Taxa de mortalidade de casos por COVID-19: Uma an´alise bayesiana hier´arquica de pa´ıses em diferentes regi˜oes do mundo.

Conteúdo do artigo principal

Marcos Vininicius de Oliveira PERES
https://orcid.org/0000-0002-8556-5152
Ricardo Puziol de OLIVEIRA
Jorge Alberto ACHCAR
https://orcid.org/0000-0002-9868-9453
Altacílio Aparecido NUNES
https://orcid.org/0000-0001-9934-920X

Resumo

O objetivo principal deste estudo ´e a an´alise estat´ıstica de ´obitos/casos, definido epidemiologicamente como a taxa de fatalidade de caso (CFR) devido a novo coronav´ırus (SARS-CoV-2) para 113 pa´ıses em diferentes regi˜oes do mundo na presen¸ca de alguns fatores econˆomicos, fatores de sa´ude e sociais. O conjunto de dados considerado refere-se `as contagens di´arias acumuladas de casos notificados e ´obitos por um per´ıodo que vai do in´ıcio da pandemia do COVID-19 em cada pa´ıs at´e 25 de julho de 2020, o
per´ıodo final do dia de acompanhamento. Um modelo de regress˜ao log´ıstica binomial na presen¸ca de um efeito aleat´orio ´e assumido na an´alise de dados. A an´alise estat´ıstica ´e considerada sob uma abordagem Bayesiana hier´arquica usando m´etodos MCMC (Markov Chain Monte Carlo) para obter as estat´ısticas posteriores de interesse. Os resultados encontrados s˜ao interessantes considerando a interpreta¸c˜ao epidemiol´ogica, que pode ser de grande relevˆancia para epidemiologistas, autoridades de sa´ude e p´ublico em geral diante de uma pandemia complexa em todos os seus aspectos, como a que estamos vivenciando.

Detalhes do artigo

Como Citar
PERES, M. V. de O., OLIVEIRA, R. P. de, ACHCAR, J. A., & NUNES, A. A. (2022). Taxa de mortalidade de casos por COVID-19: Uma an´alise bayesiana hier´arquica de pa´ıses em diferentes regi˜oes do mundo. REVISTA BRASILEIRA DE BIOMETRIA, 40(2). https://doi.org/10.28951/bjb.v40i2.565
Seção
Articles

Referências

BATES, D. M.; WATTS, D. G. Relative curvature measures of nonlinearity. Journal of the Royal Statistical Society: Series B (Methodological), Wiley Online Library, v. 42, n. 1, p. 1–16, 1980.

BATES, D. M.; WATTS, D. G. Nonlinear regression analysis and its applications. New York: Wiley, 1988. v. 2.

BOX, G. E.; TIAO, G. C. Bayesian inference in statistical analysis. [S.l.]: JohnWiley & Sons, 1973.

BROOKS, S. P.; GELMAN, A. General methods for monitoring convergence of iterative simulations. Journal of computational and graphical statistics, Taylor & Francis Group, v. 7, n. 4, p. 434–455, 1998.

CHAN, J. F.-W. et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster.The Lancet, Elsevier, v. 395, n. 10223, p. 514–523, 2020.

CHAN, K.-H. et al. Factors affecting stability and infectivity of SARS-CoV-2. Journal of Hospital Infection, Elsevier, 2020.

CHEN, J. Pathogenicity and transmissibility of 2019-nCoV: A quick overview and comparison with other emerging viruses. Microbes and Infection, Elsevier, 2020.

CHEN, Y.; LIU, Q.; GUO, D. Emerging coronaviruses: genome structure, replication, and pathogenesis. Journal of Medical Virology, Wiley Online Library,v. 92, n. 4, p. 418–423, 2020.

CHIB, S.; GREENBERG, E. Understanding the Metropolis-Hastings algorithm. The american statistician, Taylor & Francis Group, v. 49, n. 4, p. 327–335, 1995.

CHODCIK, G.; WEIL, C. COVID-19 death toll: The role of the nation’s economic development. medRxiv, Cold Spring Harbor Laboratory Press, 2020.

CHU, D. K. et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis.The Lancet, Elsevier, 2020.

CLIFFORD, S. J. et al. Interventions targeting air travellers early in the pandemic may delay local outbreaks of SARS-CoV-2.medRxiv, Cold Spring HarborLaboratory Press, 2020.

CURTIS, C. R. et al. Ordinary versus random-effects logistic regression for analyzing herd-level calf morbidity and mortality data. Preventive Veterinary Medicine, Elsevier, v. 16, n. 3, p. 207–222, 1993.

DOWD, J. B. et al. Demographic science aids in understanding the spread and fatality rates of COVID-19. Proceedings of the National Academy of Sciences, National Acad Sciences, v. 117, n. 18, p. 9696–9698, 2020.

GELFAND, A. E.; SMITH, A. F. Sampling-based approaches to calculating marginal densities. Journal of the American statistical association, Taylor & Francis Group, v. 85, n. 410, p. 398–409, 1990.

GIANGRECO, G. Case fatality rate analysis of Italian COVID-19 outbreak. Journal of Medical Virology, Wiley Online Library, 2020.

GIBBONS, R. D.; HEDEKER, D. Random effects probit and logistic regression models for three-level data. Biometrics, JSTOR, p. 1527–1537, 1997.

HUANG, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, Elsevier, v. 395, n. 10223, p. 497–506, 2020.

JOOB, B.; WIWANITKIT, V. COVID-19 in rural non-resort town: Observation from thailand.The Australian Journal of Rural Health, Wiley-Blackwell, v. 28,n. 2, p. 184, 2020.

KANDEL, N. et al. Health security capacities in the context of COVID-19 outbreak: An analysis of International Health Regulations annual report data from 182 countries.The Lancet, Elsevier, 2020.

LAI, C.-C. et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. International Journal of Antimicrobial Agents, Elsevier, 2020.

LAI, C.-C. et al. Global epidemiology of coronavirus disease 2019: disease incidence, daily cumulative index, mortality, and their association with country healthcare resources and economic status. International journal of antimicrobial agents, Elsevier, p. 105946, 2020.

LAM, T. T.-Y. et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature, Nature Publishing Group, p. 1–6, 2020.

LAN, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain boundto the ACE2 receptor. Nature, Nature Publishing Group, p. 1–9, 2020.

LARSEN, K. et al. Interpreting parameters in the logistic regression model with random effects. Biometrics, Wiley Online Library, v. 56, n. 3, p. 909–914, 2000.

LI, J.-Y. et al. The epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future. Microbes and Infection,Elsevier, v. 22, n. 2, p. 80–85, 2020.

LU, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. The Lancet, Elsevier, v. 395, n.10224, p. 565–574, 2020.

LUMU, I. COVID-19 response in Sub-Saharan Africa: Lessons from Uganda. Disaster medicine and public health preparedness, Disaster Med Public HealthPrep, p. 1–5, 2020.

LUPIA, T. et al. 2019-novel coronavirus outbreak: A new challenge. Journal ofGlobal Antimicrobial Resistance, Elsevier, 2020.

NEPOMUCENO, M. R. et al. Besides population age structure, health and other demographic factors can contribute to understanding the COVID-19 burden. Proceedings of the National Academy of Sciences, National Acad Sciences, v. 117,n. 25, p. 13881–13883, 2020.

OHIA, C.; BAKAREY, A. S.; AHMAD, T. COVID-19 and Nigeria: Putting therealities in context. International Journal of Infectious Diseases, Elsevier, 2020.

ONGOLE, J. et al. Sustaining essential healthcare in Africa during the COVID-19 pandemic. 2020.

OSSENI, I. A. COVID-19 pandemic in Sub-Saharan Africa: Preparedness, response, and hidden potentials. Tropical Medicine and Health, BioMed Central,v. 48, n. 1, p. 1–3, 2020.

PUNG, R. et al. Investigation of three clusters of COVID-19 in Singapore: Implications for surveillance and response measures. The Lancet, Elsevier, 2020.

RACIBORSKI, F. et al. Dynamics of COVID-19 outbreak in Poland: An epidemiological analysis of the first two months of the epidemic. Polish Archives ofInternal Medicine, 2020.

RATKOWSKY, D. Nonlinear regression modelling. New York: Marcel Dekker,1983.

RITCHIE, H. et al. Cumulative confirmed covid-19 cases per million vs. gdp percapita. https://wjct.org/coronavirus-gdp-per-capita/, 2020.

ROLLSTON, R.; GALEA, S.COVID-19 and the Social Determinants of Health.[S.l.]: SAGE Publications Sage CA: Los Angeles, CA, 2020.

SEBER, G. A. F.; WILD, C. J. Nonlinear regression. New Jersey: John Wiley &Sons, 2003.

SHEREEN, M. A. et al. COVID-19 infection: Origin, transmission, and characteristics of human corona viruses. Journal of Advanced Research, Elsevier,2020.

SPIEGELHALTER, D. et al. WinBUGS user manual, version 1.4 MRCBiostatistics Unit. Cambridge, UK, 2003.

SRIWIJITALAI, W.; WIWANITKIT, V. COVID-19 in a remote village in atropical forest-a note.Rural and remote health, Rural Remote Health, v. 20, n. 3,p. 6014, 2020.

UNICEF. Child mortality and COVID-19.https://data.unicef.org/topic/child-survival/covid-19/, 2020.

World Health Organization. Coronavirus disease 2019: Pandemic. [S.l.]: WorldHealth Organization, 2020.

WU, A. et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host & Microbe, Elsevier, 2020.

YUAN, J. et al. Monitoring transmissibility and mortality of COVID-19 in Europe. International Journal of Infectious Diseases, Elsevier, 2020