Assessment of the efficiency of image analyzer applications in determining substrate quality for vegetable seedling development
Conteúdo do artigo principal
Resumo
The aim of this study is to evaluate the efficiency of images analyzer applications in determining substrate quality for vegetable seedling development. Two leaf coverage determiner apps using digital images, Canopeo and GreenTest, were tested and their values were compared with results obtained from NDVI, fresh mass, dry mass, and humidity in a substrate testing experiment for lettuce seedling development. The experiment, employing a completely randomized design with 4 treatments (control, witness, humus and organic compost) and 4 repetitions, took place in a greenhouse in Londrina, Paraná, Brazil, in April 2022. Results indicated that the Canopeo app demonstrated greater sensitivity in distinguishing between treatments and exhibited a very strong relation with other scientifically employed analyses. In contrast, GreenTest showed moderate relation and lower sensitivity in the analyses. In conclusion, Canopeo proves to be a reliable application for determining leaf coverage and analyzing the performance of vegetable seedlings.
Detalhes do artigo
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Referências
Campana, M.; Del Valle, T. A.; Fernandes, L .S.; Pereira, F. R. da S.; Garcia, T. M.; Osório, J. A. C.; Facco, F. B.; Morais, J. P. G. de. Canopeo and GreenSeeker applications as tools to support tropical pasture management. Ciência Rural 53 (2023). Doi: doi.org/10.1590/0103-8478cr20220167
Castoldi, G.; Freiberger, M. B.; Pivetta, L. A.; Pivetta, L. G. Echer, M. de M. Alternativo substrates in the production of lettuce seedlings and their productivity in the field. Revista Ciência Agronômica 45, 299-304 (2014). https://doi.org/10.1590/S1806-66902014000200010
Confalonieri, R; Foi, M.; Casa, R.; Aquaro, S.; Tona, E.; Peterle, M.; Boldini, A.; De Carli, G.; Ferrari, A.; Finotto, G.; Guarneri, T.; Manzoni, V.; Movedi, E.; Nisoli, A.; Paleari, L.; Radici, I.; Suardi, M.; Veronesi, D.; Bregaglio, S.; Cappelli, G.; Chiodini, M. E.; Dominoni, P.; Francone, C.; Frasso, N.; Stella, T.; Acutis, M. Development of na app for estimating leaf área index using a smartphone. Trueness and precision determination and comparison with other indirect methods. Computers and Electronics in Agriculture 96, 67-74 (2013). https://doi.org/10.1016/j.compag.2013.04.019
Farias, D. F.; Bremm, C.; Bredemeier, C.; Menezes, J. de L.; Aalves, L. A.; Tiecher, T.; Martins, A. P.; Fioravanço, G. P.; Silva, G. P. da; Carvalho, P. C. de F. Normalized Difference Vegetation Index (NDVI) for soybean biomass and nutriente uptake estimation in response to production systems and fertilization strategies. Frontiers in Sustainable Food Systems 6, 6:959681 (2023). Doi: doi.org/10.3389/fsufs.2022.959681
Gomes, A. P. A.; Queiroz, D. M. de; Valente, D. S. M.; Pinto, F. de A. de C.; Rosas, J. T. F. Comparing a single-sensor camera with a multisensor camera for monitoring coffee crop using unmanned aerial vehicles. Engenharia Agrícola 41, 87-97 (2021). Doi: doi.org/10.1590/1809-4430-Eng.Agric.v41n1p87-97/2021
Haider, T.; Farid, M. S.; Mahmood, R.; Ilyas, A.; Khan, M. H.; Haider, S. T.; Chaudhry, M. H.; Gul, M. A computer-vision-based approach for nitrogen contente estimation in plant leaves. Agriculture 11, 766 (2021). Doi: doi.org/10.3390/agriculture11080766
Hale, G. A.; Cox, R. D.; Ritchie, C. Canopy detection beyond the field: Colored backgrounds impact precision of Canopeo. Sensing and Bio-Sensing Research 42, 1-7 (2023). Doi: doi.org/10.1016/j.sbsr.2023.100587
Mattila, T. J.; Heinonen, R. Smartphone-based estimation of green cover depends on the camera used. Agronomy Journal 113, 5597-5601 (2021). Doi: 10.1002/agj2.20752
Moraes, V. H.; Giongo, P. R.; Albert, A. M.; Arantes, B. H. T.; Mesquita, M. Development of lettuce varieties in different organic wastes as substrate. Revista Facultad Nacional de Agronomía Medellín 74, 9483-9489 (2021). Doi: doi.org/10.15446/rfnam.v74n2.85547
Prabhakara, K.; Hively, W. D.; McCarty, G. W. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across sex winter cover crop fields in Maryland, United State. International Journal of Applied Earth Observation and Geoinformation 39, 88-102 (2015). Doi: doi.org/10.1016/J.JAG.2015.03.002
Qu, Y.; Wang, Z.; Shang, J.; Liu, J.; Zou, J. Estimation of leaf area index using inclined smartphone camera. Computers and Electronics in Agriculture 191 (2021). Doi: doi.org/10.1016/j.compag.2021.106514
Reznick, J. P. K.; Pauletti, V.; Barth, G. Field estimate with NDVI of grain yield and quality of wheat flour. Revista Brasileira de Engenharia Agrícola e Ambiental 25, 801-806 (2021). Doi: doi.org/10.1590/1807-1929/agriambi.v25n1p3-9