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Abstract

Gait recognition is a developing biometric technique capable of identifying individuals from a distance, with wide-
ranging applications such as video surveillance. A primary challenge is the extraction of discriminative gait features
from silhouettes that are robust to variations in apparel, carried objects, and camera viewpoints. To address these
limitations, this study introduces GaitSTR — a novel framework that harnesses pyramid mapping for enhanced
temporal and spatial feature extraction, integrated with a deep neural network comprising dense layers. Pyramid
mapping decomposes gait sequences into multi-scale spatial features, enabling GaitSTR to capture fine-to-coarse
motion patterns and improve recognition under varying conditions. The method focuses on extracting distinctive
feature representations at different frame levels, effectively utilizing spatial and temporal variations within video
sequences. The proposed model utilizes a memory-augmented recurrent neural network (RNN) enriched with
temporal attention to capture sequential motion cues, while spatial features are extracted through a densely connected
attention-guided network By employing the pyramid-based hierarchical feature extraction, along with attention
mechanisms in both spatial and temporal component, the network can prioritize the most significant video segments,
improving its efficiency and learning capacity for processing intricate gait data. The results are evaluated on four
widely used benchmark datasets: GREW, OU-ISIR, OU-MVLP, and CASIA-B—achieving 92.4% on GREW, 95.2%
on OU-ISIR, and 0.96 mean accuracy on OU-MVLP, and 98.4% (normal) on CASIA-B, surpassing state-of-the-art
methods. These results underscore the robustness of our approach under diverse conditions, establishing a new
benchmark for performance in gait recognition.

Keywords: Deep Learning; Pyramid mapping; Spatial variation; Time-based modulation; Gait Recognition.

1. Introduction

Gait recognition has emerged as a prominent biometric technique for identifying individuals
based on their unique walking patterns. Gait offers the distinct advantage of enabling
identification from a distance without requiring active cooperation from the subject (Song ef al.,
2024) (Sethi, Prakash and Bharti, 2022). This contrasts with traditional anatomical biometrics
such as fingerprints, facial features, DNA, or iris patterns (Gadaleta and Rossi, 2018) (Choi et
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al., 2019) (Ma, Wu and Wang, 2017) . These features have made gait recognition a prominent
area of research for surveillance-related applications, such as, biometric criminal investigation,
law enforcement civil security, and smart transportation systems (Balazia and Sojka, 2018)
(Bastos and Tavares, 2025) (Yao et al., 2022) . As a result, significant research attention has
been devoted to gait recognition in recent years (Sepas-Moghaddam and Etemad, 2023). Recent
advancements in technology have established gait analysis (Prajapati, Kaur and Sethi, 2021)
(Cai et al., 2023) as a reliable and non-invasive method for clinical evaluation, particularly in the
diagnosis of health conditions, identification of individuals, and assessment of locomotor
patterns (Panahi and Ghods, 2018) (Erdas, Siimer and Kibaroglu, 2021). However, the accuracy
of gait recognition is often challenged by external variations such as changes in attire, carried
objects, and camera perspectives (Hou et al., 2023) (S. Mandlik et al., 2025) (Huo et al., 2026).
This underscores the necessity of improving model robustness under diverse and unconstrained
conditions (Wei et al., 2024). Earlier studies have introduced multiple strategies to mitigate the
challenges posed by changes in viewpoint, clothing, and carried objects (Mitra and Acharya,
2007) (Xu et al., 2021) (Gao et al., 2022). These traditional approaches are typically categorized
into two groups: those utilizing the Gait Energy Image (GEI) (Mogan, Lee and Lim, 2024)
(Chen et al., 2018) (Ben et al, 2020) (Xiaxi Huang and Boulgouris, 2012) (Gupta and
Chattopadhyay, 2021) and those that interpret gait as sequence-independent sets (Lin, Zhang
and Yu, 2021) (Chao et al., 2022). While GEI-based techniques have been widely used, they
often fail to capture detailed spatiotemporal cues, which can adversely affect recognition
accuracy. In contrast, methods that represent gait as sequence-independent sets—though they
have yielded promising results in previous studies—have primarily demonstrated effectiveness
within controlled laboratory environments.

To mitigate the aforementioned challenges —such as variations in clothing, carried items,
and camera viewpoints—this study introduces GaitSTR for robust gait recognition. The
approach combines pyramid mapping with a densely layered deep neural architecture to improve
the capture of motion patterns across both spatial scales and time. By breaking down gait
sequences into multiple resolution levels, pyramid mapping facilitates the extraction of motion
cues ranging from detailed to broader movements, thereby increasing resilience to visual
inconsistencies. To model time-based dynamics effectively, the framework incorporates a
memory-augmented RNN with a time-based attention mechanism, enabling it to concentrate on
crucial frame-level information. Simultaneously, a densely connected convolutional network
embedded with channel and spatial attention modules enhances spatial feature discrimination by
adapting to variations across different channels and regions. This integrated strategy—
leveraging hierarchical decomposition and attention-based refinement—allows GaitSTR to
emphasize the most informative portions of a video sequence, leading to more accurate and
robust gait feature learning.

2. Literature Survey

Over the past three decades, research in Gait Recognition field has evolved from early
model-based approaches to sophisticated deep learning techniques, significantly improving
recognition accuracy and robustness. This literature review provides a comprehensive
examination of gait recognition methodologies.

2.1 Traditional Gait Recognition Approaches
The conceptual foundation of gait recognition can be traced back to psychological studies on
human motion perception. The seminal work (Johansson, 1973) demonstrated that individuals
could recognize biological motion using only point-light displays, suggesting that gait contains
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distinctive patterns that can be computationally modeled. This discovery inspired early research
efforts in the 1990s to develop automated gait recognition systems. A model-based approach
(Niyogi and Adelson, 1994) was among the first proposed, analyzing motion trajectories to
extract gait characteristics. Their work established that kinematic features, such as stride length
and joint angles, could be used for identification. Fourier analysis was applied to model leg
movements, demonstrating that gait could be represented mathematically for recognition
purposes (Cunado, Nixon and Carter, 2003). These pioneering studies confirmed the viability of
gait as a biometric trait and set the stage for more structured research in the early 2000s.

Early gait recognition systems primarily employed two methodological paradigms: model-
based and appearance-based techniques. Model-based approaches relied on constructing
biomechanical representations of the human body to extract gait-related features. A stride-based
model was developed to measure step length and walking speed, achieving reasonable accuracy
in controlled environments (BenAbdelkader, Cutler and Davis, 2002) However, this approach
was sensitive to variations in walking speed and camera angles. A kinematic model was later
introduced to track hip and knee movements, improving robustness against minor viewpoint
changes (Bouchrika and Nixon, no date). Despite their interpretability, model-based methods
faced significant challenges due to their dependency on accurate pose estimation, which was
difficult to achieve with low-resolution or occluded video footage.

Appearance-based methods, in contrast, avoided explicit modeling by analyzing the silhouette of
a walking person. These approaches gained popularity due to their computational efficiency and
effectiveness in controlled settings. A significant contribution was the introduction of the Gait Energy
Image (GEI), a compact representation that averaged silhouette sequences over a gait cycle (Han and
Bhanu, 2006). The GEI became a benchmark for subsequent research due to its ability to capture
temporal gait dynamics in a single image. Silhouette-based recognition was further enhanced by
employing Dynamic Time Warping (DTW) to align gait sequences temporally, addressing variations
in walking speed (Liu and Sarkar, 2006). Despite their advantages, appearance-based methods were
sensitive to changes in clothing, carrying conditions (e.g., backpacks or bags), and camera
viewpoints, limiting their real-world applicability (Liu et al., 2021) (Chao et al., 2022) (Zou et al.,
2025) (S. B. Mandlik et al., 2025).

2.2 Deep Learning Revolution in Gait Recognition

The advent of deep learning in the 2010s brought transformative changes to gait
recognition, enabling end-to-end learning of discriminative features from raw data.
Convolutional Neural Networks (CNNs) emerged as the dominant architecture for gait analysis
due to their ability to learn hierarchical spatial representations. CNNs were among the first
applied to GEI, demonstrating superior performance compared to traditional methods (Suibing
Tong, Yuzhuo Fu and Hefei Ling, 2017). A paradigm shift was later introduced with GaitSet,
which treated gait as an unordered set of silhouettes rather than a fixed sequence. This approach
significantly improved cross-view recognition by eliminating the need for strict temporal
alignment (Chao ef al., 2022). The success of GaitSet highlighted the potential of set-based
representations in handling variable gait cycle lengths and occlusions.

Recognizing that gait is inherently a spatio-temporal process, researchers began
incorporating recurrent architectures and 3D convolutional networks to better capture motion
dynamics. One approach combined 3D CNNs with Long Short-Term Memory (LSTM) networks
to model both spatial and temporal gait features, achieving robust performance across different
walking speeds (Liu et al., 2019). Further advancement came with GaitPart, which focused on
fine-grained part-level features to improve recognition under varying carrying conditions (Fan et
al., 2020). GaitPart’s emphasis on local temporal dynamics demonstrated that part-based
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approaches could enhance robustness against appearance variations.

Most recently, transformer-based architectures have been applied to gait recognition,
leveraging self-attention mechanisms to capture long-range dependencies in gait sequences.
GaitGL integrated global and local features using transformer modules, achieving state-of-the-art
performance on benchmark datasets (Lin, Zhang and Yu, 2021). A pure transformer-based
model, GaitFormer, was introduced and outperformed CNN-based methods in cross-view
recognition tasks (J. Li et al., 2024). These advancements underscore the growing influence of
transformer architectures in gait recognition, particularly in handling complex variations in
viewpoint and appearance.

Despite significant progress, gait recognition systems still face several challenges that
hinder their deployment in real-world scenarios. Viewpoint variation remains a critical issue, as
most systems experience performance degradation when the camera angle changes. Recent work
addressed this through adversarial learning, generating view-invariant gait representations(He ef
al., 2019). Clothing and carrying conditions continue to pose difficulties, as heavy coats or bags
can alter gait appearance. A domain adaptation network called GaitDAN improved robustness
against such variations by aligning feature distributions across different domains (Huang et al.,
2024). Occlusion and low-resolution data present additional challenges, particularly in
surveillance applications where subjects may be partially obscured. One solution uses attention
mechanisms to focus on visible body parts while reconstructing missing information (Hasan et
al., 2024). Cross-domain generalization is another persistent issue, as models trained in
laboratory settings often fail in real-world environments. Unsupervised and self-supervised
learning approaches, aim to bridge this gap by reducing reliance on labeled data (Pinc¢i¢, SuSanj
and Lenac, 2022) (Y. Wang et al., 2025). Recurrent Neural Networks (RNNs) (Xing, Li and
Zhang, 2018) (Zhang et al., 2022) (Rashmi and Guddeti, 2022) capture temporal dependencies,
while Deep Autoencoders (DAe) (Song et al., 2019) (Li et al, 2019) learn compact gait
representations. Hybrid models combining CNNs, RNNs, and DAe further improve recognition
accuracy by leveraging their complementary strengths (Zhang et al., 2020) (Zhang et al., 2022).

While recent gait recognition methods have shown considerable promise, they often
encounter difficulties in capturing distinctive motion features under real-world challenges such
as changes in attire (Altab Hossain et al., 2010) (Castro et al., 2024) , carried objects (Mizuno et
al., 2024) (Uddin et al., 2018), and varying camera viewpoints (Makihara et al., 2015)
(Muramatsu et al., 2015) (Du and Zhao, 2024). Moreover, their non-end-to-end architectures—
typically involving separate stages for 3D reconstruction, feature extraction, and gait matching—
introduce significant limitations by increasing computational complexity and reducing overall
efficiency for practical deployment (Mandlik et al., 2025; Hasan et al., 2024; Sepas-Moghaddam
and Etemad, 2023; Sokolova and Konushin, 2019; Dos Santos et al., 2023; T. Li et al., 2024).
To overcome these obstacles, this study introduces GaitSTR, a unique framework employing
pyramid mapping to perform hierarchical spatial and temporal feature extraction. By
decomposing gait sequences into multiple spatial scales, the method captures motion patterns
ranging from fine to coarse granularity. The framework integrates a deep densely connected
network to extract spatial features and a memory-augmented recurrent neural network with
temporal attention to capture sequential dependencies in motion. This combined strategy allows
the model to focus on the most informative segments of the gait cycle, reducing noise and
improving recognition performance across varied conditions, thereby enhancing its suitability for
real-world applications.

3. Material and Methods
The block diagram of the proposed GaitSTR framework, illustrated in Figure 1, presents a
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structured flow for processing gait sequences and extracting discriminative spatio-temporal
features. The process begins with input silhouettes derived from a gait video sequence that
captures the walking motion of an individual. These silhouettes are first processed by the
Pyramid Mapping Module, which decomposes the input into fine-to-coarse spatial scales to
enhance multi-level motion representation. The resulting features are then passed through two
parallel processing streams: one stream is input to an Attention-Guided Network to extract
salient spatial features using temporal attention, while the other stream is processed by a
Memory-Augmented Recurrent Neural Network (RNN) to capture sequential motion cues across
frames. The outputs of these spatial and temporal pathways are integrated in the final Gait
Prediction block, which implicitly performs feature fusion by combining spatial attention and
sequential dependencies, followed by classification to identify the subject based on the learned
gait features.

Input Temporal Attention

Silhouettes

Fine-to-Coarse __,| Attention-Guided
Spatial Features Network

VAN
A

Pyramid ﬂ
Mapping

Densely Connecled

AR
£ | | IMemory-Augmented
Fine-to-Coarse RNN

Spatial Features

Sequential Motion
Cues

Figure 1. The GaitSTR framework.

3.1 Frame-wise Detection and ROI extraction

As illustrated in Figure 2, the system performs object detection on each input video frame,
focusing on identifying and isolating human subjects. For each detected individual, bounding
boxes are generated dynamically to localize the region of interest, ensuring that the gait-specific
features are captured accurately and consistently across frames. This process significantly
reduces background noise and irrelevant visual data, leading to more precise silhouette
extraction and improved recognition performance. Following object detection and ROI
extraction, the system proceeds with detailed preprocessing and enhancement of the extracted
gait silhouettes.
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Figure 2. Object detection is performed on each frame, and bounding boxes are generated around detected objects.

3.2Data Augmentation

Data augmentation is a technique used to enhance the size and diversity of a dataset by
introducing random transformations to the original data. For instance, images can be rotated,
cropped, or flipped. This approach is commonly employed to reduce the risk of overfitting, ensuring
the model's robustness and its ability to generalize effectively during the training process. The Table
1 below outlines the parameters employed for data augmentation during the training process. Figure 4
provides a subjective depiction of the results produced by data augmentation.

Table 1. Augmentation Type and parameters

Serial Number Augmentation Type Parameter Details

1 Rotation Random rotation within —10 to 10 degrees
2 Reflection (X-axis) No specific variation applied

3 X-axis Translation Random shift in the range of —5 to 5 pixels
4 Y-axis Translation Random shift in the range of —5 to 5 pixels

Figure 4. Data augmentation on gait silhouettes.

3.3 Pyramid Mapping Module
The Pyramid Mapping Module is a core component of the proposed GaitSTR framework,

designed to enhance the representation of spatial and temporal dynamics in gait sequences. This
module decomposes the input silhouette sequence into a hierarchy of spatial scales, such as fine,
medium, and coarse resolutions, enabling the model to capture motion information at multiple levels
of abstraction. Given an input silhouette sequence S = |sy, ... S¢, .... S7|, where T denotes the number of
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frames, shallow spatial features F; are extracted from each frame s using a base convolutional
feature extractor: Ft = ¢(s¢), t=1,2,...,T where ¢(-) denotes the initial feature extraction function . At
finer scales, the module preserves subtle and localized motion cues such as limb movement and foot
positioning, while coarser scales retain global structural patterns like posture and walking trajectory.
Each feature map F; is then decomposed into a set of multi-scale representations {F{", Ft® . F®},
corresponding to L spatial levels. For scale /, the feature map is down-sampled or partitioned into R,
spatial regions: F(¥ =Poolg/(F), /=1, 2..., L. This multi-resolution decomposition provides robustness
against common variations in gait data, including changes in clothing, carried objects, and viewpoint
shifts. Each spatial scale acts as a complementary representation, allowing the network to better
capture the diversity of gait features across time. The extracted multi-scale feature maps are then
forwarded to the subsequent processing streams for spatial attention modeling and temporal
sequence learning. These multi-scale features are concatenated along the spatial axis to form the final
pyramid-mapped representation:

ER HxWxC

F, = {Concat} (FE(I)}, FE(Z)}, e FE(L)}) (1)

This aggregated representation F, is forwarded to the spatial and temporal branches of the network,
facilitating robust spatio-temporal learning. By encoding fine-to-coarse spatial information, the Pyramid
Mapping Module acts as a powerful feature encoder, ensuring that both detailed and holistic motion
patterns are available for downstream processing in the GaitSTR architecture.

3.4 Attention-Guided Network (Spatial Stream)

The Attention-Guided Network is responsible for learning spatially discriminative representations by
dynamically identifying and emphasizing the most informative regions in each frame of the gait sequence.
After multi-scale decomposition in the Pyramid Mapping Module, the resulting features
F.€ R ™W*C retain both local and global motion patterns. However, not all regions within these feature
maps contribute equally to identifying an individual’s gait.

To address this, a spatial attention mechanism is introduced. A learnable attention map A; € [0,1]"V
is generated using a lightweight convolutional layer followed by a sigmoid activation:

Ar=0o{Conv (F.) A:} (2)

This attention map highlights spatial locations that are most relevant for recognition, such as legs,
feet, or torso orientation. The final spatially refined feature map is obtained by applying element-wise
multiplication:

F§=ft O A (3)

Here, Odenotes the Hadamard (element-wise) product. These attended features Fy® are then aggregated
across time or directly passed to the fusion layer, preserving only the most discriminative spatial cues
while suppressing irrelevant background information or occlusions. This improves robustness to noise
and enhances the generalization capability of the network across varying conditions.

3.5 Memory-Augmented Recurrent Neural Network (Temporal Stream):

The Memory-Augmented RNN module models the temporal evolution of gait patterns by
learning long-range dependencies between frames in a sequence. Human gait is inherently
periodic, with subtle variations across time that carry unique identity cues. Capturing these
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sequential dynamics is crucial for effective recognition.

Given the sequence of multi-scale{i' F3,F3 F t}, a recurrent unit processes each time step:

.........

h, = {RNN}(FD h{t—l}) (4)

where 4, represents the hidden state at time ¢, carrying accumulated temporal information up to
that point. To further enhance this module, a temporal attention mechanism is applied. Not all
frames are equally informative—some contain more distinctive phases of the gait cycle (e.g., leg
crossing or foot contact). Attention weights a: are computed over the hidden states:

{exp(Wy-he)}
a; = 5
t Zg}: 1} exp(Wq-hy) ( )

where W, € R*4 g a trainable weight vector, hy € RY is the RNN output at time t, and F,, is the
weighted feature capturing the entire motion sequence. These weights are used to compute a weighted
sum of all hidden states, resulting in a temporally aggregated feature:

Fm = {:1 at : ht (6)

The memory-augmented mechanism enhances the RNN’s ability to preserve long-term
dependencies and focus on key temporal cues, making it particularly effective for modeling
complex gait patterns, especially in unconstrained environments.

3.6 Attention Unit

The Attention Unit serves as a crucial component in the GaitSTR framework, allowing the
model to dynamically focus on the most salient spatial and temporal features within the gait
sequence. This unit enhances interpretability and performance by allocating greater importance

to discriminative regions and frames.

Attention Unit

Feature Extraction
Backbone

v

Spatial Attention Module

Temporal Encoding
via RNN

Temporal Attention
Module

Final Representation
for Classification/Matching

Figure 5. The Attention Unit.

3.6.1 Spatial Attention Module

Each silhouette frame st is first processed to extract a spatial feature map F; €
However, not all spatial regions within a frame are equally informative—some parts of the body (like
leg movement) often carry more identity cues than others. To selectively emphasize these regions, a

R{HXWXC}.
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spatial attention map A, € [0, 1]M*W} is learned. The spatial attention map is computed using a
lightweight network—typically involving 1x1 convolutions and activation functions like softmax or
sigmoid—to produce an attention mask that is broadcasted across all channels of the input feature
map.

th A, O F, (7)

where F, is the spatially attended feature, © denotes element-wise multiplication, A, emphasizes key
regions such as limbs or torso depending on their motion saliency.

3.6.2 Temporal Attention Module

Once the spatial features across time {151, FZ, ) F‘T} are encoded into temporal representations
via an RNN, the model generates a sequence of hidden states {h,,h,,...,ht}. However, different
frames in a gait sequence carry varying importance depending on walking phase, occlusion, or noise.
To manage this, the temporal attention mechanism learns a weight o € [0,1] for each time step,
capturing the relative contribution of each frame toward the final prediction. The equation for attention
weight and final aggregated temporal feature is as given by equation (5) and (6) respectively.

This dual-attention mechanism enables GaitSTR to adaptively focus on the most relevant spatial and

temporal elements, improving robustness against real-world variations like occlusion, clothing changes, and
speed fluctuations.

4, Classification

One of the key components in the training strategy is a hybrid loss function, which
combines Triplet Loss (Wang et al., 2020) and ArcFace Loss (Deng ef al., 2019). This dual-loss
strategy optimizes the learning of feature embeddings in order to maximize discrimination, an
essential requirement for real world performance since the differences within a class are often
far smaller than the similarities between classes.

The Triplet Loss proceeds as follows: triplets with an anchor sample, a positive sample
(same identity), negative sample (different identity) The goal is that the distance between the
anchor and positive is closer than that of anchor and negative by at least a margin. This loss
function boosts the network to find a set of unit feature-level clusters for each identity which are
tight through optimization and separated from other identities. This metric learning method
directly affects the geometry of the embedding space. This variation of metric learning has the
direct impact on the geometry of embedding space, making it more structured and
discriminative.

Luipiec = XN UIF(6 — FQaPI? = NIf (6 — FQMI? + al* (8)

where f(x) denotes the embedding of sample x, xi#, x;?, and x;* represent the anchor, positive, and
negative samples respectively, I-I? is the squared Euclidean norm, a is a predefined margin, and
[-]" denotes the hinge function (i.e., max(0, -)).

This loss ensures intra-class compactness and inter-class separation by dynamically
adjusting the feature space based on sample relationships.

On the other hand, ArcFace Loss adds an angular margin into the softmax loss and turns
regular learning from optimizing the distance in Euclidean space to optimize the angle based
distance. This alteration is used to impose a stronger decision boundary by normalizing the
features on a hypersphere and punishing the angular distance of learned features against class
centers. Thus, the network would learn to produce embeddings that are not only separable but
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also uniformly distributed across the angular sector plane. This kind of angular regularization is
especially effective for identity-based tasks such as gait recognition, where subtle differences
between subjects must be emphasized.

{s-cos(ﬂyi+ m)}
= —(Hyw :
LaTC - (N) Z{i=1} lo'g e{s~cos(0yi+ m)}+ {s-cos(ej)} e{s~cos(9j)}

{ = yile

where, 6, is the angle between the embedding vector of the ith sample and its corresponding class
center, m is the additive angular margin, s is the scaling factor applied to the feature vectors, j # y;
refers to all classes other than the correct class, cos(8,; + m) increases the angular distance between
classes in the feature space.

Combining these two loss functions—Triplet Loss, which promotes intra-class compactness and
inter-class separation, and ArcFace Loss, which imposes angular margin constraints—results in a
more structured and discriminative feature space. This integrated loss strategy enables the network to
learn embeddings that are both tightly clustered within identities and well-separated across different
classes. Consequently, the model exhibits enhanced generalization capability across a range of
challenging conditions, including variations in walking speed, changes in viewpoint, clothing
alterations, and partial occlusions. Such a robust learning mechanism significantly improves the
reliability and accuracy of gait recognition systems in real-world deployment scenarios.

Total loss function = Triplet Loss + ArcFace Loss (10)

5. Experiments
5.1 Datasets

GREW (Guo et al., 2025) includes gait data from 27,345 subjects, split into 20,000 for
training (102,887 sequences), 345 for validation (1,784 sequences), and 6,000 for testing (24,000
sequences). Collected in unconstrained environments, it features uncontrolled camera setups,
irregular walking paths, and variations in viewpoint, clothing, and occlusion. The number of
sequences per subject is limited and random, introducing diverse covariate distributions and class
imbalance, making it well-suited for evaluating model generalization in real-world conditions.

OU-ISIR (Iwama et al., 2012) consists of 4,007 subjects (2,135 males and 1,872 females)
aged 1-94 years. Gait sequences are captured from four view angles (55°, 65°, 75°, and 85°) under
a single walking condition. Each subject has one gallery and one probe sequence.

OU-MVLP (Takemura et al.,, 2018)is among the largest publicly available gait datasets,
containing 10,307 participants recorded from 14 view angles. Each subject has two sequences per
view—*Seq-01" for the gallery and ‘Seq-00’ for probes—supporting large-scale cross-view gait
recognition studies.

CASIA-B (Yu, Tan and Tan, 2006) comprises 124 subjects recorded under three conditions:
normal walking (NM), walking with a bag (BG), and walking with a coat (CL), across 11 views
ranging from 0°—180°. For evaluation, the first 74 subjects form the training set and the remaining
50 the testing set. NM-1 to NM-4 sequences are used as the gallery, while the remaining NM, BG,
and CL sequences serve as probes.

5.2 Implementation details
To maintain computational efficiency, all input gait silhouettes are resized to 64 x 44. Model
optimization is carried out using the Adamax optimizer due to its adaptability to complex gait
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patterns. The mini-group size—representing the number of subjects and sequences per subject—is
configured as (8,16) for the CASIA-B dataset, (32,16) for both the OU-MVLP and OU-ISIR
datasets, and (32,8) for the GREW dataset. Training is performed with a constant learning rate of
1x107%, running for 300,000 iterations on CASIA-B, 350,000 iterations on OU-MVLP and OU-ISIR,
and 400,000 iterations on GREW.
The GaitSTR model contains 9.8M parameters, requires 2.3 GFLOPs per sequence, and achieves
an average inference speed of 12.5 ms per sequence on an NVIDIA RTX 3060 GPU, enabling real-
time deployment.

6. Results and Comparative Analysis
The performance of GaitSTR is benchmarked against a diverse set of state-of-the-art gait
recognition methods, including recent deep learning as well as classical and hybrid techniques.

6.1 GaitSTR Performance evaluation against the GREW Dataset

Table 2 presents a comparative analysis of state-of-the-art gait recognition methods on the
GREW dataset using Rank-1, Rank-5, Rank-10, and Rank-20 accuracies. Earlier approaches such as
GEINet and GaitPart achieve lower recognition rates, while more recent models including DyGait,
GaitMoE, and GaitC3I show considerable improvement in performance. The proposed GaitSTR
surpasses all existing methods, achieving the highest accuracies across all ranks—83.5% at Rank-1,
91.7% at Rank-5, 86.3% at Rank-10, and 92.4% at Rank-20—setting a new benchmark on the GREW
dataset. These results clearly demonstrate the robustness and effectiveness of the GaitSTR framework
under diverse and challenging real-world conditions.

The superior performance of GaitSTR can be attributed to its pyramid-based spatial-temporal
feature decomposition and refined attention mechanisms. It consistently outperforms attention-guided
and expert-mixture networks, validating its discriminative feature learning capabilities. The architecture
exhibits strong generalization, maintaining high accuracy across a range of variations such as clothing,
speed, and occlusion. Overall, GaitSTR proves to be a reliable and scalable solution for real-world gait
recognition applications.

Table 2. Rank-1, Rank-5, Rank-10, and Rank-20 Accuracy on the GREW Dataset

Method Rank-1 Rank-5 Rank-10 Rank-20
GaitMPA (Huo et al., 2026) 70.9 83.4 87.5 90.0
GaitGCI (Dou et al., 2023) 68.5 80.8 84.9 87.7
GaitSet (Chao et al., 2022), 46.3 63.6 70.3 76.8
DyGait (M. Wang et al., 2023) 71.4 83.2 86.8 89.5
MTSGait (Zheng et al., 2022) 55.3 71.3 76.9 81.6
GaitPart (Fan et al., 2020) 44.0 60.7 67.3 73.5
CSTL (Huang et al., 2021) 50.6 65.9 71.9 76.9
GEINet (Shiraga et al., 2016) 6.8 13.4 17.0 21.0
GaitGL (Lin, Zhang and Yu, 2021) 47.3 63.6 69.3 74.2
OpenGait (Fan et al., 2023) 60.1 75.8 - -
GaitCSV (J. Wang et al., 2023) 64.9 78.7 - -
HSTL (L. Wang et al., 2023) 62.7 76.6 = =
CLASH (Dou et al., 2025) 67.0 78.9 - —
CLTD (Xiong et al., 2025) 78.0 87.8 — -
GaitMoE (Huang et al., 2025) 79.6 89.1 = =
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Method Rank-1 Rank-5 Rank-10 Rank-20
DeepGaitV2 (J. Wang et al., 2025) 79.4 88.9 - -
DeepGaitV2-30(J. Wang et al., 2025) 79.5 = = =
GaitC3I-GB (J. Wang et al., 2025) 68.9 80.4 = =
GaitC3I (J. Wang et al., 2025) 82.0 90.8 - —
QAGait (Wang et al., 2024), 59.1 74.0 - —

VPNet (Ma et al., 2024) 80.0 89.4 - —
GaitSTR 83.5 91.7 86.3 92.4

6.2 GaitSTR Performance evaluation against the OU-ISIR Dataset

A comparative evaluation of various state-of-the-art gait recognition methods under different
cross-view settings on the OU-ISIR large population dataset is presented in Table 3. Recognition
accuracy (%) is reported for multiple gallery—probe angle combinations (55°, 65°, 75°, and 85°).
Traditional approaches such as GEI (Yu, Tan and Tan, 2006), SVD (Kusakunniran et al., 2009), SVR
(Kusakunniran et al., 2010), and CMCC (Kusakunniran et al., 2010) show significant performance
drops under large view variations, while more advanced methods, including GEINet (Shiraga et al.,
2016), DCNN (Wu et al., 2017) and DLWD (Wu et al., 2018), achieve comparatively better results.
Recent state-of-the-art techniques, such as TENFE (Singh and Goyal, 2020), GEI+MGANs (He ef al.,
2019), and the proposed GaitSTR, maintain consistently high recognition rates across most angle pairs.
Notably, GaitSTR attains the highest overall average accuracy of 95.2%, demonstrating superior
robustness and adaptability to varying view angles compared to all other evaluated methods. The
proposed method surpasses the second-best performer (TENFE, 93.9%) by a margin of 1.3%,
establishing a new benchmark for cross-view gait recognition on this dataset.

Table 3. Accuracy (Average Rank-I) Comparison on the OU-ISIR dataset

Gallery angle (°) 55° 65° 75° 85°

Probe angle (°) 65° 75 85 55 750 g5 55 65 85° 55 65°  75°  Average
g(g;‘)f B G, gay g gis 97.1 969 841 9.8 975 923 9.1 962 978 93.9
gfo(;% (WeneRe Ve, son s gl 602 648 663 615 657 683 629 637 674 633
DLWD (Wuetal,2018) 798 653 519 80.1 844 737 701 861 841 557 781 846 744
DCNN (Wueral.,2017) 983 960 80.5 963 973 833 942 97.8 924 90.0 960 984 933
gﬁlg)}et (Shiragaetal, o35 g9 799 937 938 906 90.1 941 938 814 912 946 904
%&MGANS (Heetal, 994 961 779 977 985 844 948 989 86.4 869 974 995 93.1
acl]_\”'zc(ﬁf‘];“ak“”“ira“ 968 785 64.6 974 963 826 80.0 975 969 749 785 965 867
g(‘)folg)(Kusak““mmn etal, 933 704 523 923 936 771 774 940 947 523 763 925 805
g(‘)’]‘z)(Kusak“““im“ etal, 936 710 531 940 943 720 753 943 941 511 711 938 798
%2;}6)(“’ IO, ann 58 g 277 670 19.5 507 640 969 262 207 969 442
GaitSTR 80.7 958 97.8 893 97.1 883 99.7 987 983 9.5 931 987 952

6.3 GaitSTR Performance evaluation against the OU-MVLP Dataset

Table 4 presents a comparative evaluation of multiple state-of-the-art gait recognition methods
on the OU-MVLP dataset across various view angles ranging from 0° to 270°. The recognition
accuracies of earlier methods, such as GPAN (Chen et al., 2022), GaitSet (Chao et al., 2022), and
MvGGAN (Chen et al., 2021), demonstrate limited robustness under large view variations. More
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advanced techniques, including GaitGMT (Chen et al., 2024), GaitAMR (Chen et al., 2023), and
GaitMPL(G) (Dou et al., 2024), achieve notable performance improvements through enhanced
feature representation and cross-view alignment. The highest overall performance is attained by the
proposed GaitSTR, which achieves a mean accuracy of 96%, outperforming strong state-of-the-art
baselines such as GEI-CNN (Elharrouss et al., 2021) (95%) and Re-Id (Carley, Ristani and Tomasi,
2019) (92%). These results confirm GaitSTR’s ability to advance the state-of-the-art in large-scale,

Cross-view gait recognition.

Table 4. Rank-1 Accuracy on the OU-MVLP dataset

Method 0° 15 30° 45 60°  75°  90°  180° 195° 210° 225° 240° 255°  270° Mean
GTIEN(Chen and Li, 2024) 080 087 092 091 09 090 088 083 087 091 091 08 090 088 0.8
2R(]))21§’;°"Net (e e et 083 089 090 091 089 090 08 085 088 090 090 089 088 088 0.9
GaitGMT(Chen et al., 2024) 084 089 091 091 090 091 090 088 088 091 091 08 090 089 089
ZG(EZ‘;‘MR @z et 084 089 089 09 088 08 088 08 088 083 088 087 089 087 088
ZPOGZ%FI (O, 1L s BT 079 086 088 089 08 087 08 084 085 087 089 085 085 086 086
ZG(ET)’IPL(G) (o e et 084 091 092 092 091 091 091 08 090 091 091 091 091 090 090
DANet (Ma et al., 2023) 087 091 091 091 091 091 091 090 090 090 090 090 090 090 0.89
GPAN (Chen et al., 2022) 069 081 087 08 081 08 082 073 079 08 08 080 08 080 081
GaitSet (Chao ez al., 2022) 079 087 089 090 088 088 087 081 08 089 08 0872 087 086 087
MVGGAN (Chen et al., 2021) 052 062 063 057 055 061 061 054 058 059 058 056 057 056 058
Re-Id (Carley, Ristani and Tomasi

2&;; (Carley, Ristaniand Tomasi, 5 ¢9 093 095 095 095 095 08 090 095 095 093 094 094 092
RPNet (Qin ez al., 2022) 073 084 08 08 08 087 08 076 083 08 088 085 08 084 085
GEL-CNN (Elharrouss e al,, 2021) - 993 095 095 097 098 097 098 092 094 095 095 097 097 098 095
GaitSTR 098 098 096 095 089 098 096 093 096 098 092 093 098 097 096

6.4 GaitSTR Performance evaluation against the CASIA B Dataset

The comparison of state-of-the-art gait recognition methods on the CASIA-B dataset is
presented in Table 5, across three modes—Normal Walking (NM), Walking with a Bag (BG), and
Walking with a Coat (CL)—over eleven probe angles (0° to 180°).

In the NM mode, GaitSTR achieves the highest overall performance with an average accuracy of
98.1%, closely followed by STTN (Chen and Li, 2024) at 97.9% and GaitPart (Fan et al., 2020) at
96.2%. Traditional appearance-based models such as GEINet (Shiraga ef al., 2016)exhibit significantly
lower performance, with an average of 48.1%, indicating the superiority of modern deep spatio-temporal
feature learning strategies.

For the BG mode, GaitSTR again outperforms other methods, achieving 95.3% average
accuracy, followed by STTN (94.3%) and GaitPart (91.6%). Although PGOFI (Xu, Li and Hou, 2023)
maintains competitive results (90.9%), appearance-dependent methods like PoseGait (Liao et al., 2020)
and GEINet record much lower averages (36.0% and 23.5%, respectively), highlighting their
vulnerability to occlusions caused by carried objects.

Under the challenging CL mode, where gait silhouettes are heavily occluded by clothing
variations, GaitSTR maintains robust recognition with an average of 83.7%, outperforming all baselines.
STTN records 79.0%, and PGOFI achieves 78.3%, while traditional CNN-based approaches such as
CNN-LB (Wu et al., 2017) drop to 54.0% and GEINet remains below 25%, confirming the
difficulty of handling large clothing variations.
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Table 5. Rank-1 Accuracy on the CASIA-B dataset from different perspectives

Mode Method Probe (0°-180°) Average

0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180°
DensePoseGait (Liao et al., 65.7 79.7 82.8 84.4 79.4 77.9 80.1 83.4 83.7 74.3 61.5 77.5
ML-TAG (Saad Shakeel et 96.4 97.8 98.9 97.8 97.4 97.0 97.7 99.0 98.8 99.1 95.3 97.0

DDSTFDN (Qiao et al., 942 981 984 980 969 963 995 993 987 991 942 972
STTN (Chen and Li, 2024) 956 998 1000 990 973 958 976 994 997 990 935 97.9
LuGAN-HGC(Pan et al., 893 881 890 899 874 887 874 888 888 87.0  87.0 88.3
PGOFI (Xu, Li and Hou, 912 958 966 961 960 948 949 957 946 942  92.8 94.8
GaitBase (Fan et al., 2023) 948 997 998 990 968 953 973 992 996 992 948 978

Ny GaitSet (Chao et al., 934 981 985 978 926 909 942 973 984 970 89.1 952
GaitGraph(Teepe et al., 853 885 91.0 925 872 865 884 892 879 859 819 87.7
Siamese (Wang and Tang, 724 812 856 804 794 850 81.0 776 825 791 802 804
GaitPart (Fan et al., 941 986 993 985 940 923 959 984 992 978 904 962
PoseGait (Liao et al., 2020) 553 696 739 750 680 682 711 729 761 704 554 68.7
GaitNet (Song et al., 93.1 926 90.8 924 876 951 942 958 926 904 902 923
CNN-LB (Wu et al., 826 903 961 943 90.1 874 899 940 947 913 785  89.9
GEINet (Shiraga et al., 402 389 429 456 512 420 535 57.6 578 518 477 481
GaitSTR 967 98.6 979 993 987 977 978 997 988 987 989 984

DensePoseGait (Liao et al., 55.4 70.4 76.6 733 65.6 65.3 68.1 71.0 69.8 573 44.8 65.2
ML-TAG (Saad Shakeel et 94.2 96.7 97.6 96.2 96.0 92.7 95.2 97.4 98.2 98.1 92.6 95.8
DDSTFDN (Qiao et al., 91.6 95.1 96.9 94.2 92.0 89.2 91.5 94.5 97.3 96.5 88.8 93.4
STTN (Chen and Li, 92.4 95.7 97.0 96.0 92.5 89.6 91.7 96.7 98.8 98.0 88.5 94.3
LuGAN-HGC(Pan et al., 79.4 79.5 81.6 82.4 78.1 76.2 78.7 82.0 81.6 83.0 73.6 79.7
g{%(gfl (Xu, Li and Hou, 87.6 90.8 91.7 915 91.0 93.9 90.1 91.5 92.0 90.4 89.5 90.9
GaitBase (Fan et al., 2023) 93.6 96.4 96.1 95.6 92.1 88.7 90.8 95.3 97.2 96.0 90.7 93.9

GaitSet (Chao et al., 859 921 939 904 864 787 850 916 931 910 807  88.1
BG SaitGraph(Teepe er al., 758 767 759 761 714 739 780 747 7154 754 692 748
Siamese (Wang and Tang, 62.5 687 694 648 628 672 683 657 607 641 603 650
GaitPart (Fan et al., 89.1 948 967 951 883 849 890 935 961 938 858 916
PoseGait (Liao eral., 2020) 353 472 524 469 455 439 461 481 494 436 311 445
GaitNet (Song ez al., 888 887 887 943 854 927 911 926 849 844 867 889
CNN-LB (Wu et al., 642 806 827 769 648 631 680 769 822 754 613 724
GEINet (Shiraga ez al., 342 293 312 352 352 27.6 359 435 450 390 368 357
GaitSTR 97.6 967 956 978 932 91.8 987 967 954 948 968 959

DensePoseGait (Liao ef al., 41.8 47.7 49.7 50.3 46.5 46.0 49.5 47.8 47.4 394 29.3 452
ML-TAG (Saad Shakeel et 76.6 91.1 933 90.0 86.7 81.0 85.4 89.3 90.3 87.4 72.2 85.7
DDSTFDN (Qiao et al., 70.1 83.4 84.6 81.2 79.2 74.2 76.0 81.0 83.9 80.6 67.0 78.3
STTN (Chen and Li, 69.7 89.0 88.4 84.9 78.8 75.5 79.2 82.4 82.6 76.9 61.9 79.0
LuGAN-HGC(Pan et al., 72.8 72.3 694 752 77.0 79.6 80.5 78.1 76.3 74.9 72.8 75.4
%’{(]17(%{‘1 (Xu, Li and Hou, 73.0 74.5 79.1 79.8 81.5 82.5 81.1 79.4 77.8 76.6 75.7 78.3
GaitBase (Fan et al., 2023) 68.8 81.7 84.8 81.7 79.0 75.7 78.0 80.7 82.2 783 66.8 78.0

GaitSet (Chao et al., 63.7 75.6 80.7 775 69.1 67.8 69.7 74.6 76.1 71.1 55.7 71.1
CL ’()i{%t](\iraph(Teepe etal., 69.6 66.1 68.8 67.2 64.5 62.0 69.5 65.6 65.7 66.1 64.3 66.3
Siamese (Wang and Tang, 57.8 63.2 68.3 64.1 66.0 64.8 67.7 60.2 66.0 68.3 60.3 64.2
GaitPart (Fan et al., 70.7 85.5 86.9 833 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7

PoseGait (Liao et al., 2020) 243 29.7 413 38.8 382 38.5 41.6 44.9 42.2 334 22.5 36.0
GaitNet (Song et al., 2019) 50.1 60.7 72.4 72.1 74.6 78.4 70.3 68.2 53.5 44.1 40.8 62.3
CNN-LB (Wu et al., 2017) 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0
GEINet (Shiraga et al., 2016)  19.9 20.3 225 23.5 26.7 213 27.4 28.2 242 22.5 21.6 23.5
GaitSTR 87.1 898 925 933 862 773 779 853 939 813 69.7 84.9

6.5 Ablation Study

In this subsection, we conduct ablation studies to evaluate the individual contributions of
the channel-space attention module, temporal attention module, and the effect of data augmentation
in our proposed framework. All ablation experiments are conducted on the CASIA-B dataset for the
three different modes.

Ablation study on different modules. To explore the contribution of each attention component,
we start with a baseline network without any attention or augmentation, then gradually add channel-
space attention (CSA), temporal attention (TA), and data augmentation (DA). The ablation results
are summarized in Table 6. (1) Effectiveness of Channel-Space Attention. As shown in Table 3,
adding CSA to the baseline yields noticeable gains in Rank-1 accuracy across all conditions,
improving the mean accuracy from 82.8% to 88.1%. This demonstrates that enhancing channel and
spatial dependencies helps the network focus on discriminative gait regions. (2) Effectiveness of
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Temporal Attention. Integrating TA into the baseline improves recognition by leveraging temporal
dependencies between frames, achieving a mean accuracy of 87.7%. This confirms that certain gait
frames are more informative for identity recognition. (3) Combined Effect of CSA and TA. When
both CSA and TA are used, the mean accuracy further improves to 89.8%, indicating that spatial-
channel refinement and temporal weighting are complementary. (4) Effectiveness of Data
Augmentation. Finally, applying data augmentation to the full model boosts the mean accuracy to
93.0%, highlighting its importance in improving robustness against variations such as occlusion,
speed changes, and clothing.

These results clearly demonstrate that both CSA and TA independently enhance recognition
performance, while their combination produces further gains. Moreover, applying data
augmentation significantly strengthens robustness across all conditions.

Table 6 Ablation study of channel-space attention (CSA), temporal attention (TA), and data augmentation (DA) on
CASIA-B dataset (Rank-1, %)

Structure CSA TA DA NM BG CL Mean
Baseline — — — 88.1 86.2 74.2 82.8
CSA only v = - 92.3 90.4 81.7 88.1
TA only - v - 92.7 91.0 79.5 87.7
CSA +TA v v - 95.1 92.5 82.0 89.8
Without Data Augmentation v v v 96.2 93.3 82.9 90.8
Full (CSA+TA+DA) v v v 98.4 95.9 84.9 93.0

7. Conclusions

In this paper, we proposed GaitSTR, a novel gait recognition framework that integrates pyramid-
based hierarchical feature extraction with attention-guided spatial and temporal modeling. GaitSTR
decomposes gait sequences into multi-scale spatial representations, capturing both fine- and coarse-
grained motion patterns, while a memory-augmented RNN with temporal attention effectively models
sequential dynamics. The attention-guided dense network enhances spatial feature learning by focusing
on the most informative regions within silhouettes. Extensive experiments conducted on four widely
used benchmark datasets—GREW, OU-ISIR, OU-MVLP, and CASIA-B—demonstrated that GaitSTR
consistently outperforms state-of-the-art methods, achieving notable improvements under variations in
clothing, carrying conditions, and viewpoints. These results validate the robustness and generalization
capability of the proposed approach, establishing GaitSTR as a strong benchmark for future gait
recognition research. Future research will aim to extend GaitSTR’s capability to handle unseen
environments and extreme covariates through advanced cross-domain learning techniques.
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