Application of spatiotemporal scan statistics in cases of intentional homicides in northern Brazil

Main Article Content

Henrique José de Paula Alves
https://orcid.org/0000-0002-0124-3093
Ben Dêivide de Oliveira Batista
https://orcid.org/0000-0001-7019-8794

Abstract

The crime of intentional homicide in Brazil is worrying. In the northern region, this type of crime has been growing since 2020. In this sense, we decided to apply Kuldorff's prospective space-time scan statistics in order to identify emerging counties. We conclude that there are two emerging clusters of high relative risk (Amazonas and Pará) that require rapid intervention and two clusters of low relative risk (Acre, Roraima, Amazonas, Amapá and Pará) that do not require urgent intervention. Some characteristics of these two clusters are presented: radius, population, relative risk, likelihood ratio.

Article Details

How to Cite
Alves, H. J. de P., & Batista, B. D. de O. (2024). Application of spatiotemporal scan statistics in cases of intentional homicides in northern Brazil. Brazilian Journal of Biometrics, 42(4), 329–338. https://doi.org/10.28951/bjb.v42i4.707
Section
Articles
Author Biography

Ben Dêivide de Oliveira Batista, Federal University of Sao João del-Rei

Mathematics department

Assistant professor

References

Coelho, D. S. C., Cunha, A. d. S., Alves, H. & Guedes, E. P. Metodologia para a pré-seleção dos municípios participantes do Programa Nacional de Enfrentamento de Homicídios e Roubos (2021). http://dx.doi.org/10.38116/ntdiest55

Costa, M. A., Assunçao, R. M. & Kulldorff, M. Constrained spanning tree algorithms for irregularly-shaped spatial clustering. Computational Statistics & Data Analysis 56, 1771–1783 (2012). http://dx.doi.org/10.1016/j.csda.2011.11.001

Dim, E. E. Experiences of physical and psychological violence against male victims in Canada: A qualitative study. International journal of offender therapy and comparative criminology 65, 1029–1054 (2021). https://doi.org/10.1177/0306624x20911898

Duczmal, L., Kulldorff, M. & Huang, L. Evaluation of spatial scan statistics for irregularly shaped clusters. Journal of Computational and Graphical Statistics 15, 428–442 (2006). http://dx.doi.org/10.1198/106186006X112396

Kulldorff, M. SaTScanTM user guide for version 9.6. 2018. Department of Medicine, Harvard Medical School: Boston, MA 2120 (2018).

Kulldorff, M. Prospective time periodic geographical disease surveillance using a scan statistic. Journal of the Royal Statistical Society: Series A (Statistics in Society) 164, 61–72 (2001). https://doi.org/10.1111/1467-985X.00186

Kulldorff, M., Athas, W. F., Feurer, E. J., Miller, B. A. & Key, C. R. Evaluating cluster alarms: a space-time scan statistic and brain cancer in Los Alamos, New Mexico. American journal of public health 88, 1377–1380 (1998).

Kulldorff, M. & Nagarwalla, N. Spatial disease clusters: detection and inference. Statistics in medicine 14, 799–810 (1995). https://doi.org/10.1002/sim.4780140809

Leite, F. M. C., Mascarello, K. C., Almeida, A. P. S. C., Fávero, J. L., Santos, A. S. d., Silva, I. C. M. d. &Wehrmeister, F. C. Analysis of the female mortality trend due to assault in Brazil, States and Regions. Ciência & Saúde Coletiva 22, 2971–2978 (2017). https://doi.org/10.1590/1413-81232017229.25702016

Liang, S., Han, D. & Yang, Y. Cluster validity index for irregular clustering results. Applied Soft Computing 95, 106–583 (2020). https://doi.org/10.1016/j.asoc.2020.106583

Mohammadi, A. Spatiotemporal patterns of homicide rates in Tehran metropolitan area, Iran. Spatial Information Research, 1–9 (2023). https://doi.org/10.1007/s41324-023-00506-4

Qian, H. et al. Detecting spatial-temporal cluster of hand foot and mouth disease in Beijing, China, 2009-2014. BMC infectious diseases 16, 1–13 (2016). https://doi.org/10.1186/s12879-016-1547-6

Silva, C. C. d., Souza, K. O. C. d., Paz, W. S. d., Santos, A. P. S., Melo, L. R. S. d., Sousa, Á. F. L. d., Araújo, D. d. C. & Santos, A. D. d. Modelagem espacial da mortalidade por homicídios na Região Nordeste do Brasil. Revista Brasileira de Enfermagem 76, e20220182 (2023). https://doi.org/10.1590/0034-7167-2022-0182pt

Steelesmith, D. L. & Lindstrom, M. R. e. a. Spatiotemporal Patterns of Deaths of Despair Across the US, 2000-2019. American journal of preventive medicine (2023). https://doi.org/10.1016/j.amepre.2023.02.020

Tavares, R., Catalan, V. D. B., Romano, P. M. d. M. & Melo, E. M. Homicídios e vulnerabilidade social. Ciência & Saúde Coletiva 21, 923–934 (2016). https://doi.org/10.1590/1413-81232015213.12362015

Uittenbogaard, A. & Ceccato, V. Space-time clusters of crime in Stockholm, Sweden. Rev. Eur. Stud. (2012). http://dx.doi.org/10.5539/res.v4n5p148

Vieira, C. P., Oliveira, A. M., Rodas, L. A. C., Dibo, M. R., Guirado, M. M. & Chiaravalloti Neto, F. Temporal, spatial and spatiotemporal analysis of the occurrence of visceral leishmaniasis in humans in the City of Birigui, State of São Paulo, from 1999 to 2012. Revista da Sociedade Brasileira de Medicina Tropical 47, 350–358 (2014). https://doi.org/10.1590/0037-8682-0047-2014

Xia, J. et al. Spatial, temporal, and spatiotemporal analysis of malaria in Hubei Province, China from 2004–2011. Malaria journal 14, 1–10 (2015). https://doi.org/10.1186/s12936-015-0650-2

Yiannakoulias, N., Rosychuk, R. J. & Hodgson, J. Adaptations for finding irregularly shaped disease clusters. International Journal of Health Geographics 6, 1–16 (2007). https://doi.org/10.1186/1476-072X-6-28

Most read articles by the same author(s)