Clustering calf growth curves using quantile regression and unsupervised learning

Main Article Content

Gabriela Maria Rodrigues
https://orcid.org/0000-0002-1985-8141
Taciana Villela Savian
https://orcid.org/0000-0002-3309-6075
Fábio Prataviera
https://orcid.org/0000-0001-8190-1086

Abstract

The study of growth characteristics can be crucial to the profitability of animal and plant production. An important aspect to be considered in this type of modeling is the potential presence of heterogeneous sample variances. The Quantile Regression (QR) methodology does not impose any distributional assumptions on the model error, such as normality or constant variances, making it an interesting alternative to conventional regression models. Additionally, it can provide more information about the relationship between the independent variable and the response by fitting different quantiles. This study analyzes data related to the weights in kilograms of 28 calves over a period of 26 weeks after birth. The objectives were to examine QR as an alternative to conventional methods for growth data, considering asymmetry and heterogeneity of residual variances, and to use it to classify animals into groups with different growth patterns. Furthermore, the clusters obtained by QR are compared with clusters obtained by unsupervised machine learning algorithms, a widely used statistical tool nowadays. QR proved to be a more robust alternative to conventional regression models and provided clustering that compete with unsupervised machine learning algorithms. Therefore, it can be recommended for inference purposes as well as for reference in clusters.

Article Details

How to Cite
Rodrigues, G. M., Villela Savian, T., & Prataviera, F. (2025). Clustering calf growth curves using quantile regression and unsupervised learning. Brazilian Journal of Biometrics, 43(4), e-43869. https://doi.org/10.28951/bjb.v43i4.869
Section
Articles

References

1. Barbosa, A., Carneiro, P., Rezende, M., Ramos, I., Martins Filho, R&Malhado, C. M. Parâmetros

genéticos para características de crescimento e reprodutivas em bovinos Nelore no Brasil.

Archivos de zootecnia 66, 449–452. doi:https://doi.org/10.21071/az.v66i255.2523 (2017).

2. Buchinsky, M. The dynamics of changes in the femalewage distribution in theUSA: a quantile

regression approach. Journal of applied econometrics 13, 1–30. doi:https://doi.org/10.1002/(SICI)

1099-1255(199801/02)13:1<1::AID-JAE474>3.0.CO;2-A (1998).

3. Carvalho, S. d. P. C. Estimativa volumétrica por modelo misto e tecnologia laser aerotransportado em plantios clonais de Eucalyptus sp PhD thesis (Universidade de São Paulo, 2013).

4. Chen, K., Ying, Z., Zhang, H. & Zhao, L. Analysis of least absolute deviation. Biometrika 95,

107–122 (2008).

5. Da Silva, N. A. M., de Aquino, L. H., Fonseca, F., Muniz, J. A., et al. Estudo de parâmetros de

crescimento de bezerros Nelore por meio de um modelo de regressão linear: uma abordagem

Bayesiana. Ciência Animal Brasileira 7, 57–65 (2006).

6. De Rezende, M., da Silveira, M., da Silva, R., da Silva, L., Gondo, A, Ramires, G., de Souza, J.,

et al. Pre and post weaning weight gain in Nellore cattle raised in the Pantanal, Mato Grosso

do Sul, Brazil. Ciência Animal 24, 20–27 (2014).

7. Dufrenot, G., Mignon, V. & Tsangarides, C. The trade-growth nexus in the developing countries:

A quantile regression approach. Review ofWorld Economics 146, 731–761. doi:https://doi.

org/10.1007/s10290-010-0067-5 (2010).

8. Dunn, P. K. & Smyth, G. K. Randomized quantile residuals. Journal of Computational and

Graphical Statistics 5, 236–244. doi:10.1080/10618600.1996.10474708 (1996).

9. Farias, A. A. et al. Uso de regressão quantílica na predição da produção de povoamentos de

eucalipto (2018).

10. Fernandes, T. J., Pereira, A. A., Muniz, J. A. & Savian, T. V. Seleção de modelos não lineares

para a descrição das curvas de crescimento do fruto do cafeeiro (2014).

11. Fitzenberger, B., Koenker, R. & Machado, J. A. Economic applications of quantile regression

doi:https : / /doi . org / 10 .1007 / s00181 - 021 - 02186 - 1 (Springer Science & Business Media,

2013).

12. Geraci, M. & Bottai, M. Linear quantile mixed models. Statistics and computing 24, 461–479.

doi:https://doi.org/10.1007/s11222-013-9381-9 (2014).

13. Geraci, M.&Bottai, M.Quantile regression for longitudinal data using the asymmetric Laplace

distribution. Biostatistics 8, 140–154. doi:https://doi.org/10.1093/biostatistics/kxj039 (2007).

14. Hao, L & Naiman, D. Quantile Regression, Sage Publication 2007.

15. Hartigan, J. A. &Wong, M. A. Algorithm AS 136: A k-means clustering algorithm. Journal of

the royal statistical society. series c (applied statistics) 28, 100–108. doi:https://doi.org/10.2307/

2346830 (1979).

16. Hinostroza, A. A. A. Regressão quantílica bayesiana em modelos de fronteira de produção estocástica PhD thesis (Universidade Federal de Rio de Janeiro, 2017).

17. Johnson, R. A.,Wichern, D. W., et al. Applied multivariate statistical analysis (2002).

18. Kocherginsky, M., He, X. & Mu, Y. Practical confidence intervals for regression quantiles.

Journal of Computational and Graphical Statistics 14, 41–55. doi:https : / / doi . org / 10 . 1198 /

106186005X27563 (2005).

19. Koenker, R.&Bassett Jr, G. Regression quantiles. Econometrica: journal of the Econometric Society, 33–50. doi:https://doi.org/10.2307/1913643 (1978).

20. Koenker, R. & Machado, J. A. Goodness of fit and related inference processes for quantile

regression. Journal of the american statistical association 94, 1296–1310. doi:https://doi.org/10.

1080/01621459.1999.10473882 (1999).

21. Koenker, R. W. & d’Orey, V. Algorithm AS 229: Computing regression quantiles. Journal of

the Royal Statistical Society. Series C (Applied Statistics) 36, 383–393. doi:https://doi.org/10.2307/

2347802 (1987).

22. Laureano, M., Boligon, A., Costa, R., Forni, S, Severo, J. & Albuquerque, L. G. d. Estimativas

de herdabilidade e tendências genéticas para características de crescimento e reprodutivas em

bovinos da raça Nelore: Estimates of heritability and genetic trends for growth and reproduction

traits in Nelore cattle. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 63, 143–152.

doi:10.1590/S0102-09352011000100022 (2011).

23. Li, Q., Xi, R., Lin, N., et al. Bayesian regularized quantile regression. Bayesian Analysis 5, 533–

556. doi:10.1214/10-BA521 (2010).

24. Morales, C. E. G. Quantile Regression for Mixed-Effects Models (2015).

25. Muggeo, V. M., Sciandra, M., Tomasello, A. & Calvo, S. Estimating growth charts via nonparametric quantile regression: a practical framework with application in ecology. Environmental and ecological statistics 20, 519–531. doi:https://doi.org/10.1007/s10651-012-0232-1

(2013).

26. Nascimento, M, Nascimento, A., Dekkers, J. & Serão, N. Using quantile regression methodology

to evaluate changes in the shape of growth curves in pigs selected for increased feed

efficiency based on residual feed intake. Animal 13, 1009–1019. doi:https://doi.org/10.1017/

S1751731118002616 (2019).

27. Oliveira, A. M. H. C. d. & Rios-Neto, E. L. G. Tendências da desigualdade salarial para coortes

de mulheres brancas e negras no Brasil. Estudos Econômicos (São Paulo) 36, 205–236. doi:https:

//doi.org/10.1590/S0101-41612006000200001 (2006).

28. Pollice, A., Muggeo, V. M., Torretta, F., Bochicchio, R. & Amato, M. Growth curves of sorghum

roots via quantile regression with P-splines in 47th Scientific Meeting of the Italian Statistical Society (2014).

29. Puiatti, G. A., Cecon, P. R.,Nascimento, M.,Nascimento, A. C. C., Carneiro, A. P. S., Puiatti,

M., Oliveira, A. C. R. d., et al. Quantile regression of nonlinear models to describe different

levels of dry matter accumulation in garlic plants. Ciência Rural 48. doi:https://doi.org/10.

1590/0103-8478cr20170322 (2018).

30. R Development Core Team. R: A Language and Environment for Statistical Computing ISBN 3-

900051-07-0. R Foundation for Statistical Computing (Vienna, Austria, 2020). http://www.Rproject.

org.

31. Reich, B. J., Bondell, H. D.&Wang, H. J. Flexible Bayesian quantile regression for independent

and clustered data. Biostatistics 11, 337–352. doi:https://doi.org/10.1093/biostatistics/kxp049

(2010).

32. Santos, B. & Bolfarine, H. Bayesian quantile regression analysis for continuous data with a

discrete component at zero. Statistical Modelling 18, 73–93. doi:https : / / doi . org / 10 . 1177 /

1471082X17719633 (2018).

33. Santos, P. M. d.,Nascimento, A. C. C.,Nascimento, M., Azevedo, C. F., Mota, R. R., Guimarães,

S. E. F., Lopes, P. S., et al. Use of regularized quantile regression to predict the genetic merit

of pigs for asymmetric carcass traits. Pesquisa Agropecuária Brasileira 53, 1011–1017. doi:https:

//doi.org/10.1590/S0100-204X2018000900004 (2018).

34. Silveira, M., Souza, J. d., Silva, L., Freitas, J., Gondo, A & Ferraz Filho, P. Interação genótipo x

ambiente sobre características produtivas e reprodutivas de fêmeasNelore. Archivos de zootecnia

63, 223–226. doi:https://dx.doi.org/10.4321/S0004-05922014000100026 (2014).

35. Singer, J. M., Rocha, F. M. & Nobre, J. S. Graphical tools for detecting departures from linear

mixed model assumptions and some remedial measures. International Statistical Review 85, 290–

324. doi:https://doi.org/10.1111/insr.12178 (2017).

36. Sorrell, B. K., Tanner, C. C. & Brix, H. Regression analysis of growth responses to water depth

in three wetland plant species. AoB Plants 2012. doi:https://doi.org/10.1093/aobpla/pls043

(2012).

37. Troster, V., Shahbaz, M. & Uddin, G. S. Renewable energy, oil prices, and economic activity:

A Granger-causality in quantiles analysis. Energy Economics 70, 440–452. doi:https://doi.org/

10.1016/j.eneco.2018.01.029 (2018).

38. Yu, K. & Moyeed, R. A. Bayesian quantile regression. Statistics & Probability Letters 54, 437–

447. doi:https://doi.org/10.1016/S0167-7152(01)00124-9 (2001).

39. Yu, K. & Zhang, J. A three-parameter asymmetric Laplace distribution and its extension. Communications in Statistics—Theory and Methods 34, 1867–1879. doi:https : / /doi . org / 10 . 1080 /03610920500199018 (2005).

40. Yuan, Y. & Yin, G. Bayesian quantile regression for longitudinal studies with nonignorable

missing data. Biometrics 66, 105–114. doi:https://doi.org/10.1111/j.1541-0420.2009.01269.x

(2010).

41. Zietz, J., Zietz, E. N. & Sirmans, G. S. Determinants of house prices: a quantile regression

approach. The Journal of Real Estate Finance and Economics 37, 317–333. doi:https://doi.org/10.

1007/s11146-007-9053-7 (2008).

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 > >> 

You may also start an advanced similarity search for this article.