Assessment of the efficiency of image analyzer applications in determining substrate quality for vegetable seedling development

Conteúdo do artigo principal

Roger Nabeyama Michels
Tatiane Cristina Dal Bosco
Murilo Chennecdge Vieira

Resumo

The aim of this study is to evaluate the efficiency of images analyzer applications in determining substrate quality for vegetable seedling development. Two leaf coverage determiner apps using digital images, Canopeo and GreenTest, were tested and their values were compared with results obtained from NDVI, fresh mass, dry mass, and humidity in a substrate testing experiment for lettuce seedling development. The experiment, employing a completely randomized design with 4 treatments (control, witness, humus and organic compost) and 4 repetitions, took place in a greenhouse in Londrina, Paraná, Brazil, in April 2022. Results indicated that the Canopeo app demonstrated greater sensitivity in distinguishing between treatments and exhibited a very strong relation with other scientifically employed analyses. In contrast, GreenTest showed moderate relation and lower sensitivity in the analyses. In conclusion, Canopeo proves to be a reliable application for determining leaf coverage and analyzing the performance of vegetable seedlings.

Detalhes do artigo

Como Citar
Michels, R. N., Dal Bosco, T. C. ., & Chennecdge Vieira, M. . (2024). Assessment of the efficiency of image analyzer applications in determining substrate quality for vegetable seedling development. REVISTA BRASILEIRA DE BIOMETRIA, 42(4), 385–394. https://doi.org/10.28951/bjb.v42i4.714
Seção
Articles
Biografia do Autor

Tatiane Cristina Dal Bosco, Universidade Tecnológica Federal do Paraná

Dr in Agricultural Engineering, Professor Academic Department of Environmental Engineering.

Murilo Chennecdge Vieira, Universidade Tecnológica Federal do Paraná

Academic Department of Mechanical Engineering. Graduating in Mechanical Engineering.

Referências

Campana, M.; Del Valle, T. A.; Fernandes, L .S.; Pereira, F. R. da S.; Garcia, T. M.; Osório, J. A. C.; Facco, F. B.; Morais, J. P. G. de. Canopeo and GreenSeeker applications as tools to support tropical pasture management. Ciência Rural 53 (2023). Doi: doi.org/10.1590/0103-8478cr20220167

Castoldi, G.; Freiberger, M. B.; Pivetta, L. A.; Pivetta, L. G. Echer, M. de M. Alternativo substrates in the production of lettuce seedlings and their productivity in the field. Revista Ciência Agronômica 45, 299-304 (2014). https://doi.org/10.1590/S1806-66902014000200010

Confalonieri, R; Foi, M.; Casa, R.; Aquaro, S.; Tona, E.; Peterle, M.; Boldini, A.; De Carli, G.; Ferrari, A.; Finotto, G.; Guarneri, T.; Manzoni, V.; Movedi, E.; Nisoli, A.; Paleari, L.; Radici, I.; Suardi, M.; Veronesi, D.; Bregaglio, S.; Cappelli, G.; Chiodini, M. E.; Dominoni, P.; Francone, C.; Frasso, N.; Stella, T.; Acutis, M. Development of na app for estimating leaf área index using a smartphone. Trueness and precision determination and comparison with other indirect methods. Computers and Electronics in Agriculture 96, 67-74 (2013). https://doi.org/10.1016/j.compag.2013.04.019

Farias, D. F.; Bremm, C.; Bredemeier, C.; Menezes, J. de L.; Aalves, L. A.; Tiecher, T.; Martins, A. P.; Fioravanço, G. P.; Silva, G. P. da; Carvalho, P. C. de F. Normalized Difference Vegetation Index (NDVI) for soybean biomass and nutriente uptake estimation in response to production systems and fertilization strategies. Frontiers in Sustainable Food Systems 6, 6:959681 (2023). Doi: doi.org/10.3389/fsufs.2022.959681

Gomes, A. P. A.; Queiroz, D. M. de; Valente, D. S. M.; Pinto, F. de A. de C.; Rosas, J. T. F. Comparing a single-sensor camera with a multisensor camera for monitoring coffee crop using unmanned aerial vehicles. Engenharia Agrícola 41, 87-97 (2021). Doi: doi.org/10.1590/1809-4430-Eng.Agric.v41n1p87-97/2021

Haider, T.; Farid, M. S.; Mahmood, R.; Ilyas, A.; Khan, M. H.; Haider, S. T.; Chaudhry, M. H.; Gul, M. A computer-vision-based approach for nitrogen contente estimation in plant leaves. Agriculture 11, 766 (2021). Doi: doi.org/10.3390/agriculture11080766

Hale, G. A.; Cox, R. D.; Ritchie, C. Canopy detection beyond the field: Colored backgrounds impact precision of Canopeo. Sensing and Bio-Sensing Research 42, 1-7 (2023). Doi: doi.org/10.1016/j.sbsr.2023.100587

Mattila, T. J.; Heinonen, R. Smartphone-based estimation of green cover depends on the camera used. Agronomy Journal 113, 5597-5601 (2021). Doi: 10.1002/agj2.20752

Moraes, V. H.; Giongo, P. R.; Albert, A. M.; Arantes, B. H. T.; Mesquita, M. Development of lettuce varieties in different organic wastes as substrate. Revista Facultad Nacional de Agronomía Medellín 74, 9483-9489 (2021). Doi: doi.org/10.15446/rfnam.v74n2.85547

Prabhakara, K.; Hively, W. D.; McCarty, G. W. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across sex winter cover crop fields in Maryland, United State. International Journal of Applied Earth Observation and Geoinformation 39, 88-102 (2015). Doi: doi.org/10.1016/J.JAG.2015.03.002

Qu, Y.; Wang, Z.; Shang, J.; Liu, J.; Zou, J. Estimation of leaf area index using inclined smartphone camera. Computers and Electronics in Agriculture 191 (2021). Doi: doi.org/10.1016/j.compag.2021.106514

Reznick, J. P. K.; Pauletti, V.; Barth, G. Field estimate with NDVI of grain yield and quality of wheat flour. Revista Brasileira de Engenharia Agrícola e Ambiental 25, 801-806 (2021). Doi: doi.org/10.1590/1807-1929/agriambi.v25n1p3-9

Artigos mais lidos pelo mesmo(s) autor(es)