Regression models applied to rhizosphere data: A bibliometric review

Main Article Content

Aline Martineli Batista
https://orcid.org/0000-0001-8173-6607
Fábio Prataviera
https://orcid.org/0000-0001-8190-1086

Abstract

The interaction of soil with plant roots in the rhizosphere plays an important role in various ecosystem services and food production, and it has been the focus of numerous studies. In turn, statistical modeling can aid in a more comprehensive understanding of this interaction, such as the application of regression models to rhizosphere data. Thus, the main objective of this work was to develop the first bibliometric analysis on regression models applied to rhizosphere data. Bibliometric data were obtained from Web of Science and Scopus databases. We use the topic retrival as ((“Rhizosphere”) AND (“Regression models” OR “Regression model” OR “Generalized Linear Models” OR “Generalized Linear Model”)) to search for scientific articles that contain these keywords in their title, abstract, or keywords. The search encompassed articles published from 1900 to 2022, resulting in 34 articles, with the earliest record dating back to 1985. While studies of the rhizosphere are increasing, few studies apply regression models to their data. The use of more advanced techniques, such as Generalized Linear Models (MLG), Artificial Neural Network (ANN), Random Forest Model (RFM), Support Vector Machines (SVM), and Generalized Boosted Regression Modeling (GBM), became evident from 2016 onwards, which was associated with the computational advances and the development of artificial intelligence. Some articles demonstrated that the use of more robust models can provide more meaningful results to the researcher. Only one article was published in a journal dedicated to statistics, highlighting the diffusion of regression models into various fields. Collaborations involving co-authorship between researchers from different countries have led to higher citation rates, increasing the importance of the research to the scientific community. Perhaps one of the most notable limitations to increasing research using regression models is the absence of a statistician or researcher within the research groups who is well versed in statistical models and procedures.

Article Details

How to Cite
Batista, A. M., & Prataviera, F. (2024). Regression models applied to rhizosphere data: A bibliometric review. Brazilian Journal of Biometrics, 42(3), 245–259. https://doi.org/10.28951/bjb.v42i3.692
Section
Articles

References

Ahmed, M. A., Kroener, E., Holz, M., Zarebanadkouki, M. & Carminati, A. Mucilage exudation facilitates root water uptake in dry soils. Functional Plant Biology 41, 1129–1137 (2014). https://doi.org/10.1071/fp13330

Aksnes, D. W., Langfeldt, L. &Wouters, P. Citations, citation indicators, and research quality: An overview of basic concepts and theories. Sage Open 9, 2158244019829575 (2019). https://doi.org/10.1177/2158244019829575

Aria, M. & Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics 11, 959–975 (2017). https://doi.org/10.1016/j.joi.2017.08.007

Ayangbenro, A. S., Chukwuneme, C. F., Ayilara, M. S.,Kutu, F. R., Khantsi, M., Adeleke, B. S., Glick, B. R. & Babalola, O. O. Harnessing the Rhizosphere Soil Microbiome of Organically Amended Soil for Plant Productivity. Agronomy 12, 3179 (2022). https://doi.org/10.3390/agronomy12123179

Basili, V. R., Carver, J. C., Cruzes, D., Hochstein, L. M., Hollingsworth, J. K., Shull, F. & Zelkowitz, M. V. Understanding the high-performance-computing community: A software engineer’s perspective. IEEE software 25, 29 (2008). https://doi.org/10.1109/MS.2008.103

Batista, A. M., Libardi, P. L., Alves, M. E., Prataviera, F. & Giarola, N. F. B. Electrochemical Effects on Clay Dispersion in Rhizo-and Non-rhizospheric Soils. Journal of Soil Science and Plant Nutrition 22, 3518–3526 (2022). https://doi.org/10.1007/s42729-022-00906-9

Beschoren da Costa, P., Benucci, G. M. N., Chou, M.-Y., VanWyk, J., Chretien, M. & Bonito, G. Soil Origin and plant genotype modulate switchgrass aboveground productivity and root microbiome assembly. Mbio 13, e00079–22 (2022). https://doi.org/10.1128/mbio.00079-22

Chen, L., Zhang, C. & Duan, W. Temporal variations in phosphorus fractions and phosphatase activities in rhizosphere and bulk soil during the development of Larix olgensis plantations. Journal of plant nutrition and soil science 179, 67–77 (2016). https://doi.org/10.1002/jpln.201500060

Chi, M., Plaza, A., Benediktsson, J. A., Sun, Z., Shen, J. & Zhu, Y. Big data for remote sensing: Challenges and opportunities. Proceedings of the IEEE 104, 2207–2219 (2016). https://doi.org/10.1109/JPROC.2016.2598228

Chueke, G. V. & Amatucci, M. O que é bibliometria? Uma introdução ao Fórum. Internext 10, 1–5 (2015). https://doi.org/10.18568/1980-4865.1021-5

Clarivate. Journal Impact Factor, Journal Citation Reports. Accessed in 24 nov 2023. 13 (2023).

Cloutier-Hurteau, B., Sauve, S. & Courchesne, F. Predicting Al, Cu, and Zn concentrations in the fine roots of trembling aspen (Populus tremuloides) using bulk and rhizosphere soil properties. Canadian journal of forest research 41, 1267–1279 (2011). http://dx.doi.org/10.1139/x11-052

Cloutier-Hurteau, B., Turmel, M.-C., Mercier, C. &Courchesne, F. The sequestration of trace elements by willow (Salix purpurea)—which soil properties favor uptake and accumulation? Environmental Science and Pollution Research 21, 4759–4771 (2014). https://doi.org/10.1007/s11356-013-2450-y

Davenport, T. & Kalakota, R. The potential for artificial intelligence in healthcare. Future healthcare journal 6, 94 (2019). https://doi.org/10.7861/futurehosp.6-2-94

DeWolf, E., Brock, M. T., Calder, W. J., Kliebenstein, D. J., Katz, E., Li, B., Morrison, H. G., Maïgnien, L. &Weinig, C. The rhizosphere microbiome and host plant glucosinolates exhibit feedback cycles in Brassica rapa. Molecular Ecology (2022). https://doi.org/10.1111/mec.16782

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N. & Lim, W. M. How to conduct a bibliometric analysis: An overview and guidelines. Journal of business research 133, 285–296 (2021). https://doi.org/10.1016/j.jbusres.2021.04.070

Duncan, L., Graham, J., Timmer, L., et al. Seasonal patterns associated with Tylenchulus semipenetrans and Phytophthora parasitica in the citrus rhizosphere. Phytopathology 83, 573–581 (1993). https://doi.org/10.1094/phyto-83-573

Echer, F. R., Peres, V. J. S. & Rosolem, C. A. Potassium application to the cover crop prior to cotton planting as a fertilization strategy in sandy soils. Scientific Reports 10, 1–10 (2020). https://doi.org/10.1038/s41598-020-77354-x

Edge, T. A.&Wyndham, R. C. Predicting survival of a genetically engineered microorganism, Pseudomonas chlororaphis 3732RN-L11, in soil and wheat rhizosphere across Canada with linear multiple regression models. Canadian journal of microbiology 48, 717–727 (2002). https://doi.org/10.1139/w02-066

Fasusi, O. A., Cruz, C. & Babalola, O. O. Agricultural sustainability: microbial biofertilizers in rhizosphere management. Agriculture 11, 163 (2021). https://doi.org/10.3390/agriculture11020163

Fox, A., Gahan, J., Ikoyi, I., Kwapinski, W., O’sullivan, O, Cotter, P. D. & Schmalenberger, A. Miscanthus biochar promotes growth of spring barley and shifts bacterial community structures including phosphorus and sulfur mobilizing bacteria. Pedobiologia 59, 195–202 (2016). https://doi.org/10.1016/j.pedobi.2016.07.003

Guo, P., Jia, X., Duan, T., Xu, J. & Chen, H. Influence of plant activity and phosphates on thorium bioavailability in soils from Baotou area, Inner Mongolia. Journal of environmental radioactivity 101, 767–772 (2010). https://doi.org/10.1016/j.jenvrad.2010.05.002

Guzmán-Plazola, R., Navas, J. d. D. J., Caswell-Chen, E, Zavaleta-Mejía, E & del Prado-Vera, I. C. Spatial distribution of Meloidogyne species and races in the tomato (Lycopersicon esculentum Mill.) producing region of Morelos, Mexico. Nematropica, 215–230 (2006).

Hiltner, L. Ober neuter erfahrungen und probleme auf dem gebiete der bodenbakteriologie unter besonderer berucksichtigung der grundungung und brache. Arbeiten der Deutshen Landwirschafthchen Gesellschaft 98, 59–78 (1904).

Ibekwe, A. M., Grieve, C. M. & Yang, C.-H. Survival of Escherichia coli O157: H7 in soil and on lettuce after soil fumigation. Canadian Journal of Microbiology 53, 623–635 (2007). https://doi.org/10.1139/w07-003

Ibrahim, A. S., Musa, A. A., Abdulfatah, A. Y. & Idris, A. Developing soft-computing regression model for predicting soil bearing capacity using soil index properties. Modeling Earth Systems and Environment 9, 1223–1232 (2023). https://doi.org/10.1016/j.aiig.2023.05.001

Jordan, M. I. & Mitchell, T. M. Machine learning: Trends, perspectives, and prospects. Science 349, 255–260 (2015). https://doi.org/10.1126/science.aaa8415

Leath, S & Carroll, R. Use of ridge regression to predict yield reduction by Fusarium sp. in selected soybean cultivars. Canadian journal of plant pathology 7, 58–66 (1985). https://doi.org/10.1080/07060668509501516

Li, C., Zhang, C., Yu, T., Liu, X., Yang, Y., Hou, Q., Yang, Z., Ma, X. & Wang, L. Use of artificial neural network to evaluate cadmium contamination in farmland soils in a karst area with naturally high background values. Environmental Pollution 304, 119234 (2022). https://doi.org/10.1016/j.envpol.2022.119234

Li, P., Yin, R., Zhou, H., Yuan, X. & Feng, Z. Soil pH drives poplar rhizosphere soil microbial community responses to ozone pollution and nitrogen addition. European Journal of Soil Science 73, e13186 (2022). https://doi.org/10.1111/ejss.13186

Ma, B., Chen, H., He, Y.,Wang, H. & Xu, J. Evaluation of toxicity risk of polycyclic aromatic hydrocarbons (PAHs) in crops rhizosphere of contaminated field with sequential extraction. Journal of Soils and Sediments 10, 955–963 (2010). https://doi.org/10.1007/S11368-010-0212-8

Ma, B., Chen, H., Xu, M., Hayat, T., He, Y. & Xu, J. Quantitative structure–activity relationship (QSAR) models for polycyclic aromatic hydrocarbons (PAHs) dissipation in rhizosphere based on molecular structure and effect size. Environmental Pollution 158, 2773–2777 (2010). https://doi.org/10.1016/j.envpol.2010.04.011

Ma, X., Yang, Z., Yu, T. & Guan, D.-X. Probability of cultivating Se-rich maize in Se-poor farmland based on intensive field sampling and artificial neural network modelling. Chemosphere 309, 136690 (2022). https://doi.org/10.1016/j.chemosphere.2022.136690

Manjunath, A & Habte, M. Root morphological characteristics of host species having distinct mycorrhizal dependency. Canadian Journal of Botany 69, 671–676 (1991). https://doi.org/10.1139/b91-089

McNear Jr, D. H. The Rhizosphere-Roots, Soil and Everything In Between. Nature Education Knowledge 4, 1–15 (2013).

Mohanty, S., Kollah, B., Chaudhary, R. S., Singh, A. B. & Singh, M. Methane uptake in tropical soybean–wheat agroecosystem under different fertilizer regimes. Environmental Earth Sciences 74, 5049–5061 (2015). http://dx.doi.org/10.1007/s12665-015-4603-4

Mokhnacheva, Y. V. & Tsvetkova, V. Bibliometric analysis of soil science as a scientific area. Eurasian Soil Science 53, 838–844 (2020). http://dx.doi.org/10.1134/S1064229320060095

Monreal, C. et al. Bacterial community structure associated with the addition of nitrogen and the dynamics of soluble carbon in the rhizosphere of canola (Brassica napus) grown in a Podzol. Rhizosphere 5, 16–25 (2018). https://doi.org/10.1016/j.rhisph.2017.11.004

Moreira, H., Pereira, S. I., Vega, A., Castro, P. M. & Marques, A. P. Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity. Journal of Environmental Management 257, 109982 (2020). https://doi.org/10.1016/j.jenvman.2019.109982

Pan, F., Liang, Y., Wang, K. & Zhang, W. Responses of fine root functional traits to soil nutrient limitations in a karst ecosystem of Southwest China. Forests 9, 743 (2018). https://doi.org/10.3390/f9120743

Prataviera, F., Batista, A. M., Libardi, P. L., Cordeiro, G. & Ortega, E. M. M. Joint regression modeling of location and scale parameters of the skew t distribution with application in soil chemistry data. Journal of Applied Statistics 49, 195–213 (2022). https://doi.org/10.1080/02664763.2020.1801608

Prataviera, F., Batista, A. M., Ortega, E. M., Cordeiro, G. M. & Silva, B. M. The Logit exponentiated power exponential regression with applications. Annals of Data Science, 1–23 (2021). https://doi.org/10.1007/s40745-021-00347-8

Raaijmakers, J. M. & Mazzola, M. Soil immune responses. Science 352, 1392–1393 (2016). https://doi.org/10.1126/science.aaf3252

Raza, M. A., Aziz, S., Noreen, M., Saeed, A., Anjum, I., Ahmed, M. & Raza, S. M. Artificial Intelligence (AI) in Pharmacy: An Overview of Innovations. INNOVATIONS in pharmacy 13 (2022). https://doi.org/10.24926%2Fiip.v13i2.4839

Rezakhani, L., Motesharezadeh, B., Tehrani, M. M., Etesami, H. & Hosseini, H. M. The effect of silicon fertilization and phosphate-solubilizing bacteria on chemical forms of silicon and phosphorus uptake by wheat plant in a calcareous soil. Plant and Soil, 1–22 (2022). https://link.springer.com/article/10.1007%2Fs11104-021-05274-4

Sarker, I. H. Data science and analytics: an overview from data-driven smart computing, decision-making and applications perspective. SN Computer Science 2, 377 (2021). https://doi.org/10.1007/s42979-021-00765-8

Schmidt, J. E., Firl, A., Hamran, H., Imaniar, N. I., Crow, T. M. & Forbes, S. J. Impacts of Shade Trees on the Adjacent Cacao Rhizosphere in a Young Diversified Agroforestry System. Agronomy 12, 195 (2022). https://doi.org/10.3390/agronomy12010195

Schmidt, J., Marques, M. R., Botti, S. & Marques, M. A. Recent advances and applications of machine learning in solid-state materials science. npj Computational Materials 5, 83 (2019). https://doi.org/10.1038/s41524-019-0221-0

Shimamura, E., Merckx, R. & Smolders, E. Limited effects of the soluble organic phosphorus fraction on the root phosphorus uptake efficiency of upland rice genotypes grown in acid soil. Soil Science and Plant Nutrition 67, 120–129 (2021). https://doi.org/10.1080/00380768.2020.1864230

Snyder, H. Literature review as a research methodology: An overview and guidelines. Journal of business research 104, 333–339 (2019). https://doi.org/10.1016/j.jbusres.2019.07.039

Srivastava, P. K., Yaduvanshi, A., Singh, S. K., Islam, T. & Gupta, M. Support vector machines and generalized linear models for quantifying soil dehydrogenase activity in agro-forestry system of mid altitude central Himalaya. Environmental Earth Sciences 75, 1–15 (2016). https://link.springer.com/article/10.1007/s12665-015-5074-3

Tang, L., Zhan, M., Shang, C., Yuan, J.,Wan, Y. & Qin, M. Dynamics of root exuded carbon and its relationships with root traits of rapeseed and wheat. Plant, Soil and Environment 67, 317–323 (2021). http://dx.doi.org/10.17221/561/2020-PSE

Tian, K., Bao, H., Liu, X. &Wu, F. Accumulation and distribution of PAHs in winter wheat fromareas influenced by coal combustion in China. Environmental Science and Pollution Research 25, 23780–23790 (2018). https://doi.org/10.1007/s11356-018-2456-6

Van Veelen, A., Tourell, M. C., Koebernick, N., Pileio, G. & Roose, T. Correlative visualization of root mucilage degradation using X-ray CT and MRI. Frontiers in Environmental Science 6, 32 (2018). https://doi.org/10.3389/fenvs.2018.00032

Wang, A. S., Angle, J. S., Chaney, R. L., Delorme, T. A. & McIntosh, M. Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biology and Biochemistry 38, 1451–1461 (2006). https://doi.org/10.1016/j.soilbio.2005.11.001

Wang, Y., Hu, Z., Shen, L., Liu, C., Islam, A. T., Wu, Z., Dang, H. & Chen, S. The process of methanogenesis in paddy fields under different elevated CO2 concentrations. Science of The Total Environment 773, 145629 (2021). https://doi.org/10.1016/j.scitotenv.2021.145629

Wu, X., Huang, C., Sha, L. & Wu, C. Influence of rhizosphere activity on litter decomposition in subtropical forest: implications of estimating soil organic matter contributions to soil respiration. Journal of Tropical Ecology 38, 151–157 (2022). http://dx.doi.org/10.1017/S0266467422000013

Xia, Z., He, Y., Yu, L., Li, Z., Korpelainen, H. & Li, C. Revealing interactions between root phenolic metabolomes and rhizosphere bacterial communities in Populus euphratica plantations. Biology and Fertility of Soils 57, 421–434 (2021). https://link.springer.com/article/10.1007/s00374-020-01527-z

Yao, Y., Yao, X., An, L., Bai, Y., Xie, D. &Wu, K. Rhizosphere bacterial community response to continuous cropping of Tibetan Barley. Frontiers in microbiology 11, 551444 (2020). https://doi.org/10.3389/fmicb.2020.551444

Zia, R., Nawaz, M. S., Siddique, M. J., Hakim, S. & Imran, A. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiological research 242, 126626 (2021). https://doi.org/10.1016/j.micres.2020.126626

Most read articles by the same author(s)