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Abstract

This study unravels a framework for constructing enviromics matrices within mixed models to integrate
genetic and envirotypic data, enhancing phenotypic predictions in plant breeding. Enviromics leverages
diverse data sources, such as climate and soil, to characterize genotype-by-environment (G xE) interac-
tions. The approach uses block-diagonal structures in the design matrix Z to incorporate random effects
from genetic and envirotypic covariates across trials. The covariance structure is modeled through the
Kronecker product of the genetic relationship matrix A and an identity matrix I representing envirotypic
effects, effectively capturing both genetic and environmental variability. This dual representation facili-
tates more accurate predictions of crop performance (y) across environments, enabling improved selection
strategies in breeding programs. The framework is compatible with widely used mixed model software,
including rrBLUP and BGLR, and is adaptable to account for more complex interactions. By integrat-
ing genetic relationships (A) and environmental influences (Z), this approach provides a robust tool for
advancing G XE studies and accelerating the development of superior crop varieties.

Keywords: Genotype-by-environment interaction; Envirotypic covariates; Plant breeding; Predictive
modeling; Linear algebra.

1. Introduction

The omics alphabet has grown rapidly with advancements in high-throughput typing technolo-
gies (i.e. tools capable of efficiently measuring and analyzing large-scale data with high precision),
encompassing fields such as genomics, transcriptomics, proteomics, metabolomics, phenomics, and
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so on. Recently, enviromics has emerged as a valuable addition, providing a framework for charac-
terizing the “envirome” - the complete set of environmental factors affecting biological processes.
Initially applied in fields such as psychiatry (Anthony er al,[1995), it can be expanded to areas such
as agriculture or plant biology (Teixeira ef al, 2011). Integrating diverse sources of environmen-
tal data, including climate, soil properties, air quality, and socioeconomic factors, captures micro-
and macroenvironmental influences on complex traits. This approach offers a more comprehen-
sive understanding of how environmental components interact with biological systems, making it
a powerful tool across disciplines.

The genetic basis for producing a phenotype is complex and involves the activation and in-
teraction of several genes and metabolic pathways. The most significant benefit of enviromics in
the context of breeding is the possibility of modeling additional features beyond phenotypes and
genetic markers when predicting future crop performance. In plant and animal breeding, the con-
cept was first introduced in a 2019 bioRxiv preprint (Resende ef al,[2021). It is particularly valu-
able for breeding studies, as it helps breeders and scientists assess the various factors that influence
crop performance under different environmental conditions. In this context, “environmental con-
ditions” encompasses more than just geographical factors, such as specific plots, fields, and loca-
tions where crops are planted. Instead, enviromics considers any information derived from Earth’s
surface, atmospheric, remote sensing, and socioeconomic factors that may contribute to changes
in genotypic performance across multiple locations. It is especially useful for studying genotype-
by-environment-by-management (G x ExM) interactions, helping to decouple diverse envirotypic
factors affecting crop performance (Costa-Neto & Fritsche-Neto, 2021; Crossa et al,2021; Resende
et al,2021). This capability optimizes breeding strategies and decisions, enabling breeders and sci-
entists to make informed site-specific recommendations.

Many advancements in modeling genotype-by-environment (G xE) interactions highlight the
benefits of integrating environmental matrix structures with genetic data to improve predictive ac-
curacy in breeding. Crossa et al. (2006) initially focused on genetic covariances for GxXE modeling.
Jarquin et al. (2014) employed reaction norm models that combined high-dimensional genomic and
environmental data, and Cuevas et al. (2017) used Bayesian kernel methods to refine predictions
by accounting for genotype-specific responses to environments. Hadamard and Kronecker prod-
ucts have been shown to model covariance structures in interactions effectively, capturing complex
relationships in crop trials (Martini et al, 2020). Costa-Neto ef al. (2021) incorporated such data
into nonlinear kernel-based models, broadening the scope of environmental variability considered.
These developments underscore the shift from purely genetic models to approaches that integrate
comprehensive environmental descriptors, aligning with the principles of enviromics.

The use of this approach in breeding is vast, as it can be applied to develop new cultivars within
breeding programs. Still, it is also beneficial for activities that follow after the new cultivars are
identified (Resende e al,[2024). For instance, identifying the most suitable environment for multi-
plying these cultivars is transformative, as it can enhance the profitability of seed production while
minimizing seed multiplication costs. Production costs are a key factor influencing seed prices for
customers, and since genetics vary in their adaptability to environments, multiplying seeds in less
optimal conditions can increase costs (Gevartosky er al,[2023). While our intention is not to exhaust
all possible applications, we emphasize that this is a powerful tool extending beyond performance
prediction. Its benefits span from developing new cultivars to optimizing seed multiplication, defin-
ing agronomic recommendations, and guiding in-farm practices aimed at maximizing the yield
potential of the cultivars.

This document outlines the process of building enviromic matrices for mixed models, aiming
to integrate these tools into widely used software packages such as BGLR (Pérez & de los Campos,
2014) and rrBLUP (Endelman, |2011). The preparation of this material was inspired by the work
of Bates er al. (2015), specifically adapted here to assist users in applying linear algebra to handle

2 Braz. |. Biom., v.43, e-43865, 2025.


https://doi.org/10.1101/726513

Trevisan et al.

random multiple regressions. Please, note that a solid understanding of matrix algebra is required
for accurate statistical modeling (see for instance Searle & Khuri (2017)). These matrices are piv-
otal in mixed models that analyze GXE interactions and enable the integration of enviromic data
into genomic selection frameworks. Properly constructed matrices facilitate the modeling of in-
tricate environmental and genetic relationships, improving the prediction accuracy of phenotypic
performance and ultimately accelerating the development of improved plant varieties.

2. Enviromics Modeling Documentation

Enviromics provides a robust framework for modeling genotype-by-environment interactions
by integrating multiple sources of variation. It allows breeders to account for complex environ-
mental influences and genetic relationships simultaneously, enabling more accurate prediction of
phenotypic responses under varying conditions. The approach uses a block-diagonal structure for
the matrix Z to include random effects associated with different genotypic and envirotypic co-
variates throughout the trials, offering flexibility in capturing site-specific and genotype-specific
responses. The covariance structure ¥ ® A, where & represents variance-covariance among envi-
ronmental effects, and A denotes the additive relationship matrix. This dual representation allows us
to predict crop performance across diverse environments, optimizing selection strategies in breeding
programs.

* Model Complexity: The enviromics approach integrates multiple Z; submatrices (e.g., Z1, Z,

.., Zy) into a block-diagonal matrix Z (Bates et al,2015), each corresponding to a different trial

or environmental condition. This structure provides a flexible framework for modeling random

effects across multiple genotypes, accommodating diverse environmental scenarios and trial con-
ditions.

* Block-Diagonal Z: The matrix Z combines various random effects, capturing the structure of
the data in the model:

Z, 0 - 0

0 Zy - 0
y=Xb+Zu+e, Z-=

0o 0 - Z,

where y is the response vector, X is the design matrix for fixed effects, § represents the fixed
effects, Z is the design matrix for random effects, u is the vector of random effects, and e is
the residual error. Each block Z; corresponds to the design matrix for a specific genotype and
combination of environmental conditions.

* Random Effects Vector: The random effects vector u encapsulates the responses of genotypes
under different envirotypic covariates, where each u; j Tepresents the effect of genotype i and
envirotypic covariate j:

uT = [ul,l, UL Dseees l/ln’m], with u ~ N(O,A X Z)

This formulation allows for modeling the joint distribution of genetic and environmental factors,
enhancing the accuracy of predictions.
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* Covariance Structure: The envirotypic covariance matrix £ can be represented as the identity
matrix .1, where m is the number of envirotypic covariates plus one random intercept (of the
genotype), assuming no additional variance within each environment. The matrix K is defined
as the Kronecker product of the kinship matrix A and the identity matrix 1,41, expressed as
K = A ®I,,41. This structure allows for modeling genetic relationships among genotypes while
accounting for environmental effects, leading to a comprehensive framework for predicting
phenotypic outcomes in mixed models.

The matrix Z must have dimensions matching the data structure in mixed models. The number
of rows of this matrix should match the dimension of the number of observations, and the number
of columns should align with the number of parameters to estimate. Then, the number of columns
must also align with the number of rows (or columns) of the kernel matrix (e.g., kinship or similarity
matrix). Such alignment ensures proper matrix multiplication and integration of random effects into
the model.

2.1 Enviromics Prediction

The enviromics prediction model aims to accurately estimate phenotypic responses by regress-
ing random effects associated with genotypes and multiple envirotypic covariates. The general
prediction equation for multiple genotypes can be expressed as:

v=Xp+Za

where ¥ is the vector of predicted phenotypic responses for all genotypes; X is the design matrix for
fixed effects; [3 is the vector of estimated fixed effects (i.e., BLUE in the frequentist paradigm); Z is
the design matrix for random effects, with dimensions n x m, where n is the number of observations
and m is the number of random effects; and 1 is the vector of estimated random effects (i.e., BLUP in
frequentist paradigm), containing the random effects for all genotype-environment combinations.
And the specific prediction for each genotype i can then be written as:

k
Ji=Bo+ > _ iy EC;

0

where j; is the predicted phenotypic response for genotype i; B¢ is the fixed intercept; i1jj represents
the estimated random effect for the j-th envirotypic covariate (EC) and genotype i; EC; is the value
of the j-th envirotypic covariate, with ECy = 1 to account for the random intercept; and k is the
total number of envirotypic covariates considered in the model.

The predicted phenotypic responses for each genotype i (where i varies from 1 to 1) are summa-
rized in Table|1} Each equation incorporates random effects associated with envirotypic covariates
j (where j varies from 1 to m). This allows for a comprehensive understanding of how genetic and
environmental factors contribute to phenotypic variation. In a related context, Barros et al. (2024)
demonstrated the predictive value of Landsat-based indices for classifying sugarcane areas using
principal component analysis (PCA) and machine learning algorithms, supporting the integration
of such descriptors into crop modeling frameworks.

Envirotypic covariates (ECs) are measurable environmental factors that influence phenotypic
performance, while enviromic markers represent these covariates in predictive models, analogous
to genomic markers (Resende ef al,,2024). According to these authors, an enviromic marker should
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have the following properties: (i) it should have a linear relationship with the trait of interest; (ii)
it should indicate that a location with a high phenotypic mean is also a favorable or potential site;
(iii) a generally favorable location is not necessarily favorable for all genotypes; and (iv) it consists of
different sets of environmental covariates, where a single environmental covariate is not always the
best predictor for all genotypes.

However, in this work, for didactic purposes, we assumed ECs to be enviromic markers, ac-
knowledging the risk of potentially missing important nonlinear effects. To address such effects, see
Costa-Neto et al. (2021). To improve the diagnostic evaluation of enviromic predictions, residuals
that are minimally confounded with random effects may be used in place of marginal or condi-
tional residuals. Queiroz de Oliveira et al. (2024) showed that such residuals enhance the detection
of model misspecification in mixed models with hierarchical random structures.

Table 1. Predicted phenotypic responses for genotypes incorporating random effects from envirotypic covariates

Genotype Equation
1 5/1=[?)0+1:f1,0+fl1,1~EC1+f£1,2'EC2+...+1}1,m'ECm
2 P2=Bo +iipo +iip - ECy +ilpp - ECo+ ... + iy, - ECy
n j’n = BO + ’:’H,O + ’:’n,l = [5G ’:’n,Z HECORRINE i’n,m -ECyy

3. Data Description (a Toy Example)

To exemplify the enviromics modeling, we will use genotypic observations across various lo-
cations with associated envirotypic covariates (e.g., temperature, soil properties, and precipitation).
This information forms the basis for building design matrices and covariance matrices in Enviromics.
Each location represents a different trial, with varying numbers of genotypes. The plotted points
correspond to the geographic coordinates (Longitude and Latitude), while the labels (G4, Gp, G¢,
or Gp) indicate the genotypes (‘gen’) available at each trial site.

The first step involves loading the dataset with observations across multiple locations and geno-
types. The dataset includes envirotypic covariates (ECy, EC;, EC3, ECy, ECs) that vary by location
and may influence the response of different genotypes. Each row represents a unique combination
of location and genotype, providing the necessary structure for building the design matrices and the
covariance matrix. The column named ‘y’ represents the phenotypic variable (trait), which can be
associated with crop production or productivity (whatever). The following code snippet demon-
strates how to read the dataset into the R environment and display its contents for initial inspection
(see the R chunk below):

# Read the data from a file
dat <- read.table("dat.txt", header = TRUE)

# Display the data

print (dat)

loc lon lat gen EC1 EC2 EC3 EC4 EC5 y

L1 1 4 GA -0.230 -1.265 0.111 -0.050 -0.270 12.88
L5 2 5 GA 0.129 1.224 0.498 0.867 0.968 17.83
L6 3 6 GA 1.715 0.360 -1.967 1.061 -0.132 18.41
L2 2 2 GB -0.560 0.461 0.401 0.391 0.472 12.08

B O I R
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13 L5
14 L6

0.129 1.224 0.498
1.715 0.360 -1.967

.683 0.706 18.16
.052  -0.299 16.18

5 L1 1 4 GB -0.230 -1.265 0.111 0.022 -0.046 11.84
6 L4 4 4 GB 0.071 -0.446 1.787 0.580 0.710 15.82
7 L6 3 6 GB 1.715 0.360 -1.967 0.832 -0.486 18.16
8 L2 2 2  GC -0.560 0.461 0.401 0.588 0.322 12.34
9 L3 3 3 GC 1.559 -0.687 -0.556 0.522 0.166 16.11
10 L2 2 2 GD -0.560 0.461 0.401 0.770 0.692 15.25
11 11 1 4 GD -0.230 -1.265 0.111 0.108 -0.142 14.91
12 14 4 4 GD 0.071 -0.446 1.787 0.607 1.262 19.24

2 5 GD 0

3 6 GD 1

Figure [1{shows the pedigree of the four individuals and their relationship (kinship) matrix. On
the left, the pedigree presents the relationships between founders (P to Ps) and their offspring
(genotypes G4, Gp, G, and Gp). On the right, the relationship matrix quantifies the degree of
relatedness between the genotypes, with colors representing the levels of relatedness. The relation-
ship matrix includes the coefhicient of relationship of Wright (1921) and can be easily implemented
following Henderson’s rules to derive its inverse directly (Henderson, [1976). Since we are dealing
with a small number of individuals (genotypes) here, the kinship coefhcients were provided directly;
in cases involving a large number of individuals with pedigree data, we recommend using packages
such as AGHMatrix to compute them efficiently (Amadeu ef al,2023). Although this study considers
a diploid species, the methodology remains generally applicable to polyploid plants, provided that

the breeder correctly computes the kinship coefhicients.

Family Tree: Kinship Matrix:

Gp| o 0 (mslll
—P, Py

P, — P, Py Gc|ots o1z . 025
Gp| 05 IIIM% 0

_éL GA“IIos 0125 0

Ga Gs Gc Gp

Figure 1. Pedigree and kinship matrix. The left side shows the genealogical relationships between the founders (P to Ps)
and their offspring (G4, Gg, G¢, and Gp). The right side displays a heatmap of the kinship matrix, with colors representing
the kinship coefficients between the genotypes.

4. Preliminary Steps

The initial steps for matrix preparation include the following:

* The data is first sorted by genotype and then by location.

* Constructing block-diagonal design matrices to represent the structure of the observations.

* Build the relationship matrix based on specified genetic relationships, which will later be used
to build kernel matrices.

6 Braz. |. Biom., v.43, e-43865, 2025.
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5. Enviromics Matrices Preparation

Building enviromics matrices involves organizing data to capture genetic and environmental
components in statistical models. The process begins with constructing a design matrix (Z) to
represent random effects for each genotype and envirotypic covariate. This block-diagonal matrix
accommodates multi-environment trials, allowing the model to separate effects across genotypes. A
kernel matrix (K) also models genetic relationships (which is, in fact, merely an expanded kinship
matrix), integrating genetic information with random effects through the Kronecker product for
a comprehensive covariance structure. Together, these matrices form the foundation for mixed
model analyses, enabling the prediction of phenotypic responses under various conditions. The
process involves the following components:

* Design Matrix (Z): A block-diagonal matrix where each block represents the design structure
for a specific genotype, incorporating envirotypic covariates. The matrix captures the design
structure for random effects with the following structure:

# Split the data by genotype
split_data <- split(dat, dat$gen)
# Create the block-diagonal matrix Z
Z <- bdiag(lapply(split_data, function(df) {
# First column of 1’s and columns for covariates:
# EC1, EC2, EC3, EC4, EC5
Z_i <- cbind(1, as.matrix(df[, c("EC1", "EC2", "EC3",
"EC4", "EC5")]))
Matrix (Z_i , sparse = TRUE)
1))
# Names the columuns of matrix Z
colnames(Z) <- unlist(lapply (1:4, function(i) {
pasteO("u", 0:5, "_G", LETTERS[i])
1)
# Display the matrix Z
print(Z)

Table [2| shows the design matrix Z used in the mixed model. This matrix is constructed in a
block-diagonal format, where each block represents the design effects for different genotypes (G4,
Gg, G¢, Gp). The first column of each block represents an intercept (1), while the subsequent
columns represent envirotypic covariates (i, u1, 12, u3, s, uz). The block-diagonal structure re-
flects the separation of effects for different genotypes, allowing efhicient modeling of specific random
effects.

* Kernel Matrix (K): Calculated using the Kronecker product, combining a genetic relationship
matrix with an identity matrix representing different effects. This matrix is used to model the
covariance structure between genotypes:

# Create the relationship matrix based on pedigree
A <- matrix (c(

1.000, 0.500, 0.125, 0.000,

0.500, 1.000, 0.125, 0.000,
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0.125, 0.125, 1.000, 0.250,
0.000, 0.000, 0.250, 1.000
), nrow = 4, byrow = TRUE)

# Define the genotype names
rownames (A) <- colnames(A) <- unlist(lapply(1:4, function(i)
{paste0 ("G", LETTERS[i])  }))

# Create the 6x6 identily matrix for the effecls
(u0, ul, u2, u3, u4, u5)

16 <- diag(6)

rownames (16) <- colnames(16) <- c("u0", "ul", "u2",
"Ll3", "Ll4", "Ll5")

# Calculate the Kernel matrix using the Kronecker product
K <- kronecker (A, 16)
# The resulting matrix will have dimensions 24x24

# Rename the rows and columns of the K matrix to reflect
#genotypes and effects

rownames (K) <- colnames(K) <- unlist(lapply(1:4, function(i)
{paste0("u", 0:5, "_G", LETTERS[i]) }))

Table 2. Design matrix Z for the mixed model. Each block represents the design structure for a specific genotype (G4, Gg,
..., Gp), with the first column () as an intercept, the last column (u,,) as a covariate, and ellipses (...) indicating omitted
intermediate envirotypic covariates. In our case, m = 5, corresponding to (ug, u1, ..., i5)

Ga Gg Ge Gp
uo uq Um uo uq Um ug uq Um uo m Um
1 -0.230 -0.270 0 0 0 0 0 0 0 0 0
1 0.129 0.968 0 0 0 0 0 0 0 0 0
1 1.715 -0.132 0 0 0 0 0 0 0 0 0
0 0 0 1 -0.560 .. 0.472 0 0 0 0 0 0
0 0 0 1 -0.230 .. -0.046 0 0 0 0 0 0
0 0 0 1 0.071 .. 0.710 0 0 0 0 0 0
0 0 0 1 1.715 .. -0.486 0 0 0 0 0 0
0 0 0 0 0 0 1 -0.560 .. 0.322 0 0 0
0 0 0 0 0 0 1 1.559 .. 0.166 0 0 0
0 0 0 0 0 0 0 0 0 1 -0.560 ... 0.692
0 0 0 0 0 0 0 0 0 1 -0.230 ... -0.142
0 0 0 0 0 0 0 0 0 1 0.071 1.262
0 0 0 0 0 0 0 0 0 1 0.129 .. 0.706
0 0 0 0 0 0 0 0 0 1 1.715 .. -0.299

Figure [2| illustrates the expanded kinship matrix K, which combines the genetic relationship

matrix with the Identity (I,+1) matrix for different effects. The matrix K is constructed using the
Kronecker product, capturing the covariance structure between genotypes (G4, G, G¢, and Gp)
across various random effects (ug, 11, uo, u3, uy, us). The heatmap visualizes the kinship values, with
a color gradient indicating the degree of relatedness.

Braz. |. Biom., v.43, e-43865, 2025.
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In the context of the kernel matrix, it is assumed that there is no relationship between the random
effects ug, uy, up, u3, u4, us within each genotype. This follows Fisher’s infinitesimal model, which
posits that numerous small, independent effects contribute to the overall genetic variation. In practi-
cal applications of enviromics, the model can accommodate thousands of such effects (uy, uz, . . . , 1),
representing various envirotypic covariates. However, when considering specific effects across
genotypes, such as ug X ug, uy X uy, up X up, 3 X u3, ug X uy, and us X us, there is a struc-
tured relationship that reflects the genetic relatedness specified by the kinship matrix. This kinship
can be based on pedigree information or derived from molecular markers like SNPs (VanRaden,
, allowing the model to incorporate genetic relationships across different random effects.

Up
Us Variance and

Uy [ ] Covariance

‘8‘ Ge s .. Values
o v . 1.000
° Ui [ |
S Uo | .. 0.500
Q Us | 0.250
g u N u
o el 0.125
s Gs ' T
15, Uz | 0.000

Uyt

Uo§

Us |

U

Ga’

Up Uy Up Us Uy Us Uy U; Up Uz Uy U Uy Uy Uy Ug Uy Us Up Uy Uy Uz Uy Us

Ga Gs Ge Gp
Genotype and Effect

Figure 2. Heatmap visualization of the expanded kinship matrix K, here also called as “Kernel” matrix, representing the
genetic relationships across genotypes and effects. The matrix was generated using the Kronecker product to expand
the genetic relationship matrix by different random effects (uo, u1, 2, u3, us, us). This matrix is defined as the Kronecker
product of the kinship matrix A and the a identity matrix L.

The matrix methodology presented here is similar to that described in Resende er al. ,
which achieved predictive ability approximately 20-25% higher than traditional GxE-based selec-
tion methods. This model was applied using the rrBLUP package (Endelman, for a frequentist
approach and the BGLR package (Pérez & de los Campos, for a Bayesian approach, as both allow
flexible manipulation of matrices. However, many other R packages can be used for this purpose,
depending on the user’s preferences and familiarity. To understand the predictive performances of

the models described here, please refer to the studies by Resende et al. (2021), and Resende ef al.
(2025).
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6. Enviromics Matrices: Frequentist and Bayesian Approaches

The study of genetic and non-genetic components of populations can be approached through
a variety of methodologies. From a statistical perspective, these methods are broadly classified into
supervised and unsupervised approaches. Supervised methods, in particular, can be further divided
into parametric and non-parametric categories, each with distinct assumptions and analytical frame-
works. In this work, we focus on supervised parametric approaches within the frequentist and
Bayesian paradigms. These methods have been extensively applied over decades to investigate the
genetic architecture of plants, animals, microorganisms, and human populations, contributing to
significant advancements in quantitative genetics and breeding. In the following sections, we delve
into the technical foundations of these parametric approaches, with an emphasis on genotype-by-
environment interaction modeling. Additionally, we illustrate their application through a simple
example, demonstrating the construction of design matrices in the emerging field of enviromics.

For a large number of envirotypic covariates (ECs), convergence issues may arise both in Fre-
quentist and Bayesian approaches. To address this, ‘ensemble models’ can be applied by grouping
ECs and running separate models for each group in enviromics models (Resende et al,,2025). Go-
ing further, in practical / empirical applications, it is also essential to cross-validate these models by
implementing training and validation sets. For this purpose, we recommend exploring strategies for
multi-environment and/or multi-year validations across regions, as discussed in Rogers & Holland
(2022).

6.1 Frequentist approach

Using supervised parametric methods in genetics study involves estimating parameters that de-
scribe the source variations of a given population. Over the years, several techniques, such as Meth-
ods 1, II, and III of Henderson (1953), Methods MINQUE and MIVQUE of Rao (1970), Rao (1971a),
and Rao (1971b), ANOVA, maximum likelihood (ML), and restricted (or residual) maximum like-
lihood (REML) (Patterson & Thompson, [1971), were developed to help disentangle the source of
variations into different components. Each one of these methods aims to optimize quadratic forms
under different assumptions related to the data structure (i.e., balanced and unbalanced), as well as
the bias and variance of estimates. Currently, the most widely used method is REML due to its
reliability and flexibility in managing complex data structures and its ability to produce unbiased
estimates for fixed and random effects.

As long as the variance components are available, estimating the genetic values becomes a (rela-
tively) trivial task under Henderson’s mixed model equations. However, in practice, the estimation
of variance components and genetic value prediction occurs in a two-step iterative process. The first
step estimates the variance components through maximum likelihood or restricted maximum likeli-
hood methods. Then, the fixed and random effects are derived in the second step, assuming that the
variance components estimated in the first step are true. The model converges to a stable solution
after a few rounds of iterative process. Currently, several computationally efficient algorithms can
execute this task.

In the Genomic Era, mixed models have been used successfully to predict genomic values in
many species. Nowadays, multiple models are used, and they can differ if the goal is to estimate
the genetic values or marker (e.g., SNP) effects. Among the methods, the ridge regression BLUP
(RRBLUP) is a popular one. RRBLUP employs ridge regression to handle multicollinearity issues
common in high-dimensional datasets, such as those encountered in genomics, where usually there
are way more markers than observations. RRBLUP works by partitioning phenotypic variation into
genetic and non-genetic components using mixed models, where fixed effects account for general
trends and random effects capture genotype-specific variations. Fixed effects capture consistent
influences shared across all genotypes, while random effects model genotype-specific deviations
from the population mean. This framework integrates a design matrix Z, a kernel matrix K, and
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phenotypic values y to effectively model genotype-by-environment interactions. The estimated
fixed and random effects are organized into structured data frames, providing a systematic approach
for downstream analysis and interpretation (Burguefio ef al,,2007).

The following code demonstrates the application of the rrBLUP R package to partition pheno-
typic variation into genetic and environmental components. The phenotypic data (y) is stored, and
the model is fitted using the design matrix (£) and the kernel matrix (K). Fixed effects are extracted
and stored for further interpretation, while random effects are arranged and labeled in a structured
data frame for downstream analysis.

The observed effects shown in Figure |3 were predicted using the mixed model equation y =
XB + Zi, where Xj3 represents the fixed effects and Za accounts for the random effects. These
components were extracted and arranged using the rrBLUP package, as shown in the provided
code. The fixed and random effects for each genotype and envirotypic index were then combined
to generate the predicted values plotted in the figure.

Using the fitted models, phenotypic responses are predicted for each genotype across a gra-
dient of envirotypic indices. These predictions combine fixed effects, representing baseline re-
sponses, with random effects, accounting for genotype-specific deviations. This dual-component
structure enables a nuanced understanding of how genotypes respond to varying environmental
conditions, as in Table [1} Such modeling captures the complexities of genotype-by-environment
interactions, facilitating the identification of genotypes with optimal performance under specific
conditions (Cuevas ef al,,2018).

# Storing phenotypic data
y <- as.matrix (dat$y)

# Fitting the rrBLUP model
rrblupmodel <- mixed.solve (y =y, Z = Z, K = K)

# Storing fixed effect
fixef_rrblup <- as.data.frame(rrblupmodel$beta)[, 1]

#Storing , arranging and naming random effects
ranef_rrblup <- as.data.frame(rrblupmodel$u)[, 1]
ranef_matrix_rrblup <- matrix(ranef_rrblup, nrow = 4,
ncol = 6, byrow = TRUE)
ranef_df_rrblup <- as.data.frame(ranef_matrix_rrblup)
rownames(ranef_df_rrblup) <- c¢("GA","GB","GC","GD")
colnames(ranef_df_rrblup) <- c¢("u_0","u_1","u_2",
"u_3" a4, "u_5")

6.2 Bayesian approach

Bayesian framework is another method commonly used to estimate variance components and
derive genetic values. Bayesian methods date back to Thomas Bayes, who was credited with de-
veloping Bayes’ Theorem, a fundamental probability theory and statistics principle. However, the
broader Bayesian paradigm, as we know it today, was shaped and expanded by many contributors
over time. Such continued contributions by other scientists enabled the utilization of the Bayesian
approach in practical conditions. The central principle of the Bayesian approach is that the posterior
probability of the parameters of interest—such as fixed and random effects and variance compo-
nents—is determined by the joint distribution of the data, which is represented by the likelihood
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function alongside additional terms related to the prior probability of the model’s parameters. The
prior probability in the Bayesian framework reflects our a priori knowledge about a specific param-
eter. In the context of genomics, this prior information typically relates to the probability function
that describes the distribution of genetic markers. For instance, if we assume that several genes of
small effect influence a particular trait, a normal distribution may be a suitable model for that trait.
Conversely, if a few genes of large effect control the trait under investigation, an exponential or
t-distribution may better capture its characteristics than a normal distribution. Additionally, there
is the option to adjust the functions that model the likelihood of a specific marker’s inclusion—or
exclusion—in influencing phenotypic expression. These models are referred to as Bayesian variable
selection methods.
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Figure 3. Comparison of Predicted Genotypic Values from the rrBLUP and BGLR models across an Envirotypic Index for
different genotypes (G4, Gp, G, and Gp). The “Envirotypic Index” was assumed to be simply the average of the five envi-
rotypic covariates (EC;-ECs).

A key concept in the Bayesian approach is that all effects are treated as random. Each effect
included in the model is represented using a specific probability distribution function that describes
its behavior. In Bayesian analysis, when we want to indicate that a frequentist fixed effect is included
explicitly, we refer to it as a systematic effect. Typically, these systematic effects are incorporated
into the model using either a uniform or normal distribution with a very large variance. This
approach allows us to assume that the effect remains relatively consistent across all levels of the other
parameters in the model. In genetics, we need to explicitly define the probability function that will
be used to describe either marker effects or genetic effects. The Bayesian framework is particularly
advantageous for exploring the various hypotheses related to the genetic control of traits and their
impact on predictions. There are many options available within this framework. One common
option is to use a normal prior with equal variance for all markers, which is implemented in the
RRBLUP method. In the Bayes A method, each marker is assigned its normal prior with a specific
variance. Bayes B is similar to Bayes A but requires a predefined proportion (1) of markers to
have non-zero effects, facilitating variable selection. Methods like Bayes C7t and D7t incorporate
a probability function related to the proportion of markers with non-zero effects (Gianola, [2013).
These methods are improved versions of Bayes B, allowing the model to determine the optimal
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7t based on available data (likelihood function) and the assumed prior distributions. This aspect of
Bayesian analysis is particularly beneficial as it enables a learning process during the evaluation.

Several computational packages are available for analyzing genomic data using Bayesian meth-
ods, such as bWGR (Xavier ef al,,2020). In this demonstration, we illustrate the application of Bayesian
Ridge Regression (BRR) using the BGLR package. This versatile package allows users to choose from
various probabilistic models and employs Markov Chain Monte Carlo (MCMC) methods via the
Gibbs sampling algorithm for parameter estimation. In our model, we utilize a normal prior for the
kernel matrix K and specify both the kernel matrix and the design matrix Z within the ETA list. The
analysis is executed over 50,000 iterations, with a burn-in period set at 10% of the total iterations.
Systematic effects, treated as fixed effects in frequentist approaches, are estimated and recorded, while
the remaining random effects are structured and labeled in a data frame for downstream analysis.
This structured output is particularly useful for interpreting genotype-by-environment interactions.
The BGLR framework enhances genomic analysis through its flexibility and ability to incorporate
prior knowledge. Unlike deterministic estimators like rrBLUP, BGLR uses iterative sampling to
estimate parameters, providing a quantification of uncertainty in predictions (Montesinos-Lépez
et al,2016). Our implementation adopts a normal prior distribution, consistent with frequentist
assumptions, to enable direct comparisons between Bayesian and frequentist results. Following the
completion of the MCMC process, the first step is to discard the burn-in samples to mitigate the
influence of initial conditions. To further address autocorrelation often present in MCMC samples,
we retain only one sample for every n-th iteration (thinning). After this initial processing, it is crit-
ical to evaluate the convergence of the retained samples. Convergence diagnostics typically involve
graphical inspections (e.g., trace plots) and statistical tests, such as the Geweke diagnostic, to ensure
the reliability of parameter estimates.

# Fitting the BGLR model
ETA <- list(A = list(X = Z, K = K, model = ’BRR’))

niter <- 50000

BGLRmodel <- BGIR(y = vy,

ETA=ETA,

nlter = niter ,
burnln = niter*.10,
thin = 20,

saveAt = 'BGLRoutput’)

# Storing fixed effect
fixef_bglr <- as.data.frame(BGLRmodel$mu)[, 1]

#Storing , arranging and naming random effects
ranef_bglr <- as.data.frame (BGLRmodel$ETA$AS$H)[ ,
ranef_matrix_bglr <- matrix (ranef_bglr, nrow = 4,
ncol = 6, byrow = TRUE)

ranef_df_bglr <- as.data.frame(ranef_matrix_bglr)
rownames(ranef_df_bglr) <- c¢("GA","GB","GC","GD")
colnames(ranef_df_bglr) <- ¢("u_0","u_1","u_2","u_3","u_4",
"u_5")

1]
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Model performance is assessed by comparing predictions from rrBLUP and BGLR side-by-
side in Figure 3| The high correlation (0.973) between predictions highlights their consistency
in estimating genotypic values. This agreement underscores the robustness of these methods in
capturing additive and additive-by-additive genetic interactions across environments (Solaymani e
al, 2020). However, the Bayesian approach’s ability to incorporate prior knowledge and quantify
uncertainty offers additional flexibility, particularly for complex multi-environment trials involving
multiple traits.

Bayesian analysis allows the integration of different sources of genetic information, such as the
relationship matrix (A) and the genomic relationship matrix (G) for genomic-enviromic predictions
(Cuevas et al,[2017). The possibility of using different priors can be a key feature that enhances the
model’s ability to derive reliable predictions. Informative priors are valuable in real-world breeding
studies when prior knowledge exists about genetic relationships, environmental effects, or trait her-
itability. For instance, priors based on pedigree information can guide the model when genomic
data is sparse, while priors derived from historical yield data can improve predictions in environ-
ments with limited phenotypic observations. Additionally, shrinkage priors, such as those used in
Bayesian Ridge Regression, are effective for controlling overfitting when working with a large
number of predictors. By incorporating these priors, BGLR allows breeders and scientists to lever-
age prior knowledge effectively, resulting in more accurate and reliable predictions for complex
breeding scenarios.

7. Next Steps

The next phase of implementing enviromic models involve:

+ Validating the matrix construction with real datasets.

* Extending the approach to account for more complex genetic and environmental interactions.

* Prediction of parents, for instance, when dealing with lines, to obtain specific hybrids.

* Interpolate the genotypic prediction across an entire framed area based on the “Target Popula-
tion of Environments” (TPE) (Cruz et al,,2025) for the crop.

* Evaluating the impact of different covariance structures on the predictive performance of the
mixed models.

8. Conclusions

Developing enviromics matrices for mixed models using frequentist or Bayesian methods is a ro-
bust framework for integrating genetic and environmental data in plant breeding. The construction
of design and kernel matrices enables the accurate modeling of genotype-by-environment interac-
tions, allowing for improved prediction of phenotypic performance under diverse conditions. While
the current approach uses a block-diagonal structure to separate random effects across genotypes
and assumes no relationships between different u’s within the same genotype, future advancements
could extend these methods to more complex scenarios.

Mathematical developments in matrix expansions could involve incorporating multi-trait mod-
els, where multiple phenotypic traits are analyzed simultaneously, accounting for correlations amon
them. Another promising direction is including diverse experimental types within a unified frame-
work, allowing for the simultaneous analysis of trials with different designs, such as replicated tri-
als, unreplicated trials, or even observational data. Additionally, introducing covariances between
random effects u’s across genotypes could further enhance the modeling of shared environmental
influences or interactions among traits.

Such expansions would require sophisticated matrix derivations and computational techniques,
potentially involving sparse matrix algebra operations and high-dimensional statistical methods. By
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pursuing these advancements, enviromics could provide even more comprehensive insights into
genetic and environmental interactions, driving more effective breeding strategies and accelerating
the development of improved crop varieties. In addition, future research should focus on developing
more computationally efficient strategies to enable large-scale analyses. As environmental data be-
comes widely available and included in the genetic evaluation of breeding programs, new software
will be required to manage the amount of data, especially when integrated with additional omics
information such as genomic, transcriptomic, proteomics, metabolomics, epigenomics.
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