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Abstract
Gait recognition is a developing biometric technique capable of identifying individuals from a distance,
with wide-ranging applications such as video surveillance. A primary challenge is the extraction of dis-
criminative gait features from silhouettes that are robust to variations in apparel, carried objects, and cam-
era viewpoints. To address these limitations, this study introduces GaitSTR — a novel framework that
harnesses pyramid mapping for enhanced temporal and spatial feature extraction, integrated with a deep
neural network comprising dense layers. Pyramid mapping decomposes gait sequences into multi-scale
spatial features, enabling GaitSTR to capture fine-to-coarse motion patterns and improve recognition un-
der varying conditions. The method focuses on extracting distinctive feature representations at different
frame levels, effectively utilizing spatial and temporal variations within video sequences. The proposed
model utilizes a memory-augmented recurrent neural network (RNN) enriched with temporal atten-
tion to capture sequential motion cues, while spatial features are extracted through a densely connected
attention-guided network By employing the pyramid-based hierarchical feature extraction, along with
attention mechanisms in both spatial and temporal component, the network can prioritize the most sig-
nificant video segments, improving its efficiency and learning capacity for processing intricate gait data.
The results are evaluated on four widely used benchmark datasets: GREW, OU-ISIR, OU-MVLP, and
CASIA-B—achieving 92.4% on GREW, 95.2% on OU-ISIR, and 0.96 mean accuracy on OU-MVLP,
and 98.4% (normal) on CASIA-B, surpassing state-of-the-art methods. These results underscore the ro-
bustness of our approach under diverse conditions, establishing a new benchmark for performance in gait
recognition.
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1. Introduction
Gait recognition has emerged as a prominent biometric technique for identifying individuals

based on their unique walking patterns. Gait offers the distinct advantage of enabling identification
from a distance without requiring active cooperation from the subject (Sethi et al., 2022; Song et
al., 2024). This contrasts with traditional anatomical biometrics such as fingerprints, facial features,
DNA, or iris patterns (Choi et al., 2019; Gadaleta & Rossi, 2018; Ma et al., 2017). These features have
made gait recognition a prominent area of research for surveillance-related applications, such as,
biometric criminal investigation, law enforcement civil security, and smart transportation systems
(Balazia & Sojka, 2018; Bastos & Tavares, 2025; Yao et al., 2022). As a result, significant research
attention has been devoted to gait recognition in recent years(Sepas-Moghaddam & Etemad, 2023).
Recent advancements in technology have established gait analysis (Cai et al., 2023; Prajapati et al.,
2021) as a reliable and non-invasive method for clinical evaluation, particularly in the diagnosis of
health conditions, identification of individuals, and assessment of locomotor patterns (Erdaş et al.,
2021; Panahi & Ghods, 2018). However, the accuracy of gait recognition is often challenged by
external variations such as changes in attire, carried objects, and camera perspectives (Hou et al.,
2023; Huo et al., 2026; Mandlik et al., 2025b). This underscores the necessity of improving model
robustness under diverse and unconstrained conditions (Wei et al., 2024). Earlier studies have in-
troduced multiple strategies to mitigate the challenges posed by changes in viewpoint, clothing,
and carried objects (Gao et al., 2022; Mitra & Acharya, 2007; Xu et al., 2021). These traditional
approaches are typically categorized into two groups: those utilizing the Gait Energy Image (GEI)
(Ben et al., 2020; Chen et al., 2018; Gupta & Chattopadhyay, 2021; Huang & Boulgouris, 2012;
Mogan et al., 2024) and those that interpret gait as sequence-independent sets (Chao et al., 2022; Lin
et al., 2021). While GEI-based techniques have been widely used, they often fail to capture detailed
spatiotemporal cues, which can adversely affect recognition accuracy. In contrast, methods that rep-
resent gait as sequence-independent sets—though they have yielded promising results in previous
studies—have primarily demonstrated effectiveness within controlled laboratory environments. To
mitigate the aforementioned challenges—such as variations in clothing, carried items, and camera
viewpoints—this study introduces GaitSTR for robust gait recognition. The approach combines
pyramid mapping with a densely layered deep neural architecture to improve the capture of motion
patterns across both spatial scales and time. By breaking down gait sequences into multiple reso-
lution levels, pyramid mapping facilitates the extraction of motion cues ranging from detailed to
broader movements, thereby increasing resilience to visual inconsistencies. To model time-based
dynamics effectively, the framework incorporates a memory-augmented RNN with a time-based
attention mechanism, enabling it to concentrate on crucial frame-level information. Simultane-
ously, a densely connected convolutional network embedded with channel and spatial attention
modules enhances spatial feature discrimination by adapting to variations across different channels
and regions. This integrated strategy—leveraging hierarchical decomposition and attention-based
refinement—allows GaitSTR to emphasize the most informative portions of a video sequence, lead-
ing to more accurate and robust gait feature learning.

2. Literature Survey
Over the past three decades, research in Gait Recognition field has evolved from early model-

based approaches to sophisticated deep learning techniques, significantly improving recognition ac-
curacy and robustness. This literature review provides a comprehensive examination of gait recog-
nition methodologies.
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2.1 Traditional Gait Recognition Approaches
The conceptual foundation of gait recognition can be traced back to psychological studies on

human motion perception. The seminal work (Johansson, 1973) demonstrated that individuals could
recognize biological motion using only point-light displays, suggesting that gait contains distinctive
patterns that can be computationally modeled. This discovery inspired early research efforts in the
1990s to develop automated gait recognition systems. A model-based approach (Niyogi & Adelson,
1994) was among the first proposed, analyzing motion trajectories to extract gait characteristics.
Their work established that kinematic features, such as stride length and joint angles, could be used
for identification. Fourier analysis was applied to model leg movements, demonstrating that gait
could be represented mathematically for recognition purposes (Cunado et al., 2003). These pioneer-
ing studies confirmed the viability of gait as a biometric trait and set the stage for more structured
research in the early 2000s. Early gait recognition systems primarily employed two methodolog-
ical paradigms: model-based and appearance-based techniques. Model-based approaches relied on
constructing biomechanical representations of the human body to extract gait-related features. A
stride-based model was developed to measure step length and walking speed, achieving reason-
able accuracy in controlled environments (BenAbdelkader et al., 2002).However, this approach was
sensitive to variations in walking speed and camera angles. A kinematic model was later intro-
duced to track hip and knee movements, improving robustness against minor viewpoint changes
(Bouchrika & Nixon, 2008). Despite their interpretability, model-based methods faced significant
challenges due to their dependency on accurate pose estimation, which was difficult to achieve with
low-resolution or occluded video footage. Appearance-based methods, in contrast, avoided explicit
modeling by analyzing the silhouette of a walking person. These approaches gained popularity due
to their computational efficiency and effectiveness in controlled settings. A significant contribu-
tion was the introduction of the Gait Energy Image (GEI), a compact representation that averaged
silhouette sequences over a gait cycle (Han & Bhanu, 2006). The GEI became a benchmark for sub-
sequent research due to its ability to capture temporal gait dynamics in a single image. Silhouette-
based recognition was further enhanced by employing Dynamic Time Warping (DTW) to align
gait sequences temporally, addressing variations in walking speed (Liu & Sarkar, 2006). Despite
their advantages, appearance-based methods were sensitive to changes in clothing, carrying condi-
tions (e.g., backpacks or bags), and camera viewpoints, limiting their real-world applicability (Chao
et al., 2022; Liu et al., 2021; Mandlik et al., 2025c; Zou et al., 2025).

2.2 Deep Learning Revolution in Gait Recognition
The advent of deep learning in the 2010s brought transformative changes to gait recognition,

enabling end-to-end learning of discriminative features from raw data. Convolutional Neural Net-
works (CNNs) emerged as the dominant architecture for gait analysis due to their ability to learn
hierarchical spatial representations. CNNs were among the first applied to GEI, demonstrating su-
perior performance compared to traditional methods (Tong et al., 2017). A paradigm shift was later
introduced with GaitSet, which treated gait as an unordered set of silhouettes rather than a fixed
sequence. This approach significantly improved cross-view recognition by eliminating the need for
strict temporal alignment (Chao et al., 2022). The success of GaitSet highlighted the potential of
set-based representations in handling variable gait cycle lengths and occlusions. Recognizing that
gait is inherently a spatio-temporal process, researchers began incorporating recurrent architec-
tures and 3D convolutional networks to better capture motion dynamics. One approach combined
3D CNNs with Long Short-Term Memory (LSTM) networks to model both spatial and tempo-
ral gait features, achieving robust performance across different walking speeds (Liu et al., 2019).
Further advancement came with GaitPart, which focused on fine-grained part-level features to im-
prove recognition under varying carrying conditions (Fan et al., 2020). GaitPart’s emphasis on local
temporal dynamics demonstrated that part-based approaches could enhance robustness against ap-
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pearance variations. Most recently, transformer-based architectures have been applied to gait recog-
nition, leveraging self-attention mechanisms to capture long-range dependencies in gait sequences.
GaitGL integrated global and local features using transformer modules, achieving state-of-the-art
performance on benchmark datasets (Lin et al., 2021). A pure transformer-based model, GaitFormer,
was introduced and outperformed CNN-based methods in cross-view recognition tasks (Li et al.,
2024a). These advancements underscore the growing influence of transformer architectures in gait
recognition, particularly in handling complex variations in viewpoint and appearance. Despite sig-
nificant progress, gait recognition systems still face several challenges that hinder their deployment
in real-world scenarios. Viewpoint variation remains a critical issue, as most systems experience
performance degradation when the camera angle changes. Recent work addressed this through
adversarial learning, generating view-invariant gait representations (He et al., 2019). Clothing and
carrying conditions continue to pose difficulties, as heavy coats or bags can alter gait appearance. A
domain adaptation network called GaitDAN improved robustness against such variations by align-
ing feature distributions across different domains (Huang et al., 2024). Occlusion and low-resolution
data present additional challenges, particularly in surveillance applications where subjects may be
partially obscured. One solution uses attention mechanisms to focus on visible body parts while
reconstructing missing information (Hasan et al., 2024). Cross-domain generalization is another
persistent issue, as models trained in laboratory settings often fail in real-world environments. Un-
supervised and self-supervised learning approaches, aim to bridge this gap by reducing reliance on
labeled data (Pinčić et al., 2022; Wang et al., 2025b). Recurrent Neural Networks (RNNs) (Rashmi
& Guddeti, 2022; Xing et al., 2018; Zhang et al., 2022) capture temporal dependencies, while Deep
Autoencoders (DAe) (Li et al., 2019; Song et al., 2019) learn compact gait representations. Hybrid
models combining CNNs, RNNs, and DAe further improve recognition accuracy by leveraging
their complementary strengths (Zhang et al., 2020; Zhang et al., 2022).

While recent gait recognition methods have shown considerable promise, they often encounter
difficulties in capturing distinctive motion features under real-world challenges such as changes in
attire (Altab Hossain et al., 2010; Castro et al., 2024) , carried objects (Mizuno et al., 2024; Uddin
et al., 2018), and varying camera viewpoints (Du & Zhao, 2024; Makihara et al., 2015; Muramatsu
et al., 2015). Moreover, their non-end-to-end architectures—typically involving separate stages
for 3D reconstruction, feature extraction, and gait matching—introduce significant limitations by
increasing computational complexity and reducing overall efficiency for practical deployment (Filipi
Gonçalves Dos Santos et al., 2023; Hasan et al., 2024; Li et al., 2024b; Mandlik et al., 2025a; Sepas-
Moghaddam & Etemad, 2023; Sokolova & Konushin, 2019). To overcome these obstacles, this study
introduces GaitSTR, a unique framework employing pyramid mapping to perform hierarchical
spatial and temporal feature extraction. By decomposing gait sequences into multiple spatial scales,
the method captures motion patterns ranging from fine to coarse granularity. The framework
integrates a deep densely connected network to extract spatial features and a memory-augmented
recurrent neural network with temporal attention to capture sequential dependencies in motion.
This combined strategy allows the model to focus on the most informative segments of the gait
cycle, reducing noise and improving recognition performance across varied conditions, thereby
enhancing its suitability for real-world applications.

3. Materials and Methods
The block diagram of the proposed GaitSTR framework, illustrated in Figure 1, presents a

structured flow for processing gait sequences and extracting discriminative spatio-temporal features.
The process begins with input silhouettes derived from a gait video sequence that captures the
walking motion of an individual. These silhouettes are first processed by the Pyramid Mapping
Module, which decomposes the input into fine-to-coarse spatial scales to enhance multi-level motion
representation. The resulting features are then passed through two parallel processing streams: one
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stream is input to an Attention-Guided Network to extract salient spatial features using temporal
attention, while the other stream is processed by a Memory-Augmented Recurrent Neural Network
(RNN) to capture sequential motion cues across frames. The outputs of these spatial and temporal
pathways are integrated in the final Gait Prediction block, which implicitly performs feature fusion
by combining spatial attention and sequential dependencies, followed by classification to identify
the subject based on the learned gait features.

Figure 1. The GaitSTR framework.

3.1 Frame-wise Detection and ROI extraction
As illustrated in Figure 2, the system performs object detection on each input video frame, fo-

cusing on identifying and isolating human subjects. For each detected individual, bounding boxes
are generated dynamically to localize the region of interest, ensuring that the gait-specific features
are captured accurately and consistently across frames. This process significantly reduces back-
ground noise and irrelevant visual data, leading to more precise silhouette extraction and improved
recognition performance. Following object detection and ROI extraction, the system proceeds with
detailed preprocessing and enhancement of the extracted gait silhouettes.

Figure 2. Object detection is performed on each frame, and bounding boxes are generated around detected objects.

3.2 Data Augementation
Data augmentation is a technique used to enhance the size and diversity of a dataset by intro-

ducing random transformations to the original data. For instance, images can be rotated, cropped,

Braz. J. Biom., v.43, e-43857, 2025. 5



Mandlik et al.

or flipped. This approach is commonly employed to reduce the risk of overfitting, ensuring the
model’s robustness and its ability to generalize effectively during the training process. The Table 1
below outlines the parameters employed for data augmentation during the training process. Figure
3 provides a subjective depiction of the results produced by data augmentation.

Table 1. Augmentation Type and parameters

Serial Number Augmentation Type Parameter Details
1 Rotation Random rotation within –10 to 10 degrees
2 Reflection (X-axis) No specific variation applied
3 X-axis Translation Random shift in the range of –5 to 5 pixels
4 Y-axis Translation Random shift in the range of –5 to 5 pixels

Figure 3. Object detection is performed on each frame, and bounding boxes are generated around detected objects.

3.3 Pyramid Mapping Module
The Pyramid Mapping Module is a core component of the proposed GaitSTR framework,

designed to enhance the representation of spatial and temporal dynamics in gait sequences. This
module decomposes the input silhouette sequence into a hierarchy of spatial scales, such as fine,
medium, and coarse resolutions, enabling the model to capture motion information at multiple
levels of abstraction.

Given an input silhouette sequence

S = ⌊s1, . . . , st, . . . , sT⌋ (1)

where T denotes the number of frames, shallow spatial features Ft ∈ RH×W×C are extracted
from each frame st using a base convolutional feature extractor:

Ft = ϕ(st), t = 1, 2, . . . , T (2)

where ϕ(·) denotes the initial feature extraction function.
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At finer scales, the module preserves subtle and localized motion cues such as limb movement
and foot positioning, while coarser scales retain global structural patterns like posture and walking
trajectory. Each feature map Ft is then decomposed into a set of multi-scale representations

{F(1)
t , F(2)

t , . . . , F(L)
t } (3)

corresponding to L spatial levels.
For scale l, the feature map is down-sampled or partitioned into Rl spatial regions:

F(l)
t = PoolRl (Ft), l = 1, 2, . . . , L (4)

This multi-resolution decomposition provides robustness against common variations in gait data,
including changes in clothing, carried objects, and viewpoint shifts. Each spatial scale acts as a
complementary representation, allowing the network to better capture the diversity of gait features
across time.

The extracted multi-scale feature maps are then forwarded to the subsequent processing streams
for spatial attention modeling and temporal sequence learning. These multi-scale features are con-
catenated along the spatial axis to form the final pyramid-mapped representation:

F̃t = Concat
(

F(1)
t , F(2)

t , . . . , F(L)
t

)
(5)

This aggregated representation F̃t is forwarded to the spatial and temporal branches of the network,
facilitating robust spatio-temporal learning. By encoding fine-to-coarse spatial information, the
Pyramid Mapping Module acts as a powerful feature encoder, ensuring that both detailed and holistic
motion patterns are available for downstream processing in the GaitSTR architecture.

3.4 Attention-Guided Network (Spatial Stream)
The Attention-Guided Network is responsible for learning spatially discriminative representa-

tions by dynamically identifying and emphasizing the most informative regions in each frame of
the gait sequence. After multi-scale decomposition in the Pyramid Mapping Module, the resulting
features

F̃t ∈ RH×W×C (6)

retain both local and global motion patterns. However, not all regions within these feature maps
contribute equally to identifying an individual’s gait.

To address this, a spatial attention mechanism is introduced. A learnable attention map

At ∈ [0, 1]H×W (7)

is generated using a lightweight convolutional layer followed by a sigmoid activation:

At = σ
(
Conv(F̃t)

)
(8)

This attention map highlights spatial locations that are most relevant for recognition, such as legs,
feet, or torso orientation. The final spatially refined feature map is obtained by applying element-
wise multiplication:

Fs
t = F̃t ⊙ At (9)

Here, ⊙ denotes the Hadamard (element-wise) product. These attended features Fs
t are then

aggregated across time or directly passed to the fusion layer, preserving only the most discrimina-
tive spatial cues while suppressing irrelevant background information or occlusions. This improves
robustness to noise and enhances the generalization capability of the network across varying con-
ditions.
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3.5 Memory-Augmented Recurrent Neural Network (Temporal Stream)

The Memory-Augmented RNN module models the temporal evolution of gait patterns by
learning long-range dependencies between frames in a sequence. Human gait is inherently pe-
riodic, with subtle variations across time that carry unique identity cues. Capturing these sequential
dynamics is crucial for effective recognition.

Given the sequence of multi-scale features

{F̃1, F̃2, F̃3, . . . , F̃T} (10)

a recurrent unit processes each time step:

ht = RNN(F̃t, ht–1) (4)

where ht represents the hidden state at time t, carrying accumulated temporal information up
to that point.

To further enhance this module, a temporal attention mechanism is applied. Not all frames are
equally informative—some contain more distinctive phases of the gait cycle (e.g., leg crossing or
foot contact). Attention weights αt are computed over the hidden states:

αt =
exp(Wa · ht)∑T

k=1 exp(Wa · hk)
(5)

where Wa ∈ R1×d is a trainable weight vector, ht ∈ Rd is the RNN output at time t, and Fm is
the weighted feature capturing the entire motion sequence. These weights are used to compute a
weighted sum of all hidden states, resulting in a temporally aggregated feature:

Fm =
T∑

t=1
αt · ht (6)

The memory-augmented mechanism enhances the RNN’s ability to preserve long-term depen-
dencies and focus on key temporal cues, making it particularly effective for modeling complex gait
patterns, especially in unconstrained environments.

3.6 Attention Unit

The Attention Unit, as indicated in Figure 4, serves as a crucial component in the GaitSTR
framework, allowing the model to dynamically focus on the most salient spatial and temporal features
within the gait sequence. This unit enhances interpretability and performance by allocating greater
importance to discriminative regions and frames.
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Figure 4. The Attention Unit.

3.7 Spatial Attention Module
Each silhouette frame st is first processed to extract a spatial feature map Ft ∈ RH×W×C. How-

ever, not all spatial regions within a frame are equally informative—some parts of the body (such as
leg movement) often carry more identity cues than others. To selectively emphasize these regions,
a spatial attention map At ∈ [0, 1]H×W is learned. The spatial attention map is computed using
a lightweight network—typically involving 1 × 1 convolutions and activation functions such as
softmax or sigmoid—to produce an attention mask that is broadcast across all channels of the input
feature map:

F̂t = At ⊙ Ft (7)

where F̂t is the spatially attended feature, ⊙ denotes element-wise multiplication, and At emphasizes
key regions such as limbs or torso depending on their motion saliency.

3.8 Temporal Attention Module
Once the spatial features across time {F̂1, F̂2, . . . , F̂T} are encoded into temporal representations

via an RNN, the model generates a sequence of hidden states {h1, h2, . . . , hT}. However, different
frames in a gait sequence carry varying importance depending on walking phase, occlusion, or
noise. To manage this, the temporal attention mechanism learns a weight αt ∈ [0, 1] for each time
step, capturing the relative contribution of each frame toward the final prediction. The equation
for the attention weight and the final aggregated temporal feature is given by equations (5) and (6),
respectively.

This dual-attention mechanism enables GaitSTR to adaptively focus on the most relevant spa-
tial and temporal elements, improving robustness against real-world variations such as occlusion,
clothing changes, and speed fluctuations.

4. Classification
One of the key components in the training strategy is a hybrid loss function, which combines

Triplet Loss(Wang et al., 2020) and ArcFace Loss (Deng et al., 2019). This dual-loss strategy op-
timizes the learning of feature embeddings in order to maximize discrimination—an essential re-
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quirement for real-world performance since the differences within a class are often far smaller than
the similarities between classes.

The Triplet Loss proceeds as follows: triplets are formed with an anchor sample, a positive sample
(same identity), and a negative sample (different identity). The objective is to ensure that the distance
between the anchor and positive is closer than that between the anchor and negative by at least a
margin α. This encourages the network to produce tightly clustered feature-level representations
for each identity while maintaining separation from other identities, thereby directly shaping the
geometry of the embedding space. The Triplet Loss is defined as:

Ltriplet =
N∑
i=1

[
|0f (xa

i ) – f (xp
i )|02 – |0f (xa

i ) – f (xn
i )|02 + α

]+
(11)

where f (x) denotes the embedding of sample x, xa
i , xp

i , and xn
i represent the anchor, positive, and

negative samples, respectively, |0 · |02 is the squared Euclidean norm, α is the predefined margin, and
[·]+ denotes the hinge function max(0, ·). This loss enforces intra-class compactness and inter-class
separation by dynamically adjusting the feature space based on sample relationships.

On the other hand, ArcFace Loss introduces an angular margin into the softmax loss, transforming
the optimization from Euclidean distance to angular distance (Deng et al., 2019). This imposes a
stronger decision boundary by normalizing features onto a hypersphere and penalizing angular
deviations from class centers. The ArcFace Loss is expressed as:

Larc = –
1
N

N∑
i=1

log
es·cos(θyi +m)

es·cos(θyi +m) +
∑

j ̸=yi
es·cos(θj)

(12)

where θyi is the angle between the embedding vector of the ith sample and its corresponding class
center, m is the additive angular margin, s is the scaling factor applied to the feature vectors, and
j ̸= yi refers to all classes other than the correct class. The term cos(θyi + m) increases the angular
separation between classes in the feature space.

Combining these two loss functions—Triplet Loss, which promotes intra-class compactness and
inter-class separation, and ArcFace Loss, which imposes angular margin constraints—yields a more
structured and discriminative embedding space. The total loss is formulated as:

Ltotal = Ltriplet + Larc (13)

This integrated loss strategy enables the network to learn embeddings that are both tightly clus-
tered within identities and well-separated across different classes. Consequently, the model exhibits
enhanced generalization capability across a range of challenging conditions, including variations in
walking speed, viewpoint changes, clothing alterations, and partial occlusions, thus improving the
robustness and accuracy of gait recognition in real-world scenarios.

5. Experiments
5.1 Datasets

GREW (Guo et al., 2025) includes gait data from 27,345 subjects, split into 20,000 for training
(102,887 sequences), 345 for validation (1,784 sequences), and 6,000 for testing (24,000 sequences).
Collected in unconstrained environments, it features uncontrolled camera setups, irregular walking
paths, and variations in viewpoint, clothing, and occlusion. The number of sequences per subject
is limited and random, introducing diverse covariate distributions and class imbalance, making it
well-suited for evaluating model generalization in real-world conditions.

10 Braz. J. Biom., v.43, e-43857, 2025.
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OU-ISIR (Iwama et al., 2012) consists of 4,007 subjects (2,135 males and 1,872 females) aged
1–94 years. Gait sequences are captured from four view angles (55°, 65°, 75°, and 85°) under a
single walking condition. Each subject has one gallery and one probe sequence.

OU-MVLP (Takemura et al., 2018) is among the largest publicly available gait datasets, con-
taining 10,307 participants recorded from 14 view angles. Each subject has two sequences per
view—‘Seq-01’ for the gallery and ‘Seq-00’ for probes—supporting large-scale cross-view gait recog-
nition studies.

CASIA-B (Yu et al., 2006) comprises 124 subjects recorded under three conditions: normal
walking (NM), walking with a bag (BG), and walking with a coat (CL), across 11 views ranging
from 0°–180°. For evaluation, the first 74 subjects form the training set and the remaining 50 the
testing set. NM-1 to NM-4 sequences are used as the gallery, while the remaining NM, BG, and
CL sequences serve as probes.

5.2 Implementation details
To maintain computational efficiency, all input gait silhouettes are resized to 64×44. Model op-

timization is carried out using the Adamax optimizer due to its adaptability to complex gait patterns.
The mini-group size—representing the number of subjects and sequences per subject—is config-
ured as (8, 16) for the CASIA-B dataset, (32, 16) for both the OU-MVLP and OU-ISIR datasets,
and (32, 8) for the GREW dataset. Training is performed with a constant learning rate of 1 × 10–4,
running for 300,000 iterations on CASIA-B, 350,000 iterations on OU-MVLP and OU-ISIR, and
400,000 iterations on GREW.

The GaitSTR model contains 9.8M parameters, requires 2.3 GFLOPs per sequence, and achieves
an average inference speed of 12.5 ms per sequence on an NVIDIA RTX 3060 GPU, enabling real-
time deployment.

6. Results and Comparative Analysis
The performance of GaitSTR is benchmarked against a diverse set of state-of-the-art gait recog-

nition methods, including recent deep learning as well as classical and hybrid techniques.

6.1 GaitSTR Performance Evaluation against the GREW Dataset
Table 2 presents a comparative analysis of state-of-the-art gait recognition methods on the

GREW dataset using Rank-1, Rank-5, Rank-10, and Rank-20 accuracies. Earlier approaches such
as GEINet (Shiraga et al., 2016) and GaitPart (Fan et al., 2020) achieve lower recognition rates,
while more recent models including DyGait(Wang et al., 2023c), GaitMoE (Huang et al., 2025),
and GaitC3I (Wang et al., 2025a) show considerable improvement in performance. The proposed
GaitSTR surpasses all existing methods, achieving the highest accuracies across all ranks—83.5% at
Rank-1, 91.7% at Rank-5, 86.3% at Rank-10, and 92.4% at Rank-20—setting a new benchmark
on the GREW dataset. These results clearly demonstrate the robustness and effectiveness of the
GaitSTR framework under diverse and challenging real-world conditions.

The superior performance of GaitSTR can be attributed to its pyramid-based spatial-temporal
feature decomposition and refined attention mechanisms. It consistently outperforms attention-
guided and expert-mixture networks, validating its discriminative feature learning capabilities. The
architecture exhibits strong generalization, maintaining high accuracy across a range of variations
such as clothing, speed, and occlusion. Overall, GaitSTR proves to be a reliable and scalable solution
for real-world gait recognition applications.
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Table 2. Rank-1, Rank-5, Rank-10, and Rank-20 Accuracy on the GREW Dataset.

Method Rank-1 Rank-5 Rank-10 Rank-20
GaitMPA (Huo et al., 2026) 70.9 83.4 87.5 90.0
GaitGCI (Dou et al., 2023) 68.5 80.8 84.9 87.7
GaitSet (Chao et al., 2022) 46.3 63.6 70.3 76.8
DyGait (Wang et al., 2023c) 71.4 83.2 86.8 89.5
MTSGait (Zheng et al., 2022) 55.3 71.3 76.9 81.6
GaitPart (Fan et al., 2020) 44.0 60.7 67.3 73.5
CSTL (Huang et al., 2021) 50.6 65.9 71.9 76.9
GEINet (Shiraga et al., 2016) 6.8 13.4 17.0 21.0
GaitGL (Lin et al., 2021) 47.3 63.6 69.3 74.2
OpenGait (Fan et al., 2023) 60.1 75.8 – –
GaitCSV (Wang et al., 2023a) 64.9 78.7 – –
HSTL (Wang et al., 2023b) 62.7 76.6 – –
CLASH (Dou et al., 2025) 67.0 78.9 – –
CLTD (Xiong et al., 2025) 78.0 87.8 – –
GaitMoE (Huang et al., 2025) 79.6 89.1 – –
DeepGaitV2 (Wang et al., 2025a) 79.4 88.9 – –
DeepGaitV2-30 (ibid.) 79.5 – – –
GaitC3I-GB (ibid.) 68.9 80.4 – –
GaitC3I (ibid.) 82.0 90.8 – –
QAGait (Wang et al., 2024) 59.1 74.0 – –
VPNet (Ma et al., 2024) 80.0 89.4 – –
GaitSTR 83.5 91.7 86.3 92.4

6.2 GaitSTR Performance evaluation against the OU-ISIR Dataset
A comparative evaluation of various state-of-the-art gait recognition methods under different

cross-view settings on the OU-ISIR large population dataset is presented in Table 3. Recogni-
tion accuracy (%) is reported for multiple gallery–probe angle combinations (55°, 65°, 75°, and
85°). Traditional approaches such as GEI (Yu et al., 2006), SVD (Kusakunniran et al., 2009), SVR
(Kusakunniran et al., 2010), and CMCC (ibid.) show significant performance drops under large view
variations, while more advanced methods, including GEINet (Shiraga et al., 2016), DCNN (Wu et
al., 2017) and DLWD (Wu et al., 2018), achieve comparatively better results. Recent state-of-the-
art techniques, such as TENFE (Singh & Goyal, 2020), GEI+MGANs (He et al., 2019), and the
proposed GaitSTR, maintain consistently high recognition rates across most angle pairs. Notably,
GaitSTR attains the highest overall average accuracy of 95.2%, demonstrating superior robustness
and adaptability to varying view angles compared to all other evaluated methods. The proposed
method surpasses the second-best performer (TENFE, 93.9%) by a margin of 1.3%, establishing a
new benchmark for cross-view gait recognition on this dataset.

6.3 GaitSTR Performance evaluation against the OU-MVLP Dataset
Table 4 presents a comparative evaluation of multiple state-of-the-art gait recognition methods

on the OU-MVLP dataset across various view angles ranging from 0◦ to 270◦. The recognition
accuracies of earlier methods, such as GPAN (Chen et al., 2022), GaitSet (Chao et al., 2022), and
MvGGAN (Chen et al., 2021), demonstrate limited robustness under large view variations. More
advanced techniques, including GaitGMT (Chen et al., 2024), GaitAMR (Chen et al., 2023), and
GaitMPL (Dou et al., 2024), achieve notable performance improvements through enhanced feature
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Table 3. Accuracy (Average Rank-1) comparison on the OU-ISIR dataset. The table compares various methods under dif-
ferent gallery and probe angles.

Gallery angle(°) 55◦ 65◦ 75◦ 85◦ Avg
Probe angle (°) 65◦ 75◦ 85◦ 55◦ 75◦ 85◦ 55◦ 65◦ 85◦ 55◦ 65◦ 75◦

TENFE (Singh & Goyal, 2020) 98.7 97.1 81.4 97.1 96.9 84.1 96.8 97.5 92.3 91.1 96.2 97.8 93.9
ffGEI (Wen & Wang, 2021) 59.3 57.8 63.1 60.2 64.8 66.3 61.5 65.7 68.3 62.9 63.7 67.4 63.3
DLWD (Wu et al., 2018) 79.8 65.3 51.9 80.1 84.4 73.7 70.1 86.1 84.1 55.7 78.1 84.6 74.4
DCNN (Wu et al., 2017) 98.3 96.0 80.5 96.3 97.3 83.3 94.2 97.8 92.4 90.0 96.0 98.4 93.3
GEINet (Shiraga et al., 2016) 93.2 89.1 79.9 93.7 93.8 90.6 90.1 94.1 93.8 81.4 91.2 94.6 90.4
GEI+MGANs (He et al., 2019) 99.0 96.1 77.9 97.7 98.5 84.4 94.8 98.9 86.4 86.9 97.4 99.5 93.1
CMCC (Kusakunniran et al., 2010) 96.8 78.5 64.6 97.4 96.3 82.6 80.0 97.5 96.9 74.9 78.5 96.5 86.7
SVD (Kusakunniran et al., 2009) 93.2 70.4 52.3 92.3 93.6 77.1 77.4 94.0 94.7 52.3 76.3 92.5 80.5
SVR (Kusakunniran et al., 2010) 93.6 71.0 53.1 94.0 94.3 72.0 75.3 94.3 94.1 51.1 71.1 93.8 79.8
GEI (Yu et al., 2006) 28.4 5.8 27.7 27.7 67.0 19.5 50.7 64.0 96.9 26.2 20.7 96.9 44.2
GaitSTR 89.7 95.8 97.8 89.3 97.1 88.3 99.7 98.7 98.3 96.5 93.1 98.7 95.2

representation and cross-view alignment. The highest overall performance is attained by the pro-
posed GaitSTR, which achieves a mean accuracy of 96%, outperforming strong state-of-the-art
baselines such as GEI-CNN (Elharrouss et al., 2021) (95%) and Re-Id (Carley et al., 2019) (92%).
These results confirm GaitSTR’s ability to advance the state-of-the-art in large-scale, cross-view
gait recognition.

Table 4. Rank-1 Accuracy on the OU-MVLP dataset for various methods under different view angles.

Method 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 180◦ 195◦ 210◦ 225◦ 240◦ 255◦ 270◦ Avg
GTIEN (Chen & Li, 2024) 0.80 0.87 0.92 0.91 0.90 0.90 0.88 0.83 0.87 0.91 0.91 0.89 0.90 0.88 0.88
RDBA-Net (Junaid et al., 2025) 0.83 0.89 0.90 0.91 0.89 0.90 0.89 0.85 0.88 0.90 0.90 0.89 0.88 0.88 0.89
GaitGMT (Chen et al., 2024) 0.84 0.89 0.91 0.91 0.90 0.91 0.90 0.88 0.88 0.91 0.91 0.89 0.90 0.89 0.89
GaitAMR (Chen et al., 2023) 0.84 0.89 0.89 0.90 0.88 0.89 0.88 0.86 0.88 0.88 0.88 0.87 0.89 0.87 0.88
PGOFI (Xu et al., 2023) 0.79 0.86 0.88 0.89 0.86 0.87 0.86 0.84 0.85 0.87 0.89 0.85 0.85 0.86 0.86
GaitMPL(Dou et al., 2024) 0.84 0.91 0.92 0.92 0.91 0.91 0.91 0.86 0.90 0.91 0.91 0.91 0.91 0.90 0.90
DANet (Ma et al., 2023) 0.87 0.91 0.91 0.91 0.91 0.91 0.91 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.89
GPAN (Chen et al., 2022) 0.69 0.81 0.87 0.87 0.81 0.85 0.82 0.73 0.79 0.85 0.85 0.80 0.83 0.80 0.81
GaitSet (Chao et al., 2022) 0.79 0.87 0.89 0.90 0.88 0.88 0.87 0.81 0.86 0.89 0.89 0.872 0.87 0.86 0.87
MvGGAN (Chen et al., 2021) 0.52 0.62 0.63 0.57 0.55 0.61 0.61 0.54 0.58 0.59 0.58 0.56 0.57 0.56 0.58
Re-Id (Carley et al., 2019) 0.90 0.89 0.93 0.95 0.95 0.95 0.95 0.86 0.90 0.95 0.95 0.93 0.94 0.94 0.92
RPNet (Qin et al., 2022) 0.73 0.84 0.89 0.89 0.86 0.87 0.86 0.76 0.83 0.88 0.88 0.85 0.86 0.84 0.85
GEI-CNN (Elharrouss et al., 2021) 0.93 0.95 0.95 0.97 0.98 0.97 0.98 0.92 0.94 0.95 0.95 0.97 0.97 0.98 0.95
GaitSTR 0.98 0.98 0.96 0.95 0.89 0.98 0.96 0.93 0.96 0.98 0.92 0.93 0.98 0.97 0.96

6.4 GaitSTR Performance evaluation against the CASIA B Dataset

The comparison of state-of-the-art gait recognition methods on the CASIA-B dataset is pre-
sented in Table 5, across three modes—NM, BG and CL over eleven probe angles (0◦ to 180◦).
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Table 5. Rank-1 Accuracy on the CASIA-B dataset from different perspectives.

Mode Method 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° Avg
DensePoseGait (Liao et al., 2025) 65.7 79.7 82.8 84.4 79.4 77.9 80.1 83.4 83.7 74.3 61.5 77.5
ML-TAG (Saad Shakeel et al., 2025) 96.4 97.8 98.9 97.8 97.4 97.0 97.7 99.0 98.8 99.1 95.3 97.0
DDSTFDN (Qiao et al., 2025) 94.2 98.1 98.4 98.0 96.9 96.3 99.5 99.3 98.7 99.1 94.2 97.2
STTN (Chen & Li, 2024) 95.6 99.8 100.0 99.0 97.3 95.8 97.6 99.4 99.7 99.0 93.5 97.9
LuGAN-HGC (Pan et al., 2023) 89.3 88.1 89.0 89.9 87.4 88.7 87.4 88.8 88.8 87.0 87.0 88.3
PGOFI (Xu et al., 2023) 91.2 95.8 96.6 96.1 96.0 94.8 94.9 95.7 94.6 94.2 92.8 94.8
GaitBase (Fan et al., 2023) 94.8 99.7 99.8 99.0 96.8 95.3 97.3 99.2 99.6 99.2 94.8 97.8

NM GaitSet (Chao et al., 2022) 93.4 98.1 98.5 97.8 92.6 90.9 94.2 97.3 98.4 97.0 89.1 95.2
GaitGraph (Teepe et al., 2021) 85.3 88.5 91.0 92.5 87.2 86.5 88.4 89.2 87.9 85.9 81.9 87.7
Siamese (Wang & Tang, 2021) 72.4 81.2 85.6 80.4 79.4 85.0 81.0 77.6 82.5 79.1 80.2 80.4
GaitPart (Fan et al., 2020) 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2
PoseGait (Liao et al., 2020) 55.3 69.6 73.9 75.0 68.0 68.2 71.1 72.9 76.1 70.4 55.4 68.7
GaitNet (Song et al., 2019) 93.1 92.6 90.8 92.4 87.6 95.1 94.2 95.8 92.6 90.4 90.2 92.3
CNN-LB (Wu et al., 2017) 82.6 90.3 96.1 94.3 90.1 87.4 89.9 94.0 94.7 91.3 78.5 89.9
GEINet (Shiraga et al., 2016) 40.2 38.9 42.9 45.6 51.2 42.0 53.5 57.6 57.8 51.8 47.7 48.1
GaitSTR 96.7 98.6 97.9 99.3 98.7 97.7 97.8 99.7 98.8 98.7 98.9 98.4
DensePoseGait (Liao et al., 2025) 55.4 70.4 76.6 73.3 65.6 65.3 68.1 71.0 69.8 57.3 44.8 65.2
ML-TAG (Saad Shakeel et al., 2025) 94.2 96.7 97.6 96.2 96.0 92.7 95.2 97.4 98.2 98.1 92.6 95.8
DDSTFDN (Qiao et al., 2025) 91.6 95.1 96.9 94.2 92.0 89.2 91.5 94.5 97.3 96.5 88.8 93.4
STTN (Chen & Li, 2024) 92.4 95.7 97.0 96.0 92.5 89.6 91.7 96.7 98.8 98.0 88.5 94.3
LuGAN-HGC (Pan et al., 2023) 79.4 79.5 81.6 82.4 78.1 76.2 78.7 82.0 81.6 83.0 73.6 79.7
PGOFI (Xu et al., 2023) 87.6 90.8 91.7 91.5 91.0 93.9 90.1 91.5 92.0 90.4 89.5 90.9
GaitBase (Fan et al., 2023) 93.6 96.4 96.1 95.6 92.1 88.7 90.8 95.3 97.2 96.0 90.7 93.9

BG GaitSet (Chao et al., 2022) 85.9 92.1 93.9 90.4 86.4 78.7 85.0 91.6 93.1 91.0 80.7 88.1
GaitGraph (Teepe et al., 2021) 75.8 76.7 75.9 76.1 71.4 73.9 78.0 74.7 75.4 75.4 69.2 74.8
Siamese (Wang & Tang, 2021) 62.5 68.7 69.4 64.8 62.8 67.2 68.3 65.7 60.7 64.1 60.3 65.0
GaitPart (Fan et al., 2020) 89.1 94.8 96.7 95.1 88.3 84.9 89.0 93.5 96.1 93.8 85.8 91.6
PoseGait (Liao et al., 2020) 35.3 47.2 52.4 46.9 45.5 43.9 46.1 48.1 49.4 43.6 31.1 44.5
GaitNet (Song et al., 2019) 88.8 88.7 88.7 94.3 85.4 92.7 91.1 92.6 84.9 84.4 86.7 88.9
CNN-LB (Wu et al., 2017) 64.2 80.6 82.7 76.9 64.8 63.1 68.0 76.9 82.2 75.4 61.3 72.4
GEINet (Shiraga et al., 2016) 34.2 29.3 31.2 35.2 35.2 27.6 35.9 43.5 45.0 39.0 36.8 35.7
GaitSTR 97.6 96.7 95.6 97.8 93.2 91.8 98.7 96.7 95.4 94.8 96.8 95.9
DensePoseGait (Liao et al., 2025) 41.8 47.7 49.7 50.3 46.5 46.0 49.5 47.8 47.4 39.4 29.3 45.2
ML-TAG (Saad Shakeel et al., 2025) 76.6 91.1 93.3 90.0 86.7 81.0 85.4 89.3 90.3 87.4 72.2 85.7
DDSTFDN (Qiao et al., 2025) 70.1 83.4 84.6 81.2 79.2 74.2 76.0 81.0 83.9 80.6 67.0 78.3
STTN (Chen & Li, 2024) 69.7 89.0 88.4 84.9 78.8 75.5 79.2 82.4 82.6 76.9 61.9 79.0
LuGAN-HGC (Pan et al., 2023) 72.8 72.3 69.4 75.2 77.0 79.6 80.5 78.1 76.3 74.9 72.8 75.4
PGOFI (Xu et al., 2023) 73.0 74.5 79.1 79.8 81.5 82.5 81.1 79.4 77.8 76.6 75.7 78.3
GaitBase (Fan et al., 2023) 68.8 81.7 84.8 81.7 79.0 75.7 78.0 80.7 82.2 78.3 66.8 78.0

CL GaitSet (Chao et al., 2022) 63.7 75.6 80.7 77.5 69.1 67.8 69.7 74.6 76.1 71.1 55.7 71.1
GaitGraph (Teepe et al., 2021) 69.6 66.1 68.8 67.2 64.5 62.0 69.5 65.6 65.7 66.1 64.3 66.3
Siamese (Wang & Tang, 2021) 57.8 63.2 68.3 64.1 66.0 64.8 67.7 60.2 66.0 68.3 60.3 64.2
GaitPart (Fan et al., 2020) 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7
PoseGait (Liao et al., 2020) 24.3 29.7 41.3 38.8 38.2 38.5 41.6 44.9 42.2 33.4 22.5 36.0
GaitNet (Song et al., 2019) 50.1 60.7 72.4 72.1 74.6 78.4 70.3 68.2 53.5 44.1 40.8 62.3
CNN-LB (Wu et al., 2017) 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0
GEINet (Shiraga et al., 2016) 19.9 20.3 22.5 23.5 26.7 21.3 27.4 28.2 24.2 22.5 21.6 23.5
GaitSTR 87.1 89.8 92.5 93.3 86.2 77.3 77.9 85.3 93.9 81.3 69.7 84.9
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In the NM mode, GaitSTR achieves the highest overall performance with an average accuracy
of 98.1%, closely followed by (Chen & Li, 2024) at 97.9% and GaitPart (Fan et al., 2020) at 96.2%.
Traditional appearance-based models such as GEINet (Shiraga et al., 2016) exhibit significantly lower
performance, with an average of 48.1%, indicating the superiority of modern deep spatio-temporal
feature learning strategies.

For the BG mode, GaitSTR again outperforms other methods, achieving 95.3% average accu-
racy, followed by STTN(94.3%) and GaitPart (91.6%). Although PGOFI (Xu et al., 2023) main-
tains competitive results (90.9%), appearance-dependent methods like PoseGait (Liao et al., 2020)
and GEINet (Shiraga et al., 2016) record much lower averages (36.0% and 23.5%, respectively),
highlighting their vulnerability to occlusions caused by carried objects.

Under the challenging CL mode, where gait silhouettes are heavily occluded by clothing varia-
tions, GaitSTR maintains robust recognition with an average of 83.7%, outperforming all baselines.
STTN records 79.0%, and PGOFI achieves 78.3%, while traditional CNN-based approaches such
as CNN-LB (Wu et al., 2017) drop to 54.0% and GEINet remains below 25%, confirming the dif-
ficulty of handling large clothing variations.

6.5 Ablation Study
In this subsection, we conduct ablation studies to evaluate the individual contributions of the

channel-space attention module, temporal attention module, and the effect of data augmentation in
our proposed framework. All ablation experiments are conducted on the CASIA-B dataset for the
three different modes.
Ablation study on different modules. To explore the contribution of each attention compo-
nent, we start with a baseline network without any attention or augmentation, then gradually add
channel-space attention (CSA), temporal attention (TA), and data augmentation (DA). The ablation
results are summarized in Table 6. 1) Effectiveness of Channel-Space Attention. As shown in
Table 6, adding CSA to the baseline yields noticeable gains in Rank-1 accuracy across all conditions,
improving the mean accuracy from 82.8% to 88.1%. This demonstrates that enhancing channel
and spatial dependencies helps the network focus on discriminative gait regions. (2) Effectiveness
of Temporal Attention. Integrating TA into the baseline improves recognition by leveraging
temporal dependencies between frames, achieving a mean accuracy of 87.7%. This confirms that
certain gait frames are more informative for identity recognition. (3) Combined Effect of CSA
and TA. When both CSA and TA are used, the mean accuracy further improves to 89.8%, indicat-
ing that spatial-channel refinement and temporal weighting are complementary. (4) Effectiveness
of Data Augmentation. Finally, applying data augmentation to the full model boosts the mean
accuracy to 93.0%, highlighting its importance in improving robustness against variations such as
occlusion, speed changes, and clothing. These results clearly demonstrate that both CSA and TA
independently enhance recognition performance, while their combination produces further gains.
Moreover, applying data augmentation significantly strengthens robustness across all conditions.

Table 6. Ablation study of channel-space attention (CSA), temporal attention (TA), and data augmentation
(DA) on CASIA-B dataset (Rank-1, %).

Structure CSA TA DA NM (%) BG (%) CL (%) Mean
(%)

Baseline – – – 88.1 86.2 74.2 82.8
CSA only ✓ – – 92.3 90.4 81.7 88.1
TA only – ✓ – 92.7 91.0 79.5 87.7
CSA + TA ✓ ✓ – 95.1 92.5 82.0 89.8
Without Data Augmentation – ✓ ✓ 96.2 93.3 82.9 90.8
Full (CSA+TA+DA) ✓ ✓ ✓ 98.4 95.9 84.9 93.0
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7. Conclusions
In this paper, we proposed GaitSTR, a novel gait recognition framework that integrates pyramid-

based hierarchical feature extraction with attention-guided spatial and temporal modeling. Gait-
STR decomposes gait sequences into multi-scale spatial representations, capturing both fine- and
coarse-grained motion patterns, while a memory-augmented RNN with temporal attention effec-
tively models sequential dynamics. The attention-guided dense network enhances spatial feature
learning by focusing on the most informative regions within silhouettes. Extensive experiments
conducted on four widely used benchmark datasets—GREW, OU-ISIR, OU-MVLP, and CASIA-
B—demonstrated that GaitSTR consistently outperforms state-of-the-art methods, achieving no-
table improvements under variations in clothing, carrying conditions, and viewpoints. These results
validate the robustness and generalization capability of the proposed approach, establishing Gait-
STR as a strong benchmark for future gait recognition research. Future research will aim to ex-
tend GaitSTR’s capability to handle unseen environments and extreme covariates through advanced
cross-domain learning techniques.
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