attention. Integrating TA into the baseline improves recognition by leveraging temporal 

dependencies between frames, achieving a mean accuracy of 87.7%. This confirms that certain gait 

frames are more informative for identity recognition. (3) Combined Effect of CSA and TA. When 

both CSA and TA are used, the mean accuracy further improves to 89.8%, indicating that spatial-

channel refinement and temporal weighting are complementary. (4) Effectiveness of Data 

Augmentation. Finally, applying data augmentation to the full model boosts the mean accuracy to 

93.0%, highlighting its importance in improving robustness against variations such as occlusion, 

speed changes, and clothing. 

These results clearly demonstrate that both CSA and TA independently enhance recognition 

performance, while their combination produces further gains. Moreover, applying data 

augmentation significantly strengthens robustness across all conditions. 
 

 

Table 6 Ablation study of channel-space attention (CSA), temporal attention (TA), and data augmentation (DA) on 

CASIA-B dataset (Rank-1, %) 

Structure CSA TA DA NM BG CL Mean 

Baseline – – – 88.1 86.2 74.2 82.8 

CSA only ✓ – – 92.3 90.4 81.7 88.1 

TA only – ✓ – 92.7 91.0 79.5 87.7 

CSA + TA ✓ ✓ – 95.1 92.5 82.0 89.8 

Without Data Augmentation  ✓ ✓ ✓ 96.2 93.3 82.9 90.8 

Full (CSA+TA+DA) ✓ ✓ ✓ 98.4 95.9 84.9 93.0 

 

 

7. Conclusions  
In this paper, we proposed GaitSTR, a novel gait recognition framework that integrates pyramid-

based hierarchical feature extraction with attention-guided spatial and temporal modeling. GaitSTR 

decomposes gait sequences into multi-scale spatial representations, capturing both fine- and coarse-

grained motion patterns, while a memory-augmented RNN with temporal attention effectively models 

sequential dynamics. The attention-guided dense network enhances spatial feature learning by focusing 

on the most informative regions within silhouettes. Extensive experiments conducted on four widely 

used benchmark datasets—GREW, OU-ISIR, OU-MVLP, and CASIA-B—demonstrated that GaitSTR 

consistently outperforms state-of-the-art methods, achieving notable improvements under variations in 

clothing, carrying conditions, and viewpoints. These results validate the robustness and generalization 

capability of the proposed approach, establishing GaitSTR as a strong benchmark for future gait 

recognition research. Future research will aim to extend GaitSTR’s capability to handle unseen 

environments and extreme covariates through advanced cross-domain learning techniques.  
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