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m ABSTRACT: For the management and conservation of wild animal populations it is
fundamental to know its abundance. However, if imperfect detection, a very common
phenomenon in field counts, is ignored, abundance will be underestimated. We show that
Bayesian hierarchical models for double observer distance sampling data are capable
of simultaneously estimating abundance and detection probabilities and propose a
simple model where detection probabilities are modeled as logit or probit regressions
of distance-to-line and give its implementation in BUGS code. With a simulation
study we verify empirically that double observer information increases the precision in
abundance estimates by about 30% when compared with estimates from distance data
only. We further verify that the model is capable to correctly estimate observer-specific
detection probability, but underestimates abundance by 12% on average. We also apply
an extension of these models to a population of loon (QUANG and BECKER, 1997;
URL:http://www.jstor.org/stable/1400405.1997). Our estimate of 154 (posterior mean)
was much higher than the estimated 99 individuals reported by QB although other
model parameters are similar. Some new model-specific goodness-of-fit diagnostics are
proposed and applied.
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1 Introduction

The absolute size of an animal population is important to evaluate its
conservation status and to monitor the sustainability of management actions.
However, the estimation of abundance is often a difficult and expensive task,
particularly in the marine environment. This is due to the extensive area of
distribution and the elusiveness of individuals or groups who remain submersed.
Marsh and Sinclair (1989) propose two sources of bias in abundance estimates,
denoting them as avalability and perception biases. Availability bias refers to the
uncertain presence of the animal within the searched area at time of survey, while
perception bias is caused by imperfect detection of animals or groups which are
available.

Transect line distance sampling analysis (distance sampling, for short) is a
commonly used method of estimating density and abundance for a variety of marine
mammal populations, usually for the purpose of management and conservation
(BORCHERS, BUCKLAND and ZUCCHINI, 2002; DALLA ROSA, FORD and
TRITES, 2012). Data are collected by an observer travelling along prespecified
routes (the transect line) while recording the perpendicular distances to the detected
animals. If the animals occur in groups or clusters, such as flocks of birds or
schools of dolphins, the number of animals in each group is recorded along with the
distance to the groups centroid. Since some animals are missed (perception bias),
approaches are needed to correct for it. This is achieved by modeling the probability
of detection as a known function g(-) of perpendicular distance x, usually assuming
that higher distances associate with lower detection probabilities. In order to have
identifiable parameters, this function needs to assume perfect detection at some
known distance. Conventional distance sampling assumes perfect detection on the
transect line, ¢(0) = 1. If this assumption is violated (i.e. g(0) < 1), we say there
is imperfect on-line detection and denote 1 — g(0) as perception bias. This feature
is common for marine mammals and if unaccounted for will cause a downward
bias in abundance estimates (BORCHERS, 1999; BORCHERS, BUCKLAND and
ZUCCHINTI, 2002).

Extensions of distance sampling to incorporate imperfect detection on the
transect line as another parameter and garantee parameter identifiability rely
on double observer distance sampling with mark-recapture data between them
(KARUNAMUNI and QUINN, 1995; LAAKE, 1999). These finding have been
confirmed and extended by many other studies of various authors (QUANG and
BECKER, 1996, 1997, 1998; BAILEY, HINES and MacKENZIE, 2007; CONN,
LAAKE and JOHNSON, 2012; EGUCHI and GERRODETTE, 2009; ROYLE and
DORAZIO, 2008).

Bayesian analysis has become increasingly popular in statistical inference
of wildlife population abundance and related parameter (KARUNAMUNI and
QUINN, 1995; BERLINER, 1996; WADE, 2000; DURBAN et al., 2005;
McCARTHY, 2007; KING and BROOKS, 2008). Unlike the orthodox, more
restrictive, definition of frequentist probability, a Bayesian probability is a much
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broader metric capable to quantify any kind of uncertainty caused by incomplete
information (JAYNES, 2003). Hence, a Bayesian population abundance estimate is
given in the form of a (posterior) probability distribution. The Bayesian approach
is further capable to combine available extra-data information (prior distributions)
with new observed data (likelihood) to produce an updated state of information
(posterior distributions) by way of Bayes theorem (KINAS and ANDRADE, 2010).

Hierarchical Bayesian models offer a flexible and realistic approach to
ecological research (CLARK, 2005; SCHOFIELD and BARKER, 2010). Markov
Chain Monte Carlo (MCMC) is a handy tool to obtain simulated high-
dimensional posterior distributions with relative ease (MARTIN and QUINN, 2006;
McCARTHY, 2007). Its implementation in BUGS code (LUNN et al., 2009;
RESNIK and HARDISTY, 2010) with the use of specialized software (e.g. JAGS)
(PLUMMER, 2003; PLUMMER, 2012) and related R libraries (rjags) (PLUMMER,
2013) have made Bayesian inference and hierarchical model fitting more accessible
to applied scientist in general.

Bayesian hierarchical distance sampling models were sistematized by Royle and
Dorazio, (2008, Chapter 7). In order to simulate the joint posterior distribution for
all unknown parameters using MCMC, they formulate the model within a data
augmentation framework providing a flexible structure to fit very general models
(ROYLE and DORAZIO, 2008, P.181).

The aim of this paper is to formulate simple Bayesian hierarchical models
implemented in BUGS code to estimate population abundance without assuming
perfect detection on the transect line. Double observer distance sampling data are
the basic requirements. Firstly, with the help of a simulated study we examine
the reliability of the proposed hierarchical model to estimates abundance and
imperfect on-line detection probability. Secondly, we explore further flexibilities
of hierarchical model formulation with a case study on double observer distance
data for a loon population in Alaska (QUANG and BECKER, 1997) in which we
allow for maximum detection probability to occur off the transect line and evaluate
the goodness-of-fit for these models with some novel diagnostic tools.

2 Method
2.1 The models

The models are formulated within a hierarchical structure and implemented
with data augmentation (ROYLE and DORAZIO, 2008, P.181). The idea behind
data augmentation is that the actual population of unknown size N is contained in
a super-population of given size M assumed much larger than N.

Considering just distance data, we define a binary variable y; which indicates
whether the i-th subject has been detected (y; = 1) or not (y; =0) fori=1,..., M.
The variable y; has therefore a Bernoulli distribution with parameter p;. We express
this distribution as

y; ~ Bernoulli(p;)
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For each subject the parameter p; has two components: the detection
probability g(z;), a function of the perpendicular distance to the transect line z;,
and the binary variable w;, indicating whether the i-th subject, in the "augmented
population” of known size M is part of the "real population” of unknown size N. For
all detected animals w; = 1 while it is unknown (or latent) for the remaining M —n
elements and has to be estimated. Hence, y; is defined as pu; = w; - g(x;) and w;
are independent Bernoulli random variables with success probability ) = N - M !
and therefore expressed as

w; ~ Bernoulli(v)

Consequently it results that the sum S, = > (w;), has a Binomial distribution
Bin(M, ). Hence, estimating N is equivalent to estimate ¢ since F(S,,) = M-y =
N.

For perpendicular distances z [0 < z < m], where m is some fixed maximum
perpendicular distance, we define de distance-dependent detection probability g(z)
with the inverse logit link function

e(Bot+pi-z)
gl@) = 1+ e(Bothra)

and the inverse probit link function

g(x) = @(Bo+fr-x)

where ® is the standard Normal distribution function.

The detection probability on the transect line (i.e. g(0)) becomes a function of
Bo only for both link functions. Hence, by estimating 5y we are estimating a known
function of the perception bias 1 — g(0). When only distance data are available,
Bo is confounded with abundance and cannot be estimated individually. One way
to circumvent this difficulty is the incorporation of mark-recapture information for
two observers who simultaneously search the transect line and collect distance data
individually (BUCKLAND, LAAKE and BORCHERS, 2010).

With the inclusion of the double observers (DO) information, the binary
variable y; extends to y;; for observer j where j = 1,2 and the detection probability
becomes also observer-dependent g;(x;). Variable y;; is now associated with the
indicator vector Z; = (21, 22i, 234, 24i), defined such that just one element is equal
to one and all others are zeros. Thus, by z;; = 1 we mean that the detection
is just by observer 1 (i.e. y1; = 1 and yo; = 0) and the associated vector is
Z; = (1,0,0,0); when z9; = 1 the detection is just by observer 2 and Z; = (0,1, 0, 0);
when z3; = 1, the detection is by both observers and Z; = (0,0, 1,0); finally, z4; = 1
and Z; = (0,0,0,1) for all M — n undetected subjects.

We consider that detections are independent between observers (i.e. g;(z;) =
9j(3—j)(xs) with the right-hand side denoting the conditional probability that
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observer j detects subject i given that the other observer also detects it). Thus, the
probabilities of the four components of Z; are easily calculated and the Binomial
model for y; is extended to a Multinomial model for Z; with the following parameter
structure:

Z; ~ Multinomial(1, ( g1, H2i, H3i5 H4i))

pri = gi(xi) - (1 —ga(xs)) - w;
poi = (L= g1(z)) - g2(zs) - w;
pzi = g1(wi) - ga(wi) - wy

pai = 1 — (pyi + pr2i + p3q)

w; ~ Bernoulli(y)

where Multinomial(s, (p1,...,pr)) denotes a k-dimensional multinomial
distribution with sample size s and probability vector (py, ..., px) satifying > p, = 1.

Finally, based on the n sampled detections with known distances x; and the
M — n undetected augmented data the estimated population abundance becomes

M M
N = Z w; =n—+ Z w;
i=1 i=n-+1
For the M — n undetected subjects with missing perpendicular distances
x;, these distances are assumed uniformly distributed in the interval (0,m) and
imputed.

2.2 The data

For the simulation study, we consider a virtual population of size N = 200
subjects, whose perpendicular distances to the transect line x, are independent
random variable with uniform distribution in the interval [0,1]. Any distance d,
effectively measured in the field until some maximum fixed distance m, can always
be standardized such that x = d - m™! is in the range [0,1]. Hence, there is no
loss of generality by using this distribution. To generate the data we also define
half-Normal detection functions g;(z;) = k; - exp(fxzoj_Q) with parameters k; =
0.8; o1 = 8, for observer one and ky = 0.5; oo = 12 for observer two. The
detection of the i-th individual by observer j is modeled with a Bernoulli distribution
yji ~ Bern(gj(x;)), where each individual 7 is classified as detected (y;; = 1) or
undetected (y;; = 0) by observer j. The components of the vector Z; fori =1, ..., N
are defined for the ¢-th individual as follows:

216 = Y- (1 —yoi)

zoi = (1 —y1i) Y2

23 = Y1i Y2

zai = (L—y1s) (1 —y2)
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A simulated sample consists in the distances x; and associated vectors
(211, 22i, 23;) for a total n = Zi]\il(21¢+22¢+z3,~) detected subjects. The full sampling
procedure is replicated 20 times, each identified as transect t,., where r = 1,2, ..., 20.
The observed perpendicular distances and the total number of detected subjects are
summarized and displayed in Figura 1.

t4 t5

t1 2 t3
n=86 n=288 n=94 n=90 n=

920

t6 t7 t8 t9 t10
n=91 n=92 n= 86 n= 86 n=81

t11 t12 113 t14 t15

n=81 n=289 n=85 n=_84 n=83

116 17 18 119 120

n=92 n=94 n=93 n= 87 n=91
Figure 1 - Histogram of individual distances and total sample size n for 20 replicated
samples extracted from the simulated population. All the frequencies

(y-coordinates) are on the same scale and distances (z-coordinates) are
on the interval [0, 1].

The second data set is adapted from Quang and Becker (1997) and consists
of a mixed population with two species of loons (Gavia pacifica and Gavia immer)
inhabiting the Yukon Flats National Park, Alaska. Since double count distance data
were reported only in interval classes (Table 1), we simulated within each class, the
individual distances with uniform distributions.

Table 1 - Loon detection data reproduced from Quang and Becker (1997), Table 01

Distance class 5-30 30-60 60-90 90-120 120-150 150-190 190-250
Front passenger only 3 1 2 3 3 5 5
Rear passenger only 4 3 0 3 ) 1 2
Both passengers 0 1 2 10 6 6 2
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2.3 Fitted model

Models used for inference are distinct regarding data type and link function.
In some models, data are only perpendicular distances to the line transect (LT); in
others, double observer mark-recapture data are also included (DOLT). The link
functions are logit or probit. From now on we will just use model numbers in Table 2
when refering to them. From now on we will use the shorthand 'DOLT-logit’ when
refering to the model fitted to double-observer distance data fitted with logit link;
applying the obvious changes when refering to all other situations. In the case of
LT models M1 and M2 we use the total number n of subjects detected by at least
one observer and simply ignore capture-recapture information. This allows for the
evaluation of changes in precision of abundance estimates obtained for the same
sample size and distance data but including double observer data as well (M3 and
M4).

Table 2 - List of models fitted to distance data only (LT) and complemented by
double observer mark-recapture data (DOLT). The logit link is used
in odd-numbered and the probit link in even-numbered models. The
term single refers to models with a single detection function while obs
refers to models with observer-specific detection functions. The term quad
indicates the inclusion of a quadratic term (pj; = g;(x;))

Model Description
M1 log (1 ) J Bo + B1 - x; single LT — logit
M2 O (pi) =Bo+ B single LT — probit
M3  log (1pp } =00+ pP1-x; single DOLT — logit
M4 @7 (pji) =Po+ Bi- i single DOLT — probit
M5 log (1”;”} Bjo + Bj1 - double DOLT — logit
M6 @7 (pji) = Bjo + Bj1 - double DOLT — probit
M7  log (1fﬁji)} = Bo+B1-xi+ B - 2 single quad DOLT — logit
M8 @7 (pji) =fo+ B wi+ P2 x? single quad DOLT — probit
M9  log (1p]p1ﬂ)} Bjo + Bj1 - i + Bjo - x  double quad DOLT — logit
M10 O (p;;) = Bjo+ Bj1 - xi + Bj2 - a2 double quad DOLT — probit

To fit the loon data, we further include a quadratic term of = to allow for the
possibility of a maximum detection probability at some distance off the transect line
(x > 0). To select the most parsimonious model we use the deviance information
criterion (DIC), with smaller DIC meaning a better fit (SPIEGELHALTER et al.,
2002). To facilitate later reference just by model number, all fitted models are listed
in Table 2.
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2.4 Bayesian inference - simulated data

Models 1 to 6 (Table 2) are fitted to each of the 20 replicated transects. We
define vague marginal priors for all parameters: ¢ ~ U(0,1); B0 ~ N(0,1E5) and
Bj1 ~ N(0,1E5) to j = 1, 2. Posterior distributions are obtained by Markov Chain
Monte Carlo (mcmc) simulations (MARTIN and QUINN, 2006; McCARTHY, 2007)
with the libraries R2jags (SU and YAJIMA, 2015) and rjags (PLUMMER, 2013),
which run JAGS (PLUMMER, 2003; PLUMMER, 2012) from within R (version
3.1.1) (R CORE TEAM, 2014).

We evaluate convergence with the diagnostic tools Rhat and n.eff provided
by R2jags, in combination with the standard diagnostics provided in the ’coda’
package (PLUMMER, 2010; PLUMMER, 2013). After some preliminary testing we
have fixed the fitting procedure that achieved satisfactory convergence diagnostics,
running three chains with a burn-in of 10.000 steps and a thinning of 40, generating
a posterior sample of size 3000.

To assess inferential efficiency in estimating population size N and detection
probability at maximum detection g;(0) we use the relative bias (rb) defined as the
difference between the posterior mean and the true value divided by the true value.
As a summary over the twenty replicates we further calculate the average rb and
also the root mean squared error (rmse) among posterior means; where rmse is
defined as the variance of the posterior mean plus the squared difference between
the average posterior mean and the true parameter.

2.5 Bayesian inference - loon data

Models 3 to 10 (Table 2) are fitted to the loon data with vague prior
distributions for all model parameter: ¢ ~ U(0,1); Bj0 ~ N(0,1E5), Bj1 ~
N(0,1E5) e Bj2 ~ N(0,1E5). The posterior distributions are obtained as
previously, with three chains, a burn-in of 10.000 steps and a thinning of 40,
generating a posterior sample of size 3000. Preliminary testing indicated good
convergence diagnostics when running mcme with these options.

Models with an additional quadratic term /3 (models 7 and 8) or the observer-
specific extension (2 (models 9 and 10) have the maximum detection probability
at some positive perpendicular distance xg > 0. For some fixed values 7 and (s
this distance is:

_b
26,

Therefore, in a quadratic model, g(zg) replaces g(0) as the distance with
maximum detection probability. Within the Bayesian framework, it is easy to
obtain a posterior distribution for this probability, since it is a known function of the
uncertain parameters Sy, 1 and B2 (or their j-indexed equivalents) for which joint
posterior distribution is readily available. For the inverse-logit and inverse-probit
link functions, these maximum detection probabilities are, respectively

Lo
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52

g(z) = (1_’_6*@0*@))—1

g(@o) = @(Bo— i )
4- [

For later reference, we mention that these maximum detection probabilities
g;j(zo) are equivalent to the parameters c; for observer j = 1, 2 in Quang and
Becker (1997) defined in another very different model formulation.

2.6 Goodness-of-fit - loon data

The rational to evaluate the quality of model fit is to check whether, with
a proposed model and the resulting parameter estimates, we are able to generate
predictive distributions consistent with the observed sample data (GELMAN and
HILL, 2007, p.513). That is, to compare the observed total number of detections
by the front passenger only (ni, = 22), by the rear passenger only (n2, = 18) and
by both passengers (np, = 27), with the three-dimensional predictive distribution
induced by the posterior distribution.

Based on the given perpendicular distances x; (i = 1, ..., M) in the augmented
population of size M and given the posterior sample of size 3000 for the parameter
vector 65 (s = 1,...,3000), which for the most general models (M9 and M10) is
Oy = (Vsys Bios)s Biics), Bizes)) (3 = 1,2) we repeat the steps describe next for
each s.

Generate M random quantities w;(,) from the Bernoulli distribution with
parameter 1,). For each of the M subjects calculate the probability vector
ti(s) = (H1i(s)s B2i(s)s B3i(s)s Hai(s)) and simulate Z;) = (21i(s), 22i(s), 23i(s)» Z4i(s))
from a multinomial distribution of size one and parameter ;). Obtain the sums
Np(s) = Ef\il Zpi(s) for = 1,2,3 which are the predicted numbers of subjects
detected by observer one only (n;(,)), observer two only (n4(,)) and by both (n3)).
Hence, the predicted total sample size is n(s) = ny) + nags) + n3(s)-

The procedure outlined in the previous paragraph, is repeated for all 3000
simulated posterior parameter vectors f,) to generate a predictive distributions to
be confronted with observed mark-recapture data. A model with adequate fit is
expected to display predicitive distributions in line with actual observations.

Finally, two further model checks are used: (i) the empirical cumulative
distribution function (ecdf) of observed distances is compared to ecdf-s build from
predicted observed distances simulated for posterior parameter vectors 64); (ii) the
observed sample size is compared to sample sizes of the posterior predicted samples,

3 Results

3.1 Simulated data

All models were fitted with the logit and the probit links. However, based on
DIC no link provides a uniformly superior fit. Therefore, we focus the description
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below only on the logit link, but retain in Tables and Figures the results for both.

Abundance estimation with distance data only (M1) has an average posterior
standard deviation of 68, which reduces to an average of 31 when double
observer data are included and a single detection function is assumed (M3) and
reduces still further to 21 when observer-specific detection functions are assumed
(M5)(Table 3a). However, using the posterior means of the 20 replicas we observe
(rb) that models M1 and M3 are positively biased by 9% of the true value while
model M5 is biased negatively by about 12% (Table 3a and 3b). A compromise
between bias and precision is best described by the root mean square error (rmse)
calculated over the replicated posterior means (Table 4). Based on the smallest
rmse (33.76) model M5 is the best among these three models. Finally, regarding
the coverage provided by the posterior 95% credibility intervals (CrI95), the true
parameter N was covered by 16 out of 20 replicas for both DOLT models M3 and M5
(Figura 2). This coverage is below the 19 out of 20 as announced by the credibility
interval.

Abundance estimate to modelos front M1 to M6

M1

Figure 2 - Box-plot-type posterior distribution summaries of abundance (N) for
models M1 to M6. CrI50 (boxes), CrI95 (whiskers), median (inbox
horizontal line), true parameter (horizontal line).

0 100 200 300 400

0 100 200 300 400

Model comparisons with DIC consistently identified the model with observer-
specific detection function M5 as better (i.e. lower DIC) than the model that
assumes a single detection curve M3 (Table 3a and 3b). This consistency also holds
for models with probit link (i.e., M6 is better than M4).
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In all DOLT models the estimates of ¢(0) have a good performance. For the
observer-specific model M5, these estimates have a positive bias of 5% and 8% for
observers one and two, respectively (Table 3a and 3b). Hence, they are less biased
than estimates of abundance described previously. Model M3, that assumes a single
detection function is also quite able to estimate the average between the true values
(0.8 and 0.5) for both observers, which is g(0) = 0.65 (Table 3a and 3b). Regarding
coverage of the 95% credibility intervals, 17 and 18 out of 20 are the success rates
for observers one and two in model M5 (Figura 3).

gzero estimate

02(0) 92(0)

i ?% ]

Model M5
00 02 04 06 08 10

01(0) 92(0)

? 1t T
i %%ﬁ%%%@%%#ﬁ%

Model M6
00 02 04 06 08 10

Figure 3 - Box-plot-type posterior distribution summaries of detection probability
at distance zero for observer 1 (¢1(0)) and observer 2 (g2(0)) for simulated
data fitted to models M5 and M6. CrI50 (boxes), CrI95 (whiskers),
median (inbox horizontal line), true parameter (dotted horizontal line).

3.2 Case study

All linear and quadratic DOLT models listed in Table 2 were fitted to the
loon data; summaries are in Table 5. The models with smallest DIC are M8 and
M10 which include a quadratic term for observed distances and uses the probit link.
However, both models are indistinguishable regarding predictive performance, since
DIC's differ only by one unit. In fact, differences in abundance estimates N are
negligible since they have posterior mean 156 (CrI95: 128 to 189) and 154 (CrlI95:
125 to 185) for models M8 and M10, respectively. Nevertheless, these estimates
exceed in about 35% the estimated 99 individuals obtained by Quang and Becker
(QB). For further comparisons with results by QB, we focus on model M10 which
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retains observer-specific detection functions as they did.

In model M10 the observer-specific detection probabilities at distance zero
(91(0), g2(0)) and the detection probabilities at the distances of maximum detection
probabilities (g1(z10), g2(x20)) are higher than the corresponding estimates
reported by QB (Table 4; 5; Figura 4c and 4d). However, while posterior standard
deviations in the former estimates are similar to the asymptotic standard errors
(ASE) presented by QB, our values are much smaller for the latter where posterior
standard deviation are close to 0.05 while the ASEs are above 0.25 (Table 4).

Table 4 - Summaries over 20 replicated simulations of the posterior mean for
abundance N: average (mean); standard deviation among posterior means
(sdpm); root mean square error (rmse) and average DIC among replicates
(DIC,,)

M1 M2 M3 M4 M5 M6
mean  217.264 206.169 217.003 226.419 176.464 169.809
sdpm 37.134  39.866  39.544  47.167  24.197  23.927
rmse 40.951  40.340  43.044  54.062  33.755  38.523
DIC,, 3185 3924 909 905 808 793

Table 5 - Posterior mean and sd for abundance (N); detection probability at
distance zero for single detection function or for observer 1, (g1(0)) and
for observer 2, (g2(0)); maximum detection probability at distance z( for
single detection function or for observer 1, (g1(z¢)) and for observer 2,
(g2(z0)). Last line (QB) reproduces maximum likelihood estimates and
asymptotic standard error from Quang and Becker (1997)

N sd  gl(0) sd  g2(0) sd  gl(x0) sd  g2(x0) sd DIC
M3 84 7.38 0.440 0.124 - - - - - - 477
M4 85 7.72 0.442 0.122 - - - - - - 498
M5 82 6.84 0.396 0.091 0.531 0.096 - - - - 453
M6 83 6.85 0.338 0.136 0.541 0.148 - - - - 454
M7 144 14.11 0.224 0.056 - - 0.852  0.040 - - 278
M8 156 15.58 0.124 0.056 - - 0.902 0.041 - - 251

M9 141 14.19 0.202 0.068 0.302 0.103 0.876  0.052 0.932  0.052 287
M10 154 15.12 0.095 0.058 0.193 0.094 0.879  0.054 0.924  0.056 252

QB 99 6.34 0.110 0.080 0.162 0.089 0.754  0.256 0.732  0.283 -

Goodness-of-fit diagnostics suggest that model M10 is less capable of
adequately predicting the observed number of mark-recapture data than the simpler
model M6 (Figura 5 and 6). The graphic displays suggest that M10 predicts larger
sample sizes of detected loon than the 67 individuals that were actually observed.
Ounly with regard to the predicted distribution of distances (Figura 6) M10 seems
to be slightly superior. This results are surprising because M10 has a much smaller
DIC than M6 and therefore one would expect to observe features in support of a
better fit.
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Modified Quang & Becker, 1996

QB’Data N
16 o
14
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5 4 9 5
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n=67 N=98.99
gl(XO) gz(Xo)

Ll

05 06 07 08 09 1.0 05 06 07 08 09 1.0
c,=0.7544 €,=0.7323

Figure 4 - Top left: histogram of observed data by QB; Top right: posterior

distribution for abundance N and the corresponding estimate with
confidence range by QB [vertical lines|; Bottom left: posterior
distribution of highest detection probability for observer 1 [g;(z0)] and
the estimate of this parameter (¢;) by QB [vertical line]; Bottom right:
posterior distribution of highest detection probability for observer 2
[g2(z0)] and the estimate of this parameter (c2) by QB [vertical line].
All posterior distributions refer to model M10.
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Figure 5 - Predictive multivariate distribution under models M10 (left column) and
M6 (right column) [grey dots]. n; - number of individuals detected by
observer one only; ns - by observer two only; n3 - by both observers. The
observed numbers (n1,, n2,, Npo) are displayed with black dots.
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Figure 6 - Top row: A random sample of 16 empirical cummulative distribution
functions (ecdf) [grey] of predicted distances and the observed ecdf
[black|; Bottom row: predictive distribution of total number of detected
loons [grey histogram| and observed number (67) [black vertical line].
Left column: M10 and Right column: MG6.
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4 Discussion

4.1 Simulated data

Our simulations confirm similar findings already reported by other authors that
double observer mark-recapture data, when combined with perpendicular distances
from the detected subject to the transect line, enables the estimation of ¢(0) and
increases the accuracy in abundance estimates (BORCHERS, 1999; KING, 2014).
Hence, the double-observer data allowed for successful observer-specific estimation
of the imperfect on-line detection probability g(0) (Table 3b, Figura 3). The
literature on distance sampling uses both terms g(0) and perception bias (1 — g(0))
and some care is necessary when comparisons are intended. For instance, on-line
detection probability of g(0) = 0.8 translates to a perception bias of 20%. Of course,
perception bias is zero and can be ignored when ¢g(0) = 1 as in standard distance
sampling.

Furthermore, in standard distance sampling maximum detection is presumed
to occur on the transect line (z = 0) and model with the shape of half-normal or
hazard-rate detection functions (BORCHERS, BUKLAND and ZUCCHINI, 2002;
FEWSTER et al., 2009; EDEKOVEN et al., 2013). But this maximum will be
found at some positive distance xy > 0 when the detection function is assumed
Weibull (QUANG and BECKER, 1997) or gamma (BECKER and QUANG, 2009).
In contrast, we allow for an off transect line maximum detection simply by adding
a quadratic term into de logit and probit regressions of distance. The important
point in all this being that, with distance data only, parameter identifiability of
detection functions in all these models are only possible when g(z¢) = 1 is assumed
at some fixed zg > 0 (ZAHL, 1989).

In the simulation study the use of a logit or probit regression to model detection
as a function of distance proved succesful although these were not the models that
actually generated the data. With the chosen modeling strategy we took a quite
distinct approach from most of the distance sampling literature (e.g. BORCHERS,
1999; BECKER and QUANG, 2009). To our knowledge, only Conn, Laake and
Johnson (2013) used a somewhat similar modeling approach with a multivariate
probit transformed detection function. However they used a much more complex
reversible jump mcmec algorithm to obtain posterior distributions.

4.2 Case study

The inclusion of a quadratic term into the logit and probit regressions of
detection probability by distance, resulted in a substantial reduction in DIC
dropping from a smallest value of 454 for the best linear-term-only model M6 to
252 when a quadratic term was added (M10) (Table 5). This is not surprising since
the data suggest a mode at some intermediate distance away from zero (Figura 4a).
The posterior distributions obtained with model M10, estimate these modes at
140m (CrI95 123.2m to 163.5m) and 118m (CrI95 102.7m to 135.7m) for both
observers. Using a completely distinct model structure and maximum likelihood
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inference, QB estimates them at 135.05m and 122.82m respectively. In conventional
distance sampling, the requirement of maximum detection on the transect line
forces all distances smaller than the mode to be discarded and the remaining
distances rescaled; a procedure usually known as data truncation (LAAKE, 1999;
BORCHERS, BUCKLAND and ZUCCHINI, 2002; ANDRIOLO et all., 2010). This
is unfortunate because it requires the exclusion of data that are often hard and
expensive to collect.

Although the estimated distances of maximum detection zy show good
agreement with QB, the estimated detection probabilities at these distances are
lower in QB when compared to ours, although within acceptable ranges since both
are covered by our posterior 95% credibility intervals (Table 4, Figura 4c and 4d).
In contrast, abundance estimates cannot be reconciled as our posterior mean of
154 (CrI95 128 to 185) is much higher then the estimated 99 individuals reported
by QB. It is surprising that, while QB infer a perception bias around 25% that
is higher than our infered value around 10%, their abundance estimate is smaller.
This fact suggests that, with the inclusion of a quadratic term into our (probit- or
logit-) regression models, the relationship between abundance and perception bias
becomes less obvious than naive intuition would indicate. It is also to be noted that
in all quadratic models the probit regressions (M8 and M10) outperform their logit
equivalents (M7 and M9, respectively).

In the goodness-of-fit analysis we confronted the most complete quadratic
model M10 to the most complete linear model M6. Based on posterior predictions,
the visual examination of both Figures suggest that the observed number of
detections was lower than model M10 would have predicted, being in better
agreement with M6 (Figura 5 and 6). These findings contradict the ranking obtain
by DIC, which might have been affected by missing distances induced by data
augmentation (CELEUX et al, 2006). Finally, in Figura 7 we see that the detection
probabilities estimated by M10 are reasonable in light of the data, while those
for M6 are much less so and might be difficult to justify in practice. We think
these aspects of model goodness-of-fit diagnostics need further investigation as it is
unclear at this time how to reconcile these surprising results of lower DIC associated
to worse lack-of-fit.

Finally, the simulation study has shown that the proposed model and
its implementation with data augmentation in BUGS code, is a workable and
comparatively easy way to model distance data with imperfect maximum detection
probability. Furthermore, the case study has shown another versatility of this
model by allowing for maximum detection off the transect line by simply including
a quadratic term into the model. With this simple model extension, data loss
due to truncation can be avoided. This can represent a critical advantage for
elusive populations where samples are hard to get and each datum contains valuable
information.
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» RESUMO: Conhecer a abundéancia absoluta de populagbes animais é primordial para
seu manejo e sua conservagdao. Porém, estimativas de abundéancia, que ignoram a
deteccdo imperfeita dos individuos presentes nas &areas, resultam em subestimativas.
Modelos hierarquicos com uma abordagem bayesiana, que fazem uso de dados de
distancias com a informagao do segundo observador permitem estimar simultaneamente
abundéancia e detectabilidade. Propomos uma alternativa de implementagdo simples,
usando dados aumentados e simulagdo de Monte Carlo com Cadeia de Markov (mcmc).
As probabilidades de detecgao sdo modeladas por regressoes logit e probit em fungéo das
distancias aos individuos detectados. Validamos nossos modelos com amostras simuladas
de uma populagdo ficticia de tamanho conhecido e com fungoes de detectabilidade
distintas. Implementamos novos recursos de diagnoésticos para goodness-of-fit dos
modelos aos dados. A complementagao dos dados de distancia com dados de um segundo
observador, aumentou a precisao da estimativa de abundancia em 29,6% com relagao ao
uso exclusivamente dos dados de distancia. O melhor modelo, M5, estima corretamente
os valores g(0), porém a abundéancia é subestimada em 12% considerando-se a média da
distribuicdo como estimativa pontual. Também aplicamos o modelo a uma populagdo
de gansos Loon descrita e analisada em Quang and Becker (1997). Nossa estimativa de
154 loons é maior que a estimativa de 99 individuos reportada em QB. O diagnosticos
de goodness-of-fit, no entanto, indicam que o modelo é adequado. O estudo simulado
sugere que a populagao seja ainda maior. Modelos hierarquicos integrando amostras
de distancia com dados de marcagdo e recaptura permitem estimar simultaneamente
abundéancia e curvas de deteccdo. A modelagem das probabilidades de deteccdo por
regressao logit ou probit, permite flexibilidade para ajuste de curvas nao-convencionais
com potencial para inclusdo de outras covaridveis. Apesar da estimativa de curva
de detectabilidade para ambos os observadores nao ser o objetivo mais relevante do
trabalho, os modelos propostos lidam com a problematica do viés de percepgao de tal
forma a fornecer uma estimativa de abundancia com bastante precisao.

» KEYWORDS: Distribui¢do animal; modelagem ecolégica; modelo de processo; modelo
observacional.
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